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“A morte não é nada. 

Apenas passei ao outro mundo. 

Eu sou eu. Tu és tu. 

O que fomos um para o outro ainda o somos. 

 

Dá-me o nome que sempre me deste. 

Fala-me como sempre me falaste,  
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O cordão da união não se quebrou. 

Porque eu estaria fora de teus pensamentos, 

 apenas porque estou fora de tua vista? 

 

Não estou longe,  

somente estou do outro lado do caminho. 

Já verás, tudo está bem. 

Redescubrirás o meu coração,  

e nele redescobrirás a ternura mais pura. 

Seca tuas lágrimas e, se me amas, não chores mais.” 

 
Oração de Santo Agostinho 

 
 
 
 
 

Aos nosso filhos, 
Bianca, Victor e Clara. 
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Este trabalho apresenta uma análise teórico-experimental de problemas 

de condução de calor em meios heterogêneos, visando a construção de ferramentas para 

identificação de propriedades termofísicas e condições de contorno. Meios heterogêneos 

envolvem variações espaciais de propriedades termofísicas em diferentes formas 

funcionais, dependendo do tipo da heterogeneidade. O método de transformação 

integral clássico foi empregado na solução analitica do problema direto, desenvolvendo-

se uma solução híbrida numérico-analítica para o problema auxiliar de autovalores 

através da Técnica da Transformada Integral Generalizada (GITT). Utilizou-se 

inferência Bayesiana na estimativa das propriedades espacialmente variáveis e das 

condições de contorno, empregando o método de Monte Carlo via Cadeia de Markov 

(MCMC) com o algoritmo de Metropolis-Hastings. As propriedades variáveis foram 

expressas como expansões em autofunções, o que permitiu a estimativa de um número 

significativamente reduzido de parâmetros. Outro avanço do presente estudo foi a 

solução do problema inverso no campo transformado, a partir da transformação integral 

dos dados experimentais de temperatura, assim colapsando os dados experimentais nas 

variaveis espaciais em alguns poucos campos transformados. Adotou-se a termografia 

por câmera de infravermelho como técnica não-intrusiva para medidas de temperatura 

em experimentos de placas em sanduiche de materiais conhecidos, total ou parcialmente 

aquecidas, para demonstração das técnicas de solução desenvolvidas.  
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INVERSE HEAT CONDUCTION PROBLEMS IN HETEROGENEOUS MEDIA: 
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TRANSFORMS, BAYESIAN INFERENCE AND INFRARED THERMOGRAPHY  
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This work presents a theoretical-experimental analysis of heat conduction 

problems in heterogeneous media, aimed at constructing tools for the identification of 

thermophysical properties and boundary conditions. Heterogeneous media involve 

spatial variations of thermophysical properties in different functional forms, depending 

on the type of heterogeneity. The classical integral transform method was employed in 

the analytical solution of the direct problem, and a hybrid numerical-analytical solution 

was developed for the auxiliary eigenvalue problem through the Generalized Integral 

Transform Technique (GITT). Bayesian inference was utilized in the estimation of the 

spatially variable properties and boundary conditions, by employing the Markov Chain 

Monte Carlo (MCMC) method with the Metropolis-Hastings algorithm. The variable 

properties were expressed as eigenfunction expansions, which permitted the estimation 

of a significantly reduced number of parameters. Another advancement of the present 

study was the solution of the inverse problem in the transformed field, from the integral 

transformation of the experimental temperature data, thus collapsing the experimental 

measurements in the space variables into a few transformed fields. Infrared camera 

thermography was adopted as a non-intrusive technique for temperature measurements 

in experiments of sandwiched plates of known materials, totally or partially heated, in 

order to demonstrate the developed solution techniques. 
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Capítulo 1  

 

1. Introdução 

 

1.1. Motivação e Objetivos 

 

A análise de problemas difusivos em meios heterogêneos aparece em 

diferentes contextos da física e da engenharia. No contexto de condução de calor em 

sólidos heterogêneos, identificam-se algumas diferentes situações que geralmente referem-

se a esta terminologia, incluindo compósitos com micro-estrutura não uniforme, 

compósitos de múltiplas camadas, sólidos com inclusões, materiais porosos não-

homogêneos, superfícies soldadas ou coladas, etc. O resultado da heterogeneidade pode ser 

expresso através da variação espacial das propriedades termofísicas concernentes, seja de 

forma ordenada ou de forma randômica. Recentemente, renovou-se o interesse na análise 

de condução de calor em meios heterogêneos sob a luz dos recentes desenvolvimentos na 

fabricação de novos materiais que têm suas propriedades mudadas de uma forma pré-

projetada como os FGM (functionally graded materials) e os nano-compósitos, quando as 

propriedades do material são estabelecidas a priori de modo a atenderem uma determinada 

aplicação térmica, ou mesmo mais de uma função física, em muitos casos associadas a 

condições de operação e ambientais extremas. 

Problemas de condução de calor em meios heterogêneos envolvem variações 

espaciais das propriedades termofísicas em diferentes formas, dependendo do tipo de 

heterogeneidade envolvida, como variações em larga escala (FGM), variações abruptas em 

compósitos laminados, e em variações randômicas devido a flutuações locais de 

concentração em sistemas dispersos. Em todas essas situações uma representação acurada 

do processo de transferência de calor requer uma solução local detalhada do 

comportamento da temperatura, geralmente associada a soluções numéricas discretas com 
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malhas suficientemente refinadas e com esforço computacional significativo, e/ou 

abordagens semi-analíticas para formas funcionais específicas ou simplificadas. 

No que concerne à solução direta de problemas de condução de calor em 

meios heterogêneos, o procedimento de transformação integral empregado neste trabalho 

advem da aplicação da Técnica de Transformação Integral Clássica [Mikhailov & Ozisik 

(1984)]. A aplicação deste método resulta em um sistema transformado linear e 

desacoplado, passível de solução analítica. Por outro lado, o problema auxiliar de autovalor 

requerido por essa solução exata demanda a utilização da Técnica da Transformada Integral 

Generalizada [Cotta (1993)], que já tem sido aplicada à solução de problemas de autovalor 

em casos de coeficientes variáveis e domínios irregulares. Uma outra possibilidade aqui 

explorada é expressar os próprios coeficientes variáveis como expansões em autofunções. 

Este procedimento pode ser particularmente vantajoso para a avaliação totalmente analítica 

dos coeficientes do sistema algébrico no campo transformado. Sendo assim, todas as 

manipulações podem ser expressas em termos de autofunções, permitindo em geral a 

integração analítica das mesmas, e sua pronta derivação em ambiente de computação 

simbólica. 

Para o tratamento e simulação de problemas de difusão em meios 

heterogêneos não é, entretanto, suficiente desenvolver um técnica de solução do problema 

direto que capte essas diferentes formas de variação espacial dos coeficientes na 

formulação. Como os materiais característicos dessas aplicações apresentam infinitas 

possibilidades de concepção, fabricação e mesmo auto-estruturação, a caracterização de 

suas propriedades físicas locais deve ser feita praticamente caso a caso, na ausência de um 

caminho universal para identificação de morfologia e propriedades. Nesse sentido, faz-se 

essencial o desenvolvimento simultâneo de uma metodologia para identificação das 

propriedades físicas com suas variações espaciais, via solução do problema inverso 

correspondente, para realimentar a solução do problema direto na desejada simulação do 

fenômeno físico correspondente. 

Dentre as várias técnicas de solução de problemas inversos disponíveis, uma 

abordagem bastante comum está relacionada à minimização de uma função objetivo que 

geralmente envolve a diferença quadrática entre os valores medidos e estimados, como por 
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exemplo o funcional de mínimos quadrados, assim como algumas variantes do mesmo, que 

incluem termos de regularização.  

A despeito do fato da minimização do funcional de mínimos quadrados ser 

indiscriminadamente utilizada, ela só coincide com as estimativas de máxima 

verossimilhança se forem válidas as hipóteses estatísticas de: erros de medidas aditivos, 

não-correlacionados, com distribuição normal, média zero e desvio padrão constante, e que 

somente as variáveis medidas que aparecem na função objetivo contem erro e não se tem 

informação a priori dos parâmetros e das suas incertezas. Embora muito popular e útil em 

muitas situações, a minimização do funcional de mínimos quadrados é um estimador dito 

frequentista. Em contraposição, o presente trabalho propõe a utilização de uma abordagem 

dita Bayesiana na estimativa dos parâmetros. Um estimador Bayesiano está basicamente 

relacionado com a análise estatística de uma densidade de probabilidade a posteriori, que é 

a probabilidade condicional dos parâmetros dadas as medidas, enquanto que a 

verossimilhança é a probabilidade condicional das medidas dados os parâmetros.  

Supondo que os parâmetros e as medidas são independentes, com distribuição 

Gaussiana, médias e matrizes de covariância conhecidas, e que os erros de medidas são 

aditivos, uma expressão em forma fechada pode ser derivada para a densidade de 

probabilidade a posteriori. Nesse caso, o estimador que maximiza esta densidade de 

probabilidade a posteriori pode ser expresso na forma de um problema de minimização 

envolvendo a função objetivo Maximum a Posteriori. 

Por outro lado, se diferentes densidades de probabilidade a priori são 

assumidas para os parâmetros e/ou a distribuição a posteriori torna-se não diferenciável, 

consequentemente não permitindo tratamento analítico, deve-se empregar métodos 

numéricos de amostragem da distribuição a posteriori, como por exemplo, o Método de 

Monte Carlo via Cadeia de Markov (MCMC), e assim a inferência sobre a probabilidade a 

posteriori é obtida através das amostras desta distribuição de interesse. 

Este trabalho ilustra a utilização da inferência Bayesiana na estimativa de 

coeficientes variáveis espacialmente em problemas de condução de calor em meios 

heterogêneos, empregando o método de Monte Carlo via Cadeia de Markov (MCMC). Este 

procedimento de amostragem da distribuição a posteriori em geral é a tarefa computacional 

mais custosa na solução de um problema inverso via inferência Bayesiana, uma vez que o 
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problema direto é calculado a cada estado da Cadeia de Markov. Neste contexto a 

utilização de uma solução direta rápida, precisa e de fácil implementação computacional, é 

de extrema relevância. Sendo assim, a abordagem via transformação integral anteriormente 

discutida mostra-se bastante interessante e oportuna uma vez que todas as etapas no método 

são feitas analiticamente uma única vez, via computação simbólica, e a única tarefa 

numérica repetitiva consiste na solução de um problema de autovalor matricial.  

Na combinação dessas metodologias de solução dos problemas direto e 

inverso foram aqui introduzidos dois aspectos bastante originais. Em primeiro lugar, como 

discutido anteriormente, as propriedades variáveis foram expressas como expansões em 

autofunções na solução do problema direto, o que permitiu a estimativa de um número 

significativamente reduzido de parâmetros na solução do problema inverso, em comparação 

com outras formas mais comuns de parametrização. Outro avanço do presente estudo foi a 

proposição da solução do problema inverso no campo transformado, a partir da 

transformação integral dos dados experimentais de temperatura, assim colapsando os dados 

experimentais nas variaveis espaciais em alguns poucos campos transformados. Assim, a 

estimativa no campo transformado oferece uma alternativa ao procedimento usual de 

estimativa no campo de temperaturas, de forma particularmente atraente para situações 

experimentais em que se tem um grande número de medidas espaciais. 

Com o objetivo de estimar propriedades espacialmente variáveis em meios 

heterogêneos o emprego de uma técnica experimental que permita maximizar a quantidade 

de informação presente nas medidas é de fundamental importância. Além disso, como a 

morfologia do meio influencia diretamente o comportamento espacial das propriedades, 

torna-se crítico não perturbar a estrutura em análise com a introdução de um grande número 

de sensores individuais intrusivos, como no caso de termopares ou outros sensores de 

contato. Neste sentido a técnica não-intrusiva de termografia por câmera de infravermelho 

permite a aquisição de um grande volume de medidas, tanto no tempo quanto 

espacialmente, abrindo assim novas perspectivas para a identificação local e precisa de 

propriedades termofísicas e condições de contorno em meios heterogêneos. 

O presente trabalho então almeja avançar simultaneamente nessas três frentes, 

desenvolvendo soluções inovadoras para os problemas direto, inverso e experimental, e 

com auxilio de computação simbólica, desenvolver ferramentas de análise para 
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identificação de propriedades e condições de contorno em problemas de condução de calor 

em meios heterogêneos. 

 

 

1.2. Organização do Trabalho 

 

No capítulo 2 é apresentada uma revisão da literatura disponível referente aos 

temas abordados, focando principalmente nos métodos de solução direta de problemas de 

transferência de calor em meios heterogêneos, nas técnicas de solução de problemas 

inversos em condução de calor e, mais especificamente, soluções via inferência Bayesiana 

e, por fim, na utilização de termografia por infravermelho para análise de problemas 

inversos. 

No capítulo 3 são apresentados os fundamentos teóricos que embasam a 

Técnica de Transformação Integral empregada na solução do problema direto de condução 

de calor com coeficientes variáveis.  

No capítulo 4 são apresentados os fundamentos teóricos para a solução de 

problemas inversos sob a visão freqüentista, e de forma mais detalhada sob a abordagem 

Bayesiana aqui empregada. 

O capítulo 5 apresenta a síntese do aparato experimental aqui proposto para 

medidas de temperatura em problemas de condução de calor, detalhando o procedimento 

experimental a partir da técnica de termografia por câmera de infravermelho. 

No capítulo 6 são apresentados os resultados obtidos para problemas diretos e 

inversos a partir das formulações apresentadas nos capítulos 3 e 4, bem como os resultados 

experimentais encontrados e as validações necessárias. 

No capítulo 7 são apresentadas conclusões e  propostas para trabalhos futuros 

na técnica de solução do problema direto, na técnica de estimativa dos coeficientes e na 

identificação experimental de propriedades termofísicas via termografia por infravermelho. 
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Capítulo 2  

 

2. Revisão Bibliográfica 

 

A seguir apresenta-se a revisão de literatura que norteou o presente trabalho, 

em seus mais diferentes aspectos, quais sejam: meios heterogêneos, o método de 

transformação integral, a solução de problemas inversos de condução de calor, aplicação de 

inferência Bayesiana em transferência de calor e o uso de termografia por câmera de 

infravermelho na identificação de propriedades termofísicas. 

 

 

 

2.1. Meios Heterogêneos: Problema Direto e Modelo Físico 

 

A revisão da literatura referente aos estudos de condução de calor em meios 

heterogêneos se concentrou na análise de contribuições anteriores que adotaram modelos 

teóricos macroscópicos para as propriedades termofísicas efetivas, bem como na 

identificação experimental desses parâmetros. Alguns poucos trabalhos foram também 

citados que percorreram o caminho de reconstruir o comportamento macroscópico a partir 

da análise computacional da transferência de calor na micro-escala. 

Lin (1992) relata um estudo numérico em condução de calor unidimensional 

em meios heterogêneos para o caso de propriedades variando randomicamente na 

coordenada espacial e determina a adequação do modelo para caso o de se empregar uma 

propriedade efetiva constante. 

Qiulin et al. (1999) relatam, para o caso de um material FGM (functionally 

graded materials), um estudo comparativo entre a utilização de uma condutividade térmica 
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equivalente e da utilização da condutividade térmica efetiva como sendo uma função da 

composição dos materiais compósitos. 

Tavman & Akinci (2000) apresentam modelos e determinações experimentais 

para as condutividades térmicas transversais de sistemas dispersos de duas fases, na forma 

de compósitos poliméricos de polietileno de alta densidade e fibra de vidro. 

Fudym et al. (2002) propõem a extensão do método semi-analítico de 

quadrupolos térmicos na solução de problemas de difusão de calor em meios heterogêneos. 

A aplicação deste método é apresentada na solução de um problema de duas camadas com 

variação unidimensional das propriedades termofísicas. 

Sutradhar et al. (2002) propõem a utilização do método de funções de Green 

na solução numérica do problema de difusão de calor tridimensional transiente em 

materiais FGM (functionally graded materials).  

Putnam et al. (2003) apresentam um estudo experimental da condutividade 

térmica de compósitos de nano-particulas de alumínio em uma matriz polimérica baseado 

no método 3ω e comparam com resultados teóricos de propriedade efetiva. 

Danes et al. (2003) apresentam modelos para a condutividade térmica de 

meios heterogeneos, representados por matrizes poliméricas com partículas metálicas, 

discutindo o desvio crescente dos modelos quando as concentrações de partículas metálicas 

assumem valores mais elevados. 

Fudym et al. (2004) estudam a difusão de calor em materiais estratificados 

onde as camadas são paralelas à direção principal do fluxo de calor. Na solução deste 

problema foi empregada a técnica semi-analítica de quadrupolos térmicos desenvolvida em 

trabalhos anteriores. 

Sutradhar e Paulino (2004) apresentam a aplicação do método de elemento de 

contorno usando transformada de Laplace e a aproximação de Galerkin na solução do 

problema de condução de calor transiente em materiais FGM (functionally graded 

materials). 

O trabalho de Zhang et.al. (2005) propõe um modelo baseado em mistura 

randômica para o cálculo da condutividade térmica efetiva de materiais compósitos e 

investiga a influência da fração volumétrica das partículas e a razão da condutividade 

térmica da partícula e da matriz na previsão desta propriedade. 
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Prasher (2006) apresenta uma perspectiva histórica do desenvolvimento de 

materiais de interface térmica (TIMs) e discute as vantagens e desvantagens da aplicação de 

nanoparticulas e nanotubos de carbono nestes materiais. Algumas direções para o futuro 

desta área são apresentadas segundo a visão do autor. 

Jiang e Souza (2007) demonstram a utilização de uma nova variante do 

método numérico sem-malha na predição da condutividade térmica efetiva de materiais 

envolvendo configuração microscópica complexa de multicomponentes. 

Dai et al. (2007) obtem soluções numéricas para condução de calor em 

FGM´s, empregando o método das linhas e diferentes modelos para a variação espacial das 

propriedades termofísicas. 

Ganapathysubramanian e Zabaras (2008) apresentam uma estratégia 

estocástica alternativa de escalonamento que incorpora os efeitos das variações da 

condutividade térmica da micro-escala na análise térmica de fenômenos na macro-escala. 

Matt e Cruz (2008) apresentam um esquema numérico baseado em elementos 

finitos com discretização isoparamétrica de segunda ordem da célula unitária do problema 

de condução de calor, para calcular a condutividade térmica macroscópica efetiva de 

compósitos com microestruturas gerais tridimensionais e resistência térmica de contato. 

Evans et.al. (2008) apresentam um modelo de homogeneização em três níveis 

para predizer a condutividade térmica efetiva de nanofluidos e nano-compósitos. 

 

 

2.2. Transformação Integral para Condução de Calor em Meios 

Heterogêneos 

 

A solução analítica de problemas de difusão foi analisada e compilada em 

Mikhailov e Ozisik (1984), onde sete diferentes classes de formulações em difusão de calor 

e massa são sistematicamente resolvidos pela Técnica da Transformada Integral Clássica 

(CITT). As soluções formais obtidas são aplicáveis a um amplo número de problemas em 

transferência de calor e massa, parcialmente ilustrados no referido trabalho, incluindo 

alguns exemplos de difusão em meios heterogêneos. Mais tarde, a abordagem clássica 

ganhou uma implementação hibrida numérico-analítica e ficou conhecida como Técnica da 



 9

Transformada Integral Generalizada (GITT) [Cotta (1990), Cotta (1993), Cotta (1994), 

Cotta & Mikhailov (1997), Cotta (1998), Santos et al. (2001), Cotta et al. (2005), Cotta & 

Mikhailov (2006)], oferecendo maior flexibilidade no tratamento de problemas antes tidos 

como não-transformáveis, incluindo, entre outros, a análise de problemas não-lineares de 

difusão e convecção-difusão. 

A solução do problema de autovalor associado à solução analítica por 

transformação integral é a principal tarefa computacional deste procedimento, quando se 

deseja oferecer valores numéricos acurados para os respectivos autovalores e autofunções 

normalizadas que compõem a expansão inerente ao método de transformação integral. Em 

algumas situações, dependendo da especificação da forma funcional dos coeficientes, pode-

se encontrar uma solução explícita para as autofunções em termos de funções especiais bem 

documentadas em livros textos, e mais recentemente, disponíveis em pacotes de 

computação simbólica [Wolfram (2005)]. Por outro lado, para formulações mais gerais do 

problema de autovalor, algumas abordagens computacionais foram desenvolvidas 

oferecendo uma aproximação numérica dos autovalores e das autofunções, como o método 

de Runge-Kutta com transformação de Pruffer [Bailey et al. (1978), Bailey et al. (1991)], o 

método de contagem de sinal [Mikhailov & Vulchanov (1983), Cotta & Nogueira (1988)] e 

a própria GITT [Mikhailov & Cotta (1994), Oliveira et al. (1995), Sphaier & Cotta (2000)]. 

Já inseridos no contexto do presente estudo, o método de transformação 

integral foi empregado  na análise de problemas de condução de calor em meios 

heterogêneos, incluindo variações de ordens de grandeza, variações abruptas e variações 

randômicas das propriedades termofísicas [Naveira et al. (2008a), Naveira et al. (2008b), 

Naveira-Cotta et al. (2009), e Cotta et al. (2009a)]. Os problemas de autovalor com 

coeficientes espacialmente variáveis foram então resolvidos com a Técnica de 

Transformada Integral Generalizada (GIIT), e os próprios coeficientes variáveis foram 

expandidos em autofunções, de forma a permitir uma avalição totalmente analítica do 

sistema transformado para determinação dos autovalores e autofunções correspondentes. 

Recentemente, Cotta et al. (2009b) e Sphaier et al. (2009), unificaram os 

conhecimentos disponiveis na utilização da Técnica da Transformada Integral Generalizada 

(GITT) em um ambiente de desenvolvimento construido na plataforma de computação 

simbólica Mathematica v7.0 [Wolfram (2008)], que gerou o código denominado UNIT 
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("UNified Integral Transforms") para solução automática de problemas difusivos e 

convectivo-difusivos por transformação integral. 

 

 

2.3. Problemas Inversos em Condução de Calor 

 

A literatura sobre problemas inversos em condução de calor é muito vasta 

[Beck & Arnold(1977), Alifanov (1994), Ozisik & Orlande (2000)], e portanto focamos 

aqui apenas em trabalhos que tratam de estimativas de propriedades termofísicas com 

variações espaciais, e forneceram subsídios para o estudo aqui apresentado. 

Flach e Ozisik (1989) aplicam o método de Levenberg-Marquardt na 

estimativa simultânea da condutividade e da capacidade térmicas variáveis 

unidimensionalmente. As propriedades térmicas desconhecidas foram representadas por B-

splines em cada trecho e o problema inverso foi baseado nas estimativas de um número 

discreto de parâmetros. Na solução do problema direto os autores fizeram uso da solução 

analítica pela técnica da transformação integral. 

Huang e Ozisik (1990) apresentam uma metodologia de integração direta para 

determinar estimativas iniciais suficientemente acuradas para o processo de estimativa de 

parâmetros. Os autores aplicaram o método de diferenças finitas na solução do problema 

direto e o método de Levenberg-Marquardt para a estimativa simultânea dos coeficientes de 

uma representação linear unidimensional da variação da condutividade e da capacidade 

térmicas. 

Lesnic et al. (1999) investigam a identificação da variação unidimensional da 

condutividade térmica supondo esta constante em trechos e a localização da 

descontinuidade desconhecida. Na solução do problema direto os autores adotaram o 

método de elementos de contorno e utilizaram uma rotina da biblioteca cientifica NAG na 

minimização do funcional de mínimos quadrados. 

O trabalho de Divo et al. (2000) utiliza Algoritmo Genético na minimização 

do funcional de mínimos quadrados para estimar a variação espacial da condutividade 

térmica de materiais heterogêneos. Na solução do problema direto os autores utilizam o 

método de elementos de contorno. 
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Rodrigues et al. (2004) adotam a abordagem de estimativa de função baseada 

no método do gradiente conjugado para estimar simultaneamente o coeficiente de difusão e 

o termo fonte, ambos variáveis espacialmente, em um problema unidimensional de difusão 

de calor.  

Remy e Degiovanni (2005) propoem um apararto experimental para medição 

de difusividade e condutividade térmica de líquidos, empregando o método de quadrupolos 

térmicos na solução direta/inversa de problemas de condução de calor. 

Colaço et al. (2006a) apresentam um revisão dos métodos de solução de 

problemas inversos e de problemas de otimização de uma única função objetivo. São 

discutidas as vantagens e desvantagens das técnicas estocásticas e determinísticas de 

minimização e é introduzido um método hibrido. Por fim, os autores apresentam algumas 

aplicações destes métodos em problemas de transferência de calor. 

Colaço et al. (2006b) empregaram uma versão do método de soluções 

fundamentais (MFS) para estimar, usando apenas medidas não intrusivas, o termo fonte 

variável espacialmente em um problema multidimensional de condução de calor linear.  

Huttunen et al. (2006) propõem um método para estimar condutividade 

térmica e coeficiente de perfusão em tecidos heterogêneos usando aquecimento induzido 

por ultra-som e imagens térmicas por MRI. Os parâmetros desconhecidos foram assumidos 

variáveis espacialmente e constantes em trechos. Neste trabalho, as estimativas foram 

baseadas no método de Gauss-Newton para a minimização da função objetivo de Maximum 

a Posteriori. 

Huang e Huang (2007) apresentam a estimativa simultânea da variação 

espacial unidimensional da condutividade e da capacidade térmica sob a forma de 

estimativa de função adotando a abordagem de nuvens de pontos. Na solução inversa os 

autores utilizaram o método de Levenberg-Marquardt na minimização do funcional de 

mínimos quadrados. 

Sousa et al. (2008) propõem o uso do método de funções de Green e o 

conceito de sistema dinâmico recursivo como base para o procedimento de solução inversa 

de problemas de condução de calor multidimensional.  
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2.4. Problemas Inversos via Inferência Bayesiana 

 

Esta seção resume a literatura empregada nos estudos de Inferência Bayesiana 

para análise de problemas inversos, relevantes à aplicação pretendida em condução de calor 

em meios heterogêneos, incluindo livros-texto que serviram de base ao entendimento desta 

metodologia, e artigos técnicos mais direcionados à aplicação aqui tratada. 

Migon e Gamerman (1999) em seu livro-testo desenvolveram uma análise 

detalhada da utilização da abordagem clássica e Bayesiana no processo de estimativa, 

apresentando importantes resultados e comentando os aspectos positivos e negativos de 

cada abordagem. 

Leonard e Hsu (1999) oferecem uma introdução aos conceitos de inferência, 

descrevendo e desenvolvendo teoremas e procedimentos que compreendem importantes 

fundamentos para a abordagem Bayesiana.   

Kaipio e Somersalo (2004) dedicam seu livro ao estudo de problemas inversos 

em que a análise estatística dos erros gerados pela própria modelagem é enfatizada. Este 

material é também muito importante para a conexão entre a Inferência Bayesiana e a 

solução de problemas inversos em aplicações na engenharia. 

Wang e Zabaras (2004) introduzem a utilização da abordagem Bayesiana, do 

método de amostragem de Monte Carlo via Cadeia de Markov e da utilização da 

distribuição a priori como regularizadora da solução inversa em problemas de transferência 

de calor.  

Wang e Zabaras (2005) apresentam um estudo da aplicação da abordagem 

Bayesiana na estimativa dos coeficientes da expansão do fluxo de calor e do termo fonte, 

variáveis no tempo e no espaço, em termos de uma função de base. Os autores discutem a 

utilização de modelos hierárquicos para descrever automaticamente os parâmetros de 

regularização utilizados na distribuição a priori de Campos Markovianos Aleatórios 

(MRFs). 

Gamerman & Lopes (2006) em seu livro-texto abordam os conceitos 

fundamentais da teoria de Probabilidade e Inferência assim como noções de simulação, 

inferência Bayesiana e cadeias de Markov. Vários exemplos de inferência Bayesiana com 
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ênfase em modelos dinâmicos e modelos hierárquicos são apresentados e discutidos sobre o 

ponto de vista de implementações, convergência e limitações dos algoritmos envolvidos. 

Zabaras (2006) apresenta uma ampla revisão de problemas inversos em 

transferência de calor, com ênfase na utilização de métodos estocásticos e um 

aprofundamento no uso da inferência Bayesiana. São apresentados exemplos da solução 

inversa de problemas lineares de condução de calor a uma e duas dimensões espaciais, mais 

especificamente na identificação do fluxo de calor nos contornos. 

Mota et al. (2007) utilizam a abordagem Bayesiana para estimar 

simultaneamente os coeficientes de uma aproximação exponencial da dependência da 

condutividade térmica e da capacidade térmica com a temperatura e a variação 

unidimensional do fluxo de calor sob a forma de nuvem de pontos. A solução do problema 

inverso foi baseada na utilização do método de Gauss-Newton na minimização da função 

objetivo de Maximum a Posteriori. 

Mota et al.  (2007) comparam os métodos de Gauss de minimização da função 

objetivo de Maximum a Posteriori e o de Monte Carlo por cadeia de Markov via algoritmo 

de Metropolis-Hastings, na estimativa simultânea dos coeficientes de uma aproximação 

exponencial da dependência da condutividade térmica e da capacidade térmica com a 

temperatura e a variação unidimensional do fluxo de calor sob a forma de nuvem de pontos. 

Kolemainen et al. (2007) utilizam a abordagem Bayesiana para estimar a 

variação espacial da condutividade e a capacidade térmica em um problema inverso de 

tomografia térmica. Os autores utilizam informação a priori de Campos Aleatórios 

Markovianos (MRF’s) para os coeficientes de uma aproximação constante em trechos para 

propriedades desconhecidas, e algoritmo de Newton na solução do problema de otimização 

de Maximum a Posteriori. 

Orlande et al. (2008) propõem a interpolação da função de verossimelhança 

em termos de funções de base radial na solução de problemas de estimativa de parâmetros 

via inferência Bayesiana, utilizando o algoritmo de Metropolis-Hastings do método de 

Monte Carlo via Cadeia de Markov. 

Parthasarathy e Balaji (2008) tratam de um problema de estimativa de 

parâmetros, condutividade térmica e coeficiente de transferência de calor, utilizando o 

algoritmo de Metropolis-Hastings. Os autores investigam o efeito da escolha da distribuição 
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a priori na performance da solução inversa para diferentes níveis de ruídos nos dados 

experimentais. 

Já no contexto do presente trabalho, Cotta et al. (2009b) e Cotta et al. (2009c), 

apresentam o uso combinado do método de transformação integral e da inferência 

bayesiana, na solução de problemas inversos em transferência de calor, incluindo a análise 

de problemas de condução em meios heterogêneos e convecção de calor em microcanais. 

 

 

2.5. Termografia em Problemas Inversos  

 

Nesta seção faz-se uma síntese dos trabalhos revisados para implementação da 

técnica de termografia por câmera de infravermelho como coadjuvante na solução de 

problemas inversos em condução de calor, como aqui pretendido. 

Krapez et al. (2004) apresentam uma técnica de medida da difusividade 

térmica de placas não-homogêneas utilizando o método Flash e termografia por 

infravermelho. Uma máscara em forma de malha é empregada para promover uma 

irradiação não-uniforme da amostra a partir da fonte térmica (flash) e dessa forma a razão 

sinal-ruído é magnificada. 

Plana et al. (2005) apresentam um estudo sobre a identificação simultânea de 

propriedades termofísicas em problemas de condução de calor de meios ortotrópicos 

utilizando medidas termográficas. 

O trabalho de Fudym (2006) faz uma revisão de desenvolvimentos recentes no 

processamento de imagens infravermelhas dedicados ao mapeamento de propriedades 

termofísicas em transferência de calor. Também mostra como o formalismo do método de 

quadrupolos térmicos pode ser utilizado conjuntamente com o processamento de imagens 

térmicas na caracterização de meios heterogêneos.  

Astarita et al. (2006) também apresentam uma revisão do emprego da 

termografia por infravermelho como método óptico em transferência de calor e mecânica 

dos fluidos. A ênfase dessa revisão está na medição de fluxos de calor convectivos, bem 

como na investigação de campos de escoamento sobre superfícies complexas. 
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Fudym et al. (2007) tratam da estimativa da variação bidimensional da 

condutividade térmica utilizando um método auto-regressivo, a partir da análise de imagens 

transientes de infravermelho bidimensionais de um experimento de difusão de calor 

tridimensional. 

Magnani e Silva (2007) apresentam um estudo de caso onde a termografia por 

infravermelho é utilizada na estimativa de valores constantes da condutividade e da 

capacidade térmica de um material, via minimização do funcional de mínimos quadrados. 

Zmywaczyk et al. (2007) tratam da estimativa simultânea da capacidade e da 

condutividade térmica nas direções radial e axial de uma amostra cilindirica, empregando o 

método de Levenberg-Marquardt. Dois aquecedores de filme fino foram empregados 

simultaneamente, em superficies radiais e axiais. Uma câmera termográfica foi empregada 

nas medidas de temperatura, que revelou uma certa heterogeneidade no aquecimento 

provido pelos aquecedores, o que exigiu a caracterização dos aquecedores antes da solução 

do problema inverso. 

Fan et al. (2008) apresentam a utilização do método de volumes finitos em 

conjunto com um método de correção unidimensional (MODCM) para estimar a 

distribuição multidimensional da condutividade térmica na camada intermediária de um 

sanduíche de placas, baseado em medidas termográficas de temperatura. 

O trabalho de Bozzoli et al. (2008) utiliza imagens de termografia por 

infravermelho para determinar o coeficiente de transferência de calor local em um 

problema de convecção forçada sobre uma placa metálica na presença de vapor d’água 

condensando na sua superfície.  

Rainieri et al. (2008) apresentam uma análise experimental e um 

procedimento computacional visando a caracterização de uma câmera de infravermelho 

microbolométrica. O objetivo é avaliar o equipamento para aplicação em problemas de 

estimativa de parametros de condução de calor, estabelecendo os níveis locais de ruído nas 

imagens térmicas. 

Legaie et al. (2008) apresentam um modelo analítico que leva a um problema 

inverso bem posto de identificação de parâmetros, baseado em transformação integral. Para 

demonstrar esse procedimento, um aparato experimental é construido para identificação de 
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propriedades de um sistema composto por uma camada de tinta negra e um filme amorfo de 

carbono, empregando termografia infravermelha com o método fototérmico. 

Fieberg & Kneer (2008) propõem o emprego da termografia por 

infravermelho na determinação de resistência térmica de contato em condições de altas 

temperaturas e pressões, a partir das medidas transientes de temperatura. O fluxo de calor 

no contato entre duas placas semi-infinitas é obtido pela solução do problema inverso 

correspondente, e com auxílio do salto de temperaturas medido, pode-se estabelecer a 

resistência térmica no contato. 

Bamford et al. (2009) analisam diferentes compósitos de SiC e a partir de 

experimentos transientes  baseados em termografia de infravermelho, conseguem estimar 

simultaneamente as difusividades térmicas transversais e planares deste material 

anisotrópico.  
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Capítulo 3  

 

3. Problema Direto 

 

 

Nas duas últimas décadas, o método clássico da transformada integral 

[Mikhailov & Ozisik (1984)] foi progressivamente generalizado sob um enfoque híbrido 

numérico-analítico [Cotta (1990), Cotta (1993), Cotta (1994), Cotta & Mikhailov (1997), 

Cotta (1998), Santos et al. (2001), Cotta & Orlande (2003), Cotta et.al. (2005), Cotta & 

Mikhailov (2006)]. Essa Técnica da Transformada Integral Generalizada (GITT) oferece 

precisão controlada e implementação computacional eficiente para uma grande variedade 

de problemas não-transformáveis, incluindo as formulações não-lineares mais usuais em 

aplicações em mecânica dos fluidos e transferência de calor. Além de ser ele próprio um 

método computacional alternativo, essa técnica híbrida é particularmente adequada para 

propósitos de benchmark (validação). Em face da possibilidade de controle automático do 

erro, o método retém as mesmas características de uma solução puramente analítica. Além 

do controle e estimativa de erro bem simples, outro aspecto notável desse método é a 

extensão direta para situações multidimensionais, com apenas um moderado aumento do 

esforço computacional. Outra vez, a natureza híbrida é responsável por esse 

comportamento, uma vez que a parte analítica do procedimento de solução é empregada 

sobre todas menos uma variável independente, e a tarefa numérica é sempre reduzida à 

integração de um sistema diferencial ordinário nessa única variável independente restante. 

Mais recentemente, entretanto, tendo em vista os desenvolvimentos também importantes no 

controle automático de erro em soluções numéricas de equações diferenciais parciais, em 

particular para formulações unidimensionais, a GITT foi empregada em combinação com 

algoritmos bem testados para equações parabólicas e parabólico-hiperbólicas [Cotta et al. 

(2001), Naveira et al. (2009a)]. Essa possibilidade abriu novas perspectivas na fusão de 
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idéias numéricas e analíticas, e em explorar o poder e flexibilidade de sub-rotinas 

progressivamente mais confiáveis para equações diferenciais parciais, disponíveis tanto 

comercialmente quanto em domínio público. 

O presente capítulo revisa os conceitos da Técnica da Transformada Integral 

Generalizada (GITT) como um exemplo de método híbrido em aplicações de difusão e 

convecção-difusão. A GITT soma-se às ferramentas de simulação disponíveis, seja como 

instrumento em tarefas de covalidação, seja como técnica alternativa para usuários mais 

orientados para o tratamento analítico. Primeiramente ilustra-se a aplicação do método na 

transformação completa de um problema geral de convecção-difusão, até que um sistema 

diferencial ordinário seja obtido para os potenciais transformados. A seguir, a estratégia 

mais recentemente introduzida de transformação integral parcial é derivada fornecendo um 

sistema acoplado de equações diferenciais parciais unidimensionais a ser numericamente 

integrado. Diferentes aspectos na implementação computacional de cada procedimento são 

criticamente discutidos. Esta apresentação mais geral da metodologia aqui empregada visa 

a percepção de futuras extensões do trabalho aqui proposto no tratamento de problemas 

difusivos ou convectivo-difusivos em meios heterogêneos, incluindo efeitos não-lineares 

nas propriedades. Finalmente apresenta-se a aplicação específica da transformação integral 

clássica para a solução analítica do presente problema de condução de calor transiente 

linear, bem como o emprego da transformada integral generalizada para resolver o 

problema de autovalor associado. 

 

 

3.1. Método de Transformação Integral 

 

Como ilustração de procedimento formal de transformação integral, considera-se um 

problema de convecção-difusão transiente de n potenciais acoplados (por exemplo, 

velocidades, temperaturas e concentrações). Esses potenciais são definidos na região V com 

superfície de contorno S e incluindo efeitos não-lineares colapsados nos termos-fonte e 

convectivos como segue: 

 



 19

   ),T t,,(),(),().,,(
),(

)(
ℓℓ

xxxxu
x

x kkkk

k

k PtTLtTTt
t

tT
w =+∇+

∂
∂

 

V,   >0,   , =1,2,...,t k n∈ ℓx  

(3.1) 

 

com condições iniciais e de contorno dadas, respectivamente por  
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onde o operador da equação é escrito como  

 

)()( xx kkk dKL +∇−∇≡  (3.4) 

 

e n representa o vetor normal à superfície S.  

Sem os termos convectivos e para termos fonte lineares, isto é, u(x,t,
ℓ

T ) ≡ 0, P≡ P(x,t), 

e φ ≡ φ(x,t), esse exemplo se torna um problema linear de difusão de classe I de acordo com 

a classificação em [Mikhailov & Ozisik (1984)]. Soluções analíticas exatas foram obtidas 

nessa situação pela técnica de transformação integral clássica. No caso mais geral, este 

problema seria a priori não-transformável, e as idéias na técnica da transformada integral 

generalizada [Cotta (1990), Cotta (1993), Cotta (1994), Cotta & Mikhailov (1997), Cotta 

(1998), Santos et.al. (2001), Cotta & Orlande (2003), Cotta et.al. (2005), Cotta & Mikhailov 

(2006)] podem ser utilizadas para desenvolver soluções híbridas numérico-analíticas para 

essa classe de problemas. A solução formal do problema não-linear proposto requer a 

consideração de expansões em autofunções para os potenciais associados. A situação linear 

acima comentada, que admite solução exata pela técnica de transformação integral clássica, 

naturalmente leva aos problemas de autovalor a serem preferidos na análise da situação não-

linear. Estes surgem da aplicação direta de separação de variáveis à versão linear 

homogênea e puramente difusiva do problema acima. Assim, o conjunto de problemas 

auxiliares recomendados é dado por: 
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VwL kikkikik ∈= xxxx         ),()()( 2 ψµψ  (3.5) 

 

com condições de contorno  

 

S       ,0)()()()( ∈=







+ xx

n
xxx kikkk K ψ
∂
∂

βα  (3.6) 

 

onde os autovalores, kiµ , e autofunções relacionadas, )(ki xψ , são assumidos conhecidos na 

forma de expressões analíticas exatas ou da aplicação de métodos computacionais para 

problemas do tipo Sturm-Liouville [Cotta (1993), Cotta & Mikhailov (1997)]. O problema 

indicado pelas Eqs. (3.5) e (3.6) permite, através da propriedade de ortogonalidade das 

autofunções, a definição do seguinte par de transformação integral: 

 

, v
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(3.8) 

 

onde os núcleos simétricos )(~ xkiψ  e as integrais de normalização são dados 

respectivamente por  

 

1/2

( )
( ) ki

ki

kiNorma

ψ
ψ =ɶ

x
x  

 

(3.9) 

 

2

v
w ( ) ( )dvki k kiNorma ψ= ∫ x x  (3.10) 

 

A transformação integral de (3.1) é conseguida através da aplicação do operador 

v
( ) __ dvkiψ∫ ɶ x  que fornece, após alguma manipulação algébrica e emprego das condições 

de contorno (3.3) e (3.6): 
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As condições iniciais, Eqs.(3.2), são também transformadas através do operador 

v
w ( ) ( )k ki dvψ∫ ɶx x  para obter-se 
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As eqs. (3.11) a (3.16) formam um sistema infinito de equações diferenciais ordinárias 

não-lineares acopladas para os potenciais transformados, ikT , . Para fins computacionais, o 

sistema (3.11) a (3.16) é truncado na N-ésima linha e coluna, com N tomado 

suficientemente grande para a convergência até a precisão requerida. Os aspectos formais da 

convergência para a solução do sistema infinito com o aumento da ordem de truncamento N 

foram investigados anteriormente [Cotta (1993)]. O problema de valor inicial não-linear 

definido pelas eqs. (3.11) a (3.16) é passível de pertencer a uma classe de sistemas 

diferenciais ordinários rígidos, especialmente para valores crescentes de N. Entretanto, 
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vários integradores numéricos especiais foram desenvolvidos nas últimas décadas para essa 

classe de sistemas [Cotta (1993), Cotta (1994), Cotta & Mikhailov (1997)]. Uma vez que os 

potenciais transformados tenham sido computados pela solução numérica do sistema (3.11) 

a (3.16), a fórmula de inversão eq.(3.8) é empregada para reconstruir os potenciais originais 

),( tTk x , em forma explícita. 

Uma estratégia de solução híbrida alternativa à transformação integral completa acima 

descrita é de particular interesse no tratamento de problemas de convecção-difusão 

transiente com uma direção convectiva preferencial. Nesses casos, a transformação integral 

parcial em todas, menos uma, coordenada espacial, pode oferecer uma combinação 

interessante de vantagens relativas entre a técnica de expansão em autofunções e o método 

numérico selecionado para tratar o sistema acoplado de equações diferenciais parciais 

unidimensionais que resulta do procedimento de transformação. Como ilustração do 

procedimento de transformação integral parcial, novamente um problema de convecção-

difusão transiente para n potenciais acoplados (velocidades, temperaturas, concentrações, 

etc) é considerado, mas desta feita separando a direção preferencial que não sofrerá a 

transformação integral. Assim, o vetor posição inclui não apenas as coordenadas espaciais 

que serão eliminadas via transformação integral, aqui representadas pelo vetor x*, como 

também a variável especial a ser retida no sistema parcialmente transformado, z. O termo 

fonte Pk inclui todas as outras contribuições não mostradas explicitamente na formulação 

abaixo, como os termos convectivos nas direções eliminadas, como também a difusão na 

direção z e as componentes não-lineares e dependentes do tempo nos termos convectivos, 

não mostrados aqui explicitamente para maior clareza: 
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com condições iniciais e de contorno dadas, respectivamente, por  

 

*V z z z    zfzT 10kk ∈≤≤= x*,x*,x* ),()0,,(  (3.18) 
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onde o operador da equação é dado por  

 

)()( x*x* kkk dKL +∇−∇≡  (3.20) 

 

 

e n representa a normal à superfície S* no sentido saindo do meio. As condições de 

contorno introduzidas pela variável z são dadas como  

 

 0>t     ,S0,1l ,z z     TtztzTB llkklk *),,,,(),,( ,, ∈=== x* ,x*x*
ℓ

ϕ  (3.21) 

 

onde o operador da condição de contorno pode incluir diferentes combinações de condições 

de primeiro a terceiro tipo nas posições zl, l =0,1.                                      

Logo, o problema auxiliar alternativo é agora definido na região V*, com contorno S*,  

formado pelas coordenadas espaciais a serem eliminadas:  
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com condições de contorno  
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onde os autovalores, kiµ , e autofunções correspondentes, *)(xkiψ , são assumidos 

conhecidos. Tem-se aqui uma escolha a ser feita referente à função peso no problema de 

autovalor, podendo-se adotar o coeficiente do termo transiente da (3.17), ( )kw x* , ou como 

mostrado abaixo o coeficiente do termo convectivo, ( )u x* . 

Os seguintes pares de transformação integral são agora definidos:  
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t)dvz,,(TutzT kkiik x*x*x* )(~)(),(
*v, ψ∫= ,       transformada 

t)(z,TtzT ikki

i

k ,
1

)(~),,( x*x* ψ∑
∞

=

= ,              inversa 

(3.24) 

(3.25) 

 

onde os núcleos simétricos )(~ x*kiψ  são dados por 

 

1/2

( )
( ) ki

ki

kiNorma

ψ
ψ =ɶ

x*
x*  (3.26) 

2

v*
u( ) ( )dvki kiNorma ψ= ∫ x* x*  (3.27) 

 

A transformação integral da Eq. (3.17) é obtida pela aplicação do operador 

v*
( ) __ dvkiψ∫ ɶ x*  fornecendo, após usar as condições de contorno Eqs. (3.19) e (3.23) 

 

, , 2
,

1

( , ) ( , )
( , , ) ( , ) ( , , ),  

                                                            i=1,2,...,  t>0,  k, 1, 2,...,

k j k i

kij i k i ki l

j

T z t T z t
a z t T T z t g z t T

t z

n

µ
∞

=

∂ ∂
+ =− +

∂ ∂

=

∑ ℓ

ℓ

 (3.28) 

 

As condições iniciais da Eq. (3.18) são também transformadas através do operador  

∫ *v
)(~)( dvu ki x*x* ψ  para fornecer 

 

, v*
( ,0) ( ) u( ) ( ) ( )k i ki ki kT z f z f z dvψ= ≡ ∫ ɶx* x* x*,  (3.29) 

 

onde, 

 

*

*

k kS*

( , , ) ( ) ( , , ,T ) +

( , , ) ( )
K ( ) ( ) ( , , )  ds  

ki l ki k
v

k ki
ki

g z t T P z t dv

T z t
T z t

ψ

∂ ∂ψ
ψ

∂ ∂

=

 
− 

 

∫

∫

ℓ
ɶ

ɶ
ɶ

x* x*

x* x*
x* x* x*

n n

 (3.30) 



 25

v*
( ) ( ) ( )kij ki kja w dvψ ψ= ∫ ɶ ɶx* x* x*  (3.31) 

 

com as condições de contorno em z transformadas  

 

, ,,v*

l

( ) ( ) ( , , ) ( , ,T ),     

z  z ,  l 0,1 *,  t>0 

k l iki k l ku B T z t dv z t

S

ψ ϕ=

= = ∈

∫ ℓ
ɶx* x* x*

, x*
 (3.32) 

 

onde 

 

, , ,v*

l

( , ,T ) ( ) ( ) ( , , ,T ) ,    

  z  z , l 0,1 *,     t>0 

k l i ki k lz t u z t dv

S

ϕ ψ ϕ=

= = ∈

∫ℓ ℓ
ɶx* x* x*

, x*
 (3.33) 

 

 

As eqs. (3.28) a (3.33) formam um sistema infinito de equações diferenciais parciais 

não-lineares acopladas para os potenciais transformados, ikT , .  Para fins de computação, o 

sistema (3.28) a (3.33) é também truncado na N-ésima linha e coluna, com N 

suficientemente grande para a precisão requerida. Alguns integradores numéricos 

automáticos para essa classe de sistemas diferenciais parciais unidimensionais encontram-se 

disponíveis, como aqueles baseados no Método das Linhas (IMSL, Mathematica, etc.). Uma 

vez que os potenciais transformados tenham sido computados pela solução numérica do 

sistema (3.28) a (3.33), a formula de inversão eq. (3.25) é empregada para reconstruir os 

potenciais originais ),,( tzTk x* , em forma explícita ao longo das variáveis x*. 
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3.2. Solução Formal para o Problema de Condução de Calor em 

Meios Heterogêneos 

 

As soluções formais apresentadas acima para formulações não-lineares em 

convecção-difusão são importantes para se vislumbrar as possibilidades de extensão desta 

metodologia no tratamento de problemas diferenciais parciais em meios heterogêneos. Já 

nesta seção, ilustra-se o procedimento de transformação integral particularizado para a 

situação de um problema difusivo linear com coeficientes dependentes apenas da posição. 

Neste caso o procedimento acima se reduz à aplicação da Técnica de Transformação 

Integral Clássica [Mikhailov & Ozisik (1984)] e portanto resultando em um sistema 

transformado linear e desacoplado, passível de solução analítica. Por outro lado, o 

problema auxiliar de autovalores requerido por essa solução exata, demanda a utilização da 

Técnica da Transformada Integral Generalizada [Cotta (1993)], como abaixo ilustrado. 

Considerou-se uma formulação suficientemente geral para o problema linear 

transiente de difusão para o potencial ( , ),T tx dependente da posição x e do tempo t, 

definido na região V com contorno na superfície S. A formulação aqui considerada inclui o 

termo transiente, o operador difusivo, o termo de dissipação linear e o termo fonte, 

[Mikhailov & Ozisik (1984), Cotta (1993)], como mostrado nas equações (3.34) a (3.36) 

abaixo. Os coeficientes ( ), ( )w kx x  e ( )d x  são responsáveis pela informação relacionada a 

heterogeneidade do meio. A equação de difusão e as condições iniciais e de contorno são 

dadas por: 

 

, 0
( , )

( ) . ( ) ( , ) ( ) ( , ) ( , ), V t
T t

w k T t d T t P t
t

>
∂

= ∇ ∇ − +
∂

∈x
x

x x x x x x  (3.34) 

( , 0) ( ),T f V= ∈x x x  (3.35) 

( , )
( ) ( , ) ( ) ( ) ( , ),

T t
T t k t Sα β φ

∂
+ = ∈

∂

x
x x x x x x

n
 (3.36) 

 

A solução exata para o problema (3.34) a (3.36) pode ser obtida através da 

Técnica da Transformada Clássica – C.I.T.T. [Mikhailov & Ozisik (1984)] e dada por: 
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( )2 2 ( ´)

0
1

( , ) ( ) ( ) ´i i
t

t t t

i i i

i

T t f e g t e dt
µ µψ

∞
− − −

=

= +∑ ∫x xɶ  (3.37) 

 

onde os autovalores µie autofunções ( )i xψ , são obtidos a partir do problema de autovalor 

associado que contem a informação sobre a heterogeneidade do meio, na forma: 

 

( )2
. ( ) ( ) ( ) ( ) ( ) 0,k w d Vi i iψ µ ψ∇ ∇ + − = ∈x x x x x x  (3.38) 

 

com condições de contorno  

 

( )
( ) ( ) ( ) ( ) 0,ik Si

ψ
α ψ β

∂
+ = ∈

∂

x
x x x x x

n
 (3.39) 

 

As demais quantidades que aparecem na solução exata (3.37) são computadas 

depois de resolvido o problema (3.38) a (3.39), através de : 

 

2( ) ( )i i

V

Norma w dvψ= ∫ x x    integral de normalização (3.40) 

1/2

( )
( ) i

i

iNorma

ψ
ψ =

x
xɶ ,  autofunção normalizada (3.41) 

( ) ( ) ( )i i

V

f w f dv= ∫ x x xɶψ ,    condição inicial transformada (3.42) 

( )

( , ) ( ,
( ) ( )

( )
( )

( ) ( ) )[ ]

i
i

i i

V S

k

t tg t P dv ds

∂

+

−
∂= +∫ ∫

x

x x
x x

x
x

nx

ɶ
ɶ

ɶ
α β

ψ
ψ

ψ φ ,  termo fonte transformado (3.43) 

 

Para uma aplicação geral de uso automático, desejou-se desenvolver uma 

abordagem computacional flexível de modo a permitir lidar com problemas de autovalor 

com coeficientes variáveis arbitrariamente, como o problema apresentado pelas equações 
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(3.38) e (3.39). Sendo assim, a Técnica da Transformada Integral Generalizada (G.I.T.T.) é 

aqui empregada na solução do problema de Sturm-Liouville, equações (3.38) e (3.39), 

através da proposição de um problema de autovalor auxiliar mais simples, e expandindo as 

autofunções desconhecidas em termos da base escolhida. Além disso, os coeficientes 

variáveis da equação são eles mesmo expandidos em termos de autofunções conhecidas, de 

modo a permitir uma implementação completamente analítica da matriz dos coeficientes no 

sistema transformado. A solução do problema (3.38) e (3.39) é então proposta como uma 

expansão em autofunções, em termos de um problema de autovalor auxiliar simplificado, 

dado como: 

 

( )* * *2. ( ) ( ) ( ) ( ) ( ) 0,n n nk w d Vλ∇ ∇Ω + − Ω = ∈x x x x x x  (3.44) 

 

com condição de contorno dada por: 

 

* * * ( )
( ) ( ) ( ) ( ) 0,n

n k Sα β
Ω

Ω
∂

+ = ∈
∂

x
x x x x x

n
 (3.45) 

 

Os coeficientes * *( ), ( )w kx x  e *( )d x , são formas simplificadas dos coeficientes da equação 

original, escolhidos de modo a permitir solução analítica do problema auxiliar. A solução 

do problema (3.44) e (3.45) deve ser conhecida em termos da autofunção “ ( )nΩ x ” e dos 

autovalores afins “ nλ ”, oferecendo uma base, ele mesmo, para a expansão do problema de 

autovalor original, equações (3.38) e (3.39). Além disso, é permitido que os tipos das 

condições de contorno do problema original e do problema auxiliar possam ser diferentes, 

no caso para uma maior simplificação da autofunção auxiliar, caso desejado, modificando 

os coeficientes da condição de contorno, “ *( )xα ” e “ *( )xβ ”. 

Uma vez encontradas analiticamente as autofunções auxiliares “ ( )nΩ x ” e 

computados os autovalores auxiliares “
nλ ”, a expansão da autofunção original é então 

proposta como:  
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,
1

( ) ( ) ,i n i n

n

inversaψ ψ
∞

=

= Ω∑x xɶ  (3.46) 

*
, ( ) ( ) ( ) ,i n i n

V

w dv transformadaψ ψ= Ω∫ x x xɶ  (3.47) 

 

A transformação integral é então efetuada operando a equação (3.38) com o 

operador ( ) __n

V

dvΩ∫ xɶ  e em seguida empregando a 2ª Formula de Green de modo a levar 

em conta as diferenças nas condições de contornos dos dois problemas de autovalor, 

resultando:  

 

( )

( )

( ) . ( ) ( ) ( ) ( )

2 ( ) ( ) ( )

( )( )
( )

( ) 0

n
n n

V S

n

V

i
k ki i

w di i

dv ds

dv

ψ
ψ ψ

µ ψ

∇ ∇

−

∂ ∂Ω
Ω + −Ω + ∂ ∂ 

Ω =

∫ ∫

∫

x x x x x

x x x

xx
x

n n

x

ɶ
ɶ ɶ

ɶ

 (3.48) 

 

Combinando as condições de contorno (3.39) e (3.45) , a integral de superfície 

acima pode ser reescrita como: 

 

( )
*

* *

* *

*

* *

*

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( )( )

( )

( ) ( )

n
n

S

n

S

n

S

S

i
k i

k i
k k

k k i
k

k
k

k

ds

ds

ds

ψ
ψ

α α
ψ

β β

ψβ β

α α

β α

β α

−

−

−

∂ ∂Ω
−Ω = ∂ ∂ 

 
= Ω 

 

∂   ∂Ω
=    ∂ ∂  

= −

∫

∫

∫

∫

x x x

x x
x x

x x x x

x x x x
x

x x

x x x
x

x x x

xx

n n

x

x x

n n

ɶ
ɶ

ɶ

ɶ

( )
( )

1 n

i dsψ
   ∂Ω
   ∂  

x
x

n

ɶ

 
(3.49) 

 

e a equação (3.48) pode ser reescrita por exemplo na forma: 
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( )

( )

* *

*

( ) ( ) ( )
( ) . ( ) ( ) ( )

( ) ( ) ( )

2 ( ) ( ) ( )

( )
( ) 1

( ) 0

n
n

V S

n

V

k
k ki i

k

w di i

dv ds

dv

β α
ψ ψ

β α

µ ψ

∇ ∇

−

   ∂Ω
Ω + −    ∂  

+ Ω =

∫ ∫

∫

x x x
x x x x

x x x

x x x

x
x

n

x

ɶ
ɶ

ɶ

 (3.50) 

 

Substituindo a fórmula da inversa chega-se ao seguinte problema algébrico 

de autovalores: 

 

* *

*
1

( ) ( ) ( )
. ( ) ) ( ) ), ( ) ( ) ( )

2( ( ) ( ))

( )
( ( )( ( ) (1 ( ( ) )

( ) ( ) ) 0

n
m n m

m V S

n m

V

k
k ki m

k

w di

dv ds

dv

β α
ψ

β α

µ

∞

=

∇ ∇

−

∂Ω
Ω Ω + − Ω +

∂

+ Ω Ω =

∑ ∫ ∫

∫

x x x
x x

x x x

x x

x
x x x

n

x x

ɶ
ɶ ɶ ɶ

ɶ ɶ

 (3.51) 

 

que em forma matricial é concisamente dado por: 

 

2 ) 0( µ− =B ψA  (3.52) 

onde, 

,

, , ( )

{ };

{ }, ( ) ( )

n m

n m n m n m

V

wB B dv

ψ=

= = Ω Ω∫ x

ψ

B x xɶ ɶ  

(3.53) 

(3.54) 

( ), ,

* *

*

. ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

{ }, ( ) ( )

( )
1 ( ) ( ) ( )

n m n m m n

V

n
m n m

S V

k

k
k d

k

A A dv

ds dv
β α

β α

∇ ∇= = Ω Ω +

   ∂Ω
− Ω − Ω Ω   ∂  

∫

∫ ∫

x

x x x
x x

x x x

A x x

x
x x x

n

ɶ ɶ

ɶ
ɶ ɶ ɶ

 (3.55) 

 

Além disso, levando em consideração as informações da formulação do 

problema auxiliar, os elementos da matriz A podem ser reescritos como: 
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( )( )

( )

*
,

*
*

*

* 2
,

. ( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( )

( ) ( )

n m m n

V

n
m

S

n m n n m

V

k k

k k

d d

A dv

ds

dv

β α

β α

λ δ

∇ − ∇= Ω Ω +

   ∂Ω
+ − Ω −   ∂  

− − Ω Ω +

∫

∫

∫

x x

x x
x x

x x

x x

x x

x
x

n

x x

ɶ ɶ

ɶ
ɶ

ɶ ɶ

 (3.56) 

 

O problema algébrico (3.52) pode ser numericamente solucionado provendo 

resultados para os autovalores 2µ  e autovetores ψ a partir desta análise de problema de 

autovalor matricial [Wolfram (2005)] que, em seguida combinado com a fórmula da 

inversa, eq. (3.46), provê a autofunção original desejada. 

 

 

 

3.3. Expansão das Propriedades Termofísicas 

 

É relevante no presente contexto ressaltar a possibilidade de expressar os 

próprios coeficientes variáveis como uma expansão em autofunções, em geral não 

expandido na mesma base auxiliar. Este procedimento pode ser particularmente vantajoso 

para avaliação analítica das matrizes A e B do sistema algébrico (3.52). Sendo assim todas 

as respectivas integrais podem ser expressas em termos de autofunções e, em geral, 

permitindo a integração analítica das mesmas. Por exemplo, o coeficiente w(x) pode ser 

expandido em termos de autofunções juntamente com a aplicação de uma solução filtro, 

wf(x), de modo a acelerar a convergência, na forma dada por: 

 

1

( ) ( ) ( ) ,f k k

k

w w w inversa
∞

=

= + Γ∑x x xɶ  (3.57) 

ˆ ( )[ ( ) ( )] ( ) ,k f k
V

w w w w d transformada= − Γ∫ x x x x xɶ  (3.58) 

 

onde ˆ ( )w x  é a função peso da autofunção normalizada escolhida ( )kΓ xɶ . A autofunção do 

coeficiente pode ser escolhida empregando-se a mesma equação do problema de autovalor 
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auxiliar, mas modificando as condições de contorno para 1° tipo, enquanto a função filtro 

deve ser uma função analítica simples que satisfaça os valores dos contornos para os 

coeficientes originais e eventualmente incorpore alguma informação adicional disponível. 

Então, uma vez obtidos os coeficientes transformados através da equação (3.58), pode-se 

chegar aos coeficientes variáveis originais recorrendo à fórmula de inversão dada pela eq. 

(3.57). Através deste procedimento, a tarefa de estimação de função apresentada na seção 

seguinte passa a ser uma tarefa de estimativa de parâmetros onde os parâmetros são os 

coeficientes da expansão e os dois valores dos contornos utilizados na função filtro. Os 

outros dois coeficientes são igualmente expandidos, se necessário, em termos de 

autofunções, aqui assumidas como sendo iguais apenas por uma questão de simplicidade, 

dados por: 

 

1

( ) ( ) ( ) ,f k k

k

k k k inversa
∞

=

= + Γ∑x x xɶ  (3.59) 

ˆ ( )[ ( ) ( )] ( ) ,k f k
V

k w k k d transformada= − Γ∫ x x x x xɶ  (3.60) 

1

( ) ( ) ( ) ,f k k

k

d d d inversa
∞

=

= + Γ∑x x xɶ  (3.61) 

ˆ ( )[ ( ) ( )] ( ) ,k f k
V

d w d d d transformada= − Γ∫ x x x x xɶ  (3.62) 

 

Sendo assim as matrizes A e B podem ser reescritas em termos dos 

coeficientes expandidos. Para os elementos da matriz B, tem-se: 

 

,
1

( ) ( ) ( ) ( ) ( ) ( )n m f n m k k n m

kV V

wB dv w dv
∞

=

= Ω Ω + Γ Ω Ω∑∫ ∫x x x x x xɶ ɶ ɶ ɶɶ  (3.63) 

 

e para os elementos da matriz A tem-se : 
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( )( )

( )

( )

*
,

1

*
*

*

1

*

. ( ) ( )

.

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )
( )

( )
( ) ( )

n m m f n

V

m k n k

k V

n
f m

S

n
k m k

k S

f n

k k

k k

d d

A dv

dv k

ds

ds k

β α

β α

∞

=

∞

=

∇ − ∇

∇ ∇

= Ω Ω +

 
+ Ω Γ Ω + 

 

   ∂Ω
+ − Ω +   ∂  

  ∂Ω
+ Γ Ω   ∂  

− − Ω

∫

∑ ∫

∫

∑ ∫

x x

x x
x x

x x

x x

x x

x x x

x
x

n

x
x x

n

ɶ ɶ

ɶ ɶɶ

ɶ
ɶ

ɶ
ɶɶ

ɶ 2
,

1

( ) ( ) ( ) ( ) ( )m k n m k n n m

kV V

dv dv d λ δ
∞

=

 
Ω − Γ Ω Ω + 

 
∑∫ ∫x x x x xɶ ɶ ɶɶ

 (3.64) 

 

E a norma é então computada como: 

 

, ,
1 1 1

( ) ( ) ( ) ( ) ( ) ( )i i n i m f n m k n m k

n m kV V

Norma w dv dv wψ ψ
∞ ∞ ∞

= = =

  
= Ω Ω + Γ Ω Ω     
∑∑ ∑∫ ∫x x x x x xɶ ɶ ɶ ɶɶ  (3.65) 

 

 

3.4. Aplicações 

 

As aplicações consideradas para ilustrar a metodologia de solução direta aqui 

proposta envolvem a análise de três situações bem distintas. Primeiro é considerado um 

exemplo onde os coeficientes variáveis sofrem mudanças de algumas ordens de grandeza 

no domínio espacial. O exemplo mais comumente encontrado na literatura está relacionado 

a materiais conhecidos como FGM (Functionally Graded Materials) [Sutradhar et al., 

(2002)]. O segundo exemplo de aplicação está relacionado à variação abrupta das 

propriedades termofísicas, tipicamente na ligação entre duas camadas de diferentes 

materiais com região de transição [Fudym et al., (2008)], e o terceiro exemplo está 

associado a materiais com propriedades variando randomicamente no meio, como em 

materiais compósitos formados por dispersão de fases [Lin (1992)]. 

Para o exemplo do FGM, a equação de conservação de energia em forma 

adimensional, e as condições, inicial e de contorno, adotadas foram: 
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( ) ,
( , ) ( , )

( ) [ ] 0 1, 0k x
T x t T x t

w x x t
t x x

∂ ∂ ∂
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∂ ∂ ∂
 (3.66) 

( ), 0 1( ,0) f x xT x = < <  (3.67) 

0

0, 0
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T t
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= >
 

(3.68) 

(3.69) 

 

onde as propriedades termofísicas variáveis em x assumem a seguinte forma exponencial 

[Sutradhar et.al. (2002)]: 

 

2 2 0
0 0 0

0

,( ) ( ) , .x x k
k w

w
k x e w x e constβ β α= = = =  (3.70) 

 

Em particular, esta escolha de forma funcional leva a formulação de um 

problema com solução exata via Técnica da Transformada Integral Clássica, aqui 

empregada como resultado de referência na análise da solução para este caso de variação do 

coeficiente. Deste modo, depois de manipular os coeficientes na equação (3.66), encontra-

se: 

2

2
0

,
1 ( , ) ( , ) ( , )

2 0 1, 0
T x t T x t T x t

x t
t x x

β
α

∂ ∂ ∂
= + < < >

∂ ∂ ∂
 (3.71) 

 

Além disso, pode-se fazer uma transformação de variável dependente para 

recuperar a forma usual da equação de calor: 

 

0( )( , )( , ) x t
u x t eT x t

β βα− +=  (3.72) 

 

Então, o problema de condução de calor reescrito com suas condições inicial e 

de contorno, torna-se: 
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*( ) ( ) , 0 1( ,0) x
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(3.75) 

(3.76) 

 

Esta primeira aplicação foi resolvida para diferentes valores do parâmetro β, 

com condição inicial dada por: 

 

2 (1 )

2

1
( )

1

xe
f x

e

β

β

−

=
−
−

 (3.77) 

 

que corresponde a solução permanente para o caso de temperatura prescrita T(0,t)=1 e 

T(1,t)=0.  

A formulação adotada para os outros dois casos, é dada por [Fudym et al. 

(2008)]: 

 

( ) ,
( , ) ( , )

( ) [ ] 0 1, 0k x
T x t T x t

w x x t
t x x

∂ ∂ ∂
= < < >

∂ ∂ ∂
 (3.78) 

( ), 0 1( ,0) f x xT x = < <  (3.79) 
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 (3.80) 

(3.81) 

 

Nesta etapa de demonstração da solução do problema direto a condição inicial 

foi arbitrariamente escolhida como f(x)=1-x2. A variação espacial para o coeficiente com 

mudança abrupta é governada pelo parâmetro γ da seguinte forma: 

 

1 2 1

1 2 1

( ) ( ) ( )

( ) ( ) ( )w

k x k k k x

w x w w x

δ

δ

=

=

+ −

+ −
 

(3.82) 

(3.83) 
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( )

1
( )

1 x xc
x

e γδ
− −

=
+

 (3.84) 

 

onde xc indica a posição central da região de transição. 

Os coeficientes gerados randomicamente foram obtidos baseados no exemplo 

do trabalho de [Lin (1992)], primeiramente gerando as posições igualmente espaçadas ao 

longo do meio e então produzindo randomicamente, no intervalo [0,1], os valores das 

propriedades em cada posição. Os valores gerados são linearmente interpolados gerando 

funções contínuas, g1 (x) e g2 (x), e então normalizadas pela sua média. Através da definição 

de um fator de escala G de 0% a 100%, permite-se a análise de diferentes amplitudes de 

variação das propriedades. Por exemplo, para G=1 obtém-se uma função com padrão 

aleatório na sua forma plena e, já para G=0, recupera-se a situação de propriedade 

termofísica constante (valor médio efetivo). A forma funcional para este caso de variação 

espacial randômica é então dada por: 

 

1
0

1
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2

( )
( ) 1 1

( )
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g x
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g

g x
w x w G

g

=

=

  
+ −  
  

  
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 (3.85) 

(3.86) 

 

O problema de autovalor a ser resolvido é então dado por: 
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(3.88) 

(3.89) 

 

Assim, para demonstrar o potencial de aplicabilidade da presente abordagem, 

considerou-se a forma mais simples dentre as várias possibilidades para o problema auxiliar 

a ser considerado, baseando a escolha em coeficientes iguais a k*(x)=1, w*(x)=1, e d*(x)=0, 
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e mantendo as mesmas condições de contorno daquelas dadas pelas equações (3.88) e 

(3.89) resultando na seguinte solução para o problema de autovalor: 

 

0( ) 2 ( ), e ( ) 1,

com , 0,1,2...
n n

n

x cos x x

n n

Ω = λ Ω =

λ = π =

ɶ ɶ

 (3.90) 

 

O problema algébrico resultante (eq. (3.52)) é então numericamente resolvido 

fornecendo resultados para os autovalores e os autovetores, fazendo uso do software 

Mathematica [Wolfram (2005)] na sua versão 5.2. 
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Capítulo 4  

 

4. Problema Inverso 

 

 

Problemas inversos de transferência de calor fazem uso de medidas de 

temperatura e/ou fluxo de calor, para a estimativa de parâmetros/funções desconhecidos na 

análise de problemas físicos nesta área de estudo. Problemas inversos de condução de calor 

são normalmente associados a estimativas do fluxo de calor a que o corpo é submetido e/ou 

das propriedades termofísicas do material, a partir de medidas de temperatura tomadas em 

seu interior e/ou em sua superfície. Portanto, enquanto no problema direto clássico de 

condução de calor a causa (fluxo de calor/propriedade termofísica) é dada e o efeito 

(temperatura no corpo) é determinado, o problema inverso envolve a estimativa da causa a 

partir do conhecimento do efeito. O uso de problemas inversos faz parte de um novo 

paradigma de pesquisa, onde as simulações computacional e experimental não são 

realizadas isoladamente, mas sim de forma interativa, a fim de que o máximo de 

informação sobre o problema físico em questão seja obtido com as duas análises. 

Problemas inversos são matematicamente classificados como mal-postos, 

enquanto os problemas diretos são bem-postos [Beck & Arnold(1977), Alifanov (1994), 

Ozisik & Orlande (2000)]. Para um problema envolvendo uma equação diferencial ser 

considerado bem-posto, sua solução deve existir, ser única e ser estável com relação aos 

dados de entrada. De um modo geral a solução do problema inverso existe e tal fato é 

justificado através da existência do fenômeno físico do qual o problema aparece. No 

entanto, só existe demonstração matemática da unicidade da solução do problema inverso 

para alguns casos especiais e geralmente este critério não é satisfeito. Além disso, a solução 
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do problema inverso é normalmente instável, o que significa que pequenas oscilações nos 

dados de entrada (por exemplo, temperaturas contendo erros experimentais) causam 

grandes oscilações na solução final [Beck & Arnold(1977), Alifanov (1994), Ozisik & 

Orlande (2000)]. Por um longo período pensou-se que, se as condições para o problema ser 

bem-posto fossem violadas, o problema não teria solução ou não teria importância prática. 

Com o desenvolvimento do procedimento de regularização de Tikhonov, da técnica de 

regularização iterativa de Alifanov e da técnica de especificação de função de Beck, que o 

interesse na solução de problemas inversos foi revitalizado. 

Um procedimento de solução para um problema inverso geralmente requer sua 

reformulação em termos de um problema aproximado bem-posto, que utiliza algum tipo de 

técnica de regularização (estabilização). Em muitos métodos, a solução é obtida em termos 

de mínimos-quadrados. No procedimento de regularização de Tikhonov, por exemplo, a 

norma de mínimos-quadrados é modificada pela adição de termos que reduzem as 

oscilações causadas pelo caráter mal-posto do problema. Na técnica de regularização 

iterativa, o critério de parada para o procedimento iterativo é escolhido de modo que a 

solução seja estável com relação aos erros nos dados de entrada do problema. Na técnica de 

especificação de função, a norma de mínimos quadrados envolve medidas tomadas no 

tempo em questão, assim como em tempos futuros, a fim de se obter soluções estáveis. 

Problemas inversos podem ser resolvidos como estimativa de parâmetros ou 

estimativa de função. Se alguma informação é disponível a respeito da forma funcional da 

variável desconhecida, o problema inverso pode ser reduzido à estimativa de alguns 

parâmetros. Por outro lado, se nenhuma informação é disponível a priori a respeito da 

forma funcional da variável desconhecida, o problema inverso é resolvido com técnicas de 

estimativa de função em um espaço de dimensão infinita. Técnicas para a solução de 

problemas inversos como estimativa de parâmetros e estimativa de função, são 

apresentadas nas seções seguintes.  
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4.1. Estimativa de Parâmetros 

 

Em problemas de estimativa de parâmetros, considera-se que exista alguma 

informação a respeito da forma funcional da função desconhecida. Supõe-se aqui, como 

exemplo, que o problema inverso de interesse é relativo à estimativa de uma função ( )f x , 

que pode representar, por exemplo, o comportamento espacial de uma propriedade 

termofísica variável no meio, como condutividade térmica e capacidade térmica 

volumétrica, e que ( )f x , possa ser escrita na seguinte forma geral linear: 

 

1

( ) ( )
Npar

j j
j

f PC
=

= ∑x x  (4.1) 

 

onde Pj , j=1,...,Npar , são os parâmetros desconhecidos e Cj(x) são funções de base 

conhecidas. Portanto, o problema inverso de estimativa da função ( )f x  é reduzido a 

estimativa de um número finito de parâmetros Pj, onde o número de parâmetros, Npar, é 

suposto conhecido. Uma simplificação natural desse problema de estimativa de parâmetros 

seria por exemplo, a identificação de propriedades termofísicas constantes. 

Problemas de estimativa de parâmetros são, de um modo geral, resolvidos 

através da minimização de uma função objetivo. Supõe-se válidas as seguintes hipóteses 

[Ozisik & Orlande (2000)]: os erros das variáveis medidas são aditivos, não-

correlacionados, com distribuição normal, média zero e desvio-padrão constante; somente 

as variáveis medidas que aparecem na função objetivo contém erros; e não existe 

informação a priori a respeito do valor e da incerteza dos parâmetros. Neste caso, a norma 

de mínimos-quadrados torna-se uma função objetivo que resulta em parâmetros com 

variância mínima. A norma de mínimos-quadrados pode ser escrita como: 

 

( ) [ ( )] [ ( )]TS = − −P Y T P Y T P  (4.2) 

 

 

onde P é o vetor de parâmetros desconhecidos e 
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−−−=− ,...,,)( 2211TY  
(4.3) 

 

O vetor )]([ Pii TY
��

−  contém a diferença entre as variáveis medidas e estimadas para cada um 

dos M sensores no tempo ti, i = 1, …, I, isto é,  

 

( )iMiMiiiiii TYTYTYTY −−−=− ,...,,)( 2211

��

     para i=1,…,I (4.4) 

 

Apesar de ser bastante útil e permitir a solução de uma série de problemas 

práticos, a utilização da função de mínimos quadrados pode ser considerada limitada, uma 

vez que admite implicitamente que todas as variáveis analisadas pertencem a um mesmo 

conjunto amostral, ou seja, são medidas de uma mesma variável, obtidas com a mesma 

precisão em qualquer condição experimental. Nem uma coisa nem outra são 

necessariamente verdadeiras, sendo importante observar que nem todo instrumento fornece 

um erro de medida aproximadamente constante em toda a faixa de utilização. Sendo assim 

uma maneira alternativa e bastante comum de se formular a função objetivo, de modo a 

contemplar a variância dos erros experimentais é a chamada função de mínimos-quadrados 

ponderados. Neste caso, o fator de ponderação é o inverso da variância do erro de medida. 

Um dos grandes méritos da função de mínimos-quadrados ponderados é permitir a extensão 

natural da função objetivo para distintas condições de experimentação de acordo com a 

estrutura da matriz de covariância. Cabe aqui observar, que a função mínimimos-quadrados 

ponderados reduz-se a função de mínimos-quadrados quando os erros nas medidas são 

considerados Gaussianos, não correlacionados e com desvio padrão constante. A função-

objetivo de mínimos-quadrados ponderados é definida como: 

 

( ) [ ( )] [ ( )]TS = − −P Y T P W Y T P  (4.5) 

 

onde, W é o inverso da matriz de covariância das medidas. A minimização da função 

objetivo (4.5) resulta em estimativas de máxima verossimilhança, supondo que os erros são, 

não-correlacionados, com distribuição normal, média zero e desvio-padrão constante, a 
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matriz W torna-se uma matriz diagonal com elementos dados pelo inverso das covariâncias 

dos erros [Ozisik e Orlande (2000)]. 

Todavia, considerando-se que existe informação a priori para os parâmetros 

na forma de uma distribuição Gaussiana e que Y e P são independentes, pode-se utilizar a 

função objetivo de maximum a posteriori no procedimento de minimização [Ozisik & 

Orlande (2000)]. Esta função-objetivo é definida como: 

 

[ ] [ ] 1( ) ( ) ( ) ( ) ( )T TS −= − − + − −P Y T P W Y T P P V Pµ µµ µµ µµ µ  (4.6) 

 

onde P é um vetor randômico com média µ e matriz de covariância conhecida V. Portanto, 

a média µ e a matriz de covariância V introduzem no procedimento de minimização 

informação a priori a respeito do vetor de parâmetros P a ser estimado. Esta informação 

pode estar disponível a partir de resultados obtidos anteriormente com o mesmo aparato 

experimental, ou a partir de dados da literatura.  

Na solução de problemas de estimativa de parâmetros onde se faz necessário a 

utilização de procedimentos numéricos de minimização, o papel do método de otimização é 

encontrar estes parâmetros desconhecidos. Basicamente, este tipo de problema de 

otimização é resolvido num espaço de dimensão finita, que é igual ao número de 

parâmetros desconhecidos Npar  

Todavia, esta tarefa pode ser muito difícil. Pode haver uma quantidade muito 

grande de dados experimentais, os modelos podem ter comportamentos complexos, a 

função objetivo pode ter múltiplos mínimos locais, os parâmetros podem ser 

correlacionados, o número de parâmetros pode ser elevado, etc. Devido a estas 

dificuldades, foi proposta na literatura uma infinidade de métodos diferentes de otimização, 

cada qual com suas particularidades, e a eficiência desses métodos pode variar muito de 

problema para problema. Assim, não existe um único método de otimização que seja capaz 

de resolver todos os problemas de estimação. Alguns métodos são muito eficientes em 

certos problemas, mas não são capazes de solucionar um outro problema com 

características um pouco diferentes.  

Dentre os métodos de minimização encontrados na literatura tem-se os 

métodos determinísticos, que geralmente se baseiam em procedimentos iterativos e 
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utilizam-se das derivadas de primeira e segunda ordem da função objetivo [Ozisik & 

Orlande 2000].  

Métodos como o de Newton, que é baseado na aproximação quadrática da 

função objetivo, e o método de Gauss-Newton, que é o método de Newton quando utilizado 

a aproximação de Gauss para a matriz Hessiana, requerem a inversão da matriz Hessiana ao 

longo das iterações, o que pode ser computacionalmente ineficiente em problemas de 

grande porte.  

Outros métodos utilizam apenas a informação disponível na primeira derivada 

da função objetivo (isto é, o vetor gradiente). Como o vetor gradiente indica a direção e o 

sentido em que a função aumenta com maior taxa, a busca numérica deve seguir o seu 

sentido contrário para que a função seja minimizada. Métodos como o método de 

Levenberg-Marquardt, tem a vantagem de evitar o cômputo da matriz Hessiana e a sua 

inversão, o que torna as iterações mais rápidas.  

Uma outra classe são os métodos estocásticos de otimização, que são 

caracterizados pela realização de um grande número de avaliações da função objetivo em 

toda a região de busca, de forma a aumentar a probabilidade de encontrar o ótimo global da 

função objetivo. Além disso, estes métodos não precisam de uma estimativa inicial muito 

precisa da solução e não utilizam as derivadas para chegar ao ponto ótimo, evitando assim 

muitas das dificuldades associadas aos métodos mais tradicionais. São portanto, algoritmos 

adequados para lidar com funções objetivo fortemente não-lineares e para problemas onde 

não estão disponíveis boas estimativas iniciais para os parâmetros. Dentre os métodos 

estocásticos, encontram-se o método de Monte Carlo, o Algoritmo Genético e o algoritmo 

de Recozimento Simulado (Simulated Annealing), o Enxame de Partículas, etc [Colaço et 

al. (2006)].  

Além disso, Colaço et al. (2006) chamam a atenção para uma terceira classe 

de métodos conhecida como métodos híbridos que combinam os métodos determinísticos e 

os métodos estocásticos a fim de aproveitar as vantagens específicas de cada um. Os 

métodos híbridos geralmente empregam os métodos estocásticos para localizar a região de 

mínimo global e então mudam para os métodos determinísticos para encontrar a solução 

mais rapidamente.  
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4.2. Estimativa de Função 

 

Os métodos descritos anteriormente são aplicados à minimização de uma 

função objetivo num espaço paramétrico de dimensão finita. Vários problemas inversos e 

de otimização baseiam-se em estimativas de funções, ao invés de parâmetros. Nesses casos 

a minimização necessita ser realizada num espaço de função de dimensão infinita, onde 

nenhuma hipótese a priori é fornecida sobre a forma funcional da função desconhecida, 

exceto pelo espaço funcional a que ela pertence. Uma escolha geralmente adotada é o 

espaço de Hilbert de funções com quadrado integrável no domínio de interesse. 

O procedimento de solução de problema inverso geralmente requer sua 

reformulação em termos de um problema bem-posto e utiliza algum tipo de técnica de 

regularização (estabilização). Em muitos métodos para estimativa de propriedade, onde a 

solução é obtida em termos de mínimos-quadrados, o procedimento de regularização se dá 

pela adição de termos à norma de mínimos-quadrados de modo a reduzir as oscilações 

causadas pelo caráter mal-posto do problema, como no procedimento de regularização de 

Tikhonov, onde o parâmetro de regularização é escolhido baseado no resíduo entre as 

medidas e as temperaturas estimadas.  

De fato, se o problema inverso envolve a estimativa de poucos parâmetros, 

como por exemplo, a estimativa de uma propriedade constante de um meio a partir de 

medidas transientes de temperatura neste meio, a minimização das funções objetivos dadas 

acima pode ser estável. Todavia, se o problema inverso envolve a estimativa de um grande 

número de parâmetros, como a recuperação das componentes desconhecidas do fluxo de 

calor nos tempos it , ( ) , 1,...,i if t f i I≡ = , oscilações na solução podem acontecer. Uma 

abordagem possível para reduzir estas instabilidades é a utilização de procedimentos 

chamados de Regularização de Tikhonov, que modificam a norma de mínimos quadrados 

adicionando um termo como:  

 

( )2 2

1 1

( ) +
I I

i i i
i i

S Y T fα
= =

= −∑ ∑P  (4.7) 
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onde ( 0)α >  é o parâmetro de regularização e o segundo somatório da direita 

é o termo de regularização de ordem-zero. A escolha do parâmetro de regularização 

influencia a estabilidade da solução durante a minimização. Para 0α → , concordância 

entre os valores medidos e estimados é obtida no processo de minimização da função 

objetivo e a solução inversa exibe um comportamento oscilatório e instável. No entanto, 

para valores muito grandes de α  a solução é então amortecida, se afastando da solução 

exata [Colaço et al. (2006)]. A instabilidade na solução pode ser aliviada através da escolha 

apropriada do valor de α . Tikhonov sugere que α  deve ser escolhido de modo que o 

menor valor da função objetivo deve ser igual a soma dos erros quadráticos das medidas, o 

que é conhecido como Princípio da Discrepância.  

 

O procedimento de regularização de Tikhonov de primeira-ordem por sua vez 

envolve a minimização da seguinte forma modificada da norma de mínimos quadrados: 

 

( ) ( )2 2

1

1 1

( ) +
I I

i i i i
i i

S Y T f fα +
= =

= − −∑ ∑P  (4.8) 

 

Uma técnica de solução de problemas inversos de estimativa de função, 

alternativa àquela descrita anteriormente da regularização de Tikhonov, é o Método do 

Gradiente Conjugado desenvolvido por Alifanov [Ozisik & Orlande (2000)]. Esse é um 

método iterativo, cujo critério de parada também envolve o principio da discrepância. Na 

verdade, o procedimento iterativo é parado quando a diferença entre as temperaturas 

medidas e estimadas torna-se da ordem dos erros experimentais esperados, dando ao 

método do gradiente conjugado um caráter de regularização iterativa. 

O critério de parada baseado no princípio da discrepância, requer, todavia, um 

conhecimento a priori do desvio padrão dos erros de medidas. No entanto, existem várias 

situações práticas em que esta informação não é disponível. Para estas situações um critério 

alternativo de parada baseado em medidas adicionais pode ser empregado, mantendo ainda 

assim o caráter de regularização iterativa do método de gradiente conjugado [Ozisik & 

Orlande (2000)]. 
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4.3. Análise dos Coeficientes de Sensibilidade 

 

A matriz de sensibilidade, eq. (4.9), tem um importante papel no problema de 

estimativa de parâmetros. Sendo assim, apresenta-se aqui uma breve discussão sobre a 

significância matemática e física dos coeficientes de sensibilidade e os métodos para 

calculá-los [Ozisik & Orlande (2000)]. 

O coeficiente de sensibilidade ijJ  , como definido na equação (4.10), é uma 

medida da sensibilidade da temperatura estimada iT  com respeito às variações no 

parâmetro jP . Pequenos valores de magnitude de ijJ  indicam que grandes variações em jP  

causam pequenas mudanças em iT . Nestes casos a estimativas dos parâmetros jP  pode ser 

extremamente difícil, basicamente porque um mesmo valor de temperatura pode ser obtido 

para uma grande faixa de valores de jP . De fato, quando os coeficientes de sensibilidade 

são pequenos tem-se que o determinante de TJ J  é aproximadamente zero 0T ≈J J , e neste 

caso o problema inverso é considerado mal-condicionado [Ozisik & Orlande (2000)]. Pode 

ainda ser mostrado que TJ J  é nulo quando uma coluna de J  pode ser expressa como uma 

combinação linear de outras colunas. Sendo assim, é desejável ter coeficientes de 

sensibilidade linearmente independentes e de grandes magnitudes, para que uma estimativa 

acurada dos parâmetros possa ser obtida.  

 

( )
( )

TT ∂
=  ∂ 

T P
J P
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 (4.9) 

i
ij
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=
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Em problemas que envolvem parâmetros com diferentes ordens de magnitude, 

os coeficientes de sensibilidade com respeito aos vários parâmetros podem ser diferentes 

em ordens de grandeza, criando assim dificuldades na comparação e identificação da 
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dependência linear. Esta dificuldade pode ser aliviada através de uma análise dos 

coeficientes de sensibilidade reduzidos, definidos como: 

 

j

i
P j

j

T
J P

P

∂
≡

∂
 (4.11) 

 

A maximização de TJ J  é geralmente utilizada em projetos ótimos de 

experimentos para estimativa de parâmetros, porque a região de confiança das estimativas é 

minimizada [Ozisik & Orlande (2000)]. Uma abordagem mais detalhada sobre projeto 

ótimo do experimento será apresentada na próxima seção deste trabalho. 

Geralmente a variação temporal dos coeficientes de sensibilidade e do 

determinante de TJ J  deve ser examinada antes de se iniciar o procedimento de solução do 

problema inverso propriamente dito. Tais análises dão, por exemplo, indicações das 

melhores localizações para os sensores e número de medidas no tempo necessárias na 

análise inversa, que correspondam a coeficientes de sensibilidade linearmente 

independentes com grandes valores absolutos e grandes magnitudes do determinante de 

TJ J  [Ozisik & Orlande (2000)]. 

Existem diferentes abordagens no cálculo dos coeficientes de sensibilidade. 

Ozisik & Orlande (2000) ilustram três diferentes abordagens incluindo: solução direta 

analítica, o problema de valor de contorno, e a aproximação por diferenças finitas.  

Se o problema direto de condução de calor é linear e a sua solução direta está 

analiticamente disponível para o campo de temperatura, os coeficientes de sensibilidade 

com respeito aos parâmetros desconhecidos jP  podem ser determinados pela diferenciação 

da solução direta com respeito a jP . 

A abordagem do problema de valor de contorno para determinação dos 

coeficientes de sensibilidade pode ser empregada através da diferenciação do problema 

direto original com respeito aos parâmetros desconhecidos. Se o problema direto de 

condução de calor for linear, a construção do problema de sensibilidade correspondente é 

relativamente simples [Ozisik & Orlande (2000)].  
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A aproximação por diferenças finitas pode ser empregada na determinação dos 

coeficientes de sensibilidade aproximando as derivadas de primeira ordem que aparecem na 

própria definição dos coeficientes de sensibilidade eq. (4.10). Se uma aproximação por 

diferença avançada for usada, tem-se os coeficientes de sensibilidade aproximados segundo 

a equação (4.12). Se a aproximação de primeira ordem não for suficientemente acurada, o 

coeficiente de sensibilidade pode ser aproximado por diferença centrada na forma dada pela 

equação (4.13) abaixo [Ozisik & Orlande (2000)]: 

 

1 2 1 2( , ,..., ,..., ) ( , ,..., ,..., )i j j Npar i j Npar
ij

j

T P P P P P T P P P P
J

P

ε

ε

+ −
≅  (4.12) 

1 2 1 2( , ,..., ,..., ) ( , ,..., ,..., )

2

i j j Npar i j j Npar
ij

j

T P P P P P T P P P P P
J

P

ε ε

ε

+ − −
≅  (4.13) 

 

Vale notar que a aproximação dos coeficientes de sensibilidade dada pela 

equação (4.12) requer o cálculo adicional de Npar-vezes da solução do problema direto, 

enquanto a equação (4.13) requer o cálculo adicional de 2Npar-vezes da solução do 

problema direto. Sendo assim, a computação dos coeficientes de sensibilidade através da 

aproximação por diferenças finitas pode muitas vezes ser dispendiosa computacionalmente. 

No caso de se tratar de medidas de múltiplos sensores, algumas modificações 

na forma da matriz de sensibilidade J  são necessárias. Sendo assim a matriz de 

sensibilidade pode ser escrita na forma: 
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 (4.14) 

onde  
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,    para i = 1, ... , I     e    j = 1, ..., Npar (4.15) 

 

sendo I é o número de medidas transientes por sensor, M é o número de sensores, e Npar 

igual o número de parâmetros desconhecidos. Os elementos da matriz de sensibilidade 

podem então ser rescritos na forma dada por: 

 

k
kj

j

T
J

P

∂
=

∂
 (4.16) 

 

onde os sub-escritos k e j referem-se ao número de linhas e ao número de colunas da matriz 

de sensibilidade, respectivamente. A k-ézima linha está então relacionada à medida no 

tempo ti e ao sensor m pela expressão [Ozisik & Orlande (2000)]:  

 

( 1)k i M m= − +  (4.17) 

 

 

4.4. Projeto Ótimo do Experimento 

 

Uma análise estatística possibilita a estimativa da incerteza de jP̂ , que são os 

valores estimados para os parâmetros Pj, j=1,...,Npar. Supondo válidas as hipóteses descritas 

anteriormente para os erros de medida (não-correlacionados, com distribuição normal, 

média zero e desvio-padrão constante), a matriz de covariância para as estimativas 

correspondentes à função objetivo de máxima verosimilhança (ver eq. (4.5)) é dada por 

[Ozisik & Orlande (2000)]: 
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1ˆcov ( ) [ ]T −= =V P J WJ  (4.18) 

 

Sendo assim, os desvios-padrão para as estimativas dos parâmetros são 

obtidos da diagonal de )ˆ(cov P  como: 

 

ˆ
ˆ ˆcov ( , )

j
j j jjP
P P Vσ ≡ =     para    j=1,...,Npar (4.19) 

 

A equação (4.20) apresenta os intervalos para um nível de confiança requerido 

de 99%. Todavia, o intervalo de confiança não fornece uma boa aproximação da região de 

confiança conjunta dos parâmetros estimados. De fato, o intervalo de confiança é obtido 

para cada parâmetro, sem levar em conta as estimativas dos outros parâmetros. A região de 

confiança construída a partir dos intervalos de confiança pode acabar por incluir áreas fora 

da verdadeira região de confiança ou deixar de incluir áreas que pertençam a verdadeira 

região [Ozisik & Orlande (2000)].  

 

jj PjjPj PPP ˆˆ 576.2ˆ576.2ˆ σσ +≤≤−     para  j=1,...,Npar (4.20) 

 

A região de confiança conjunta para os parâmetros estimados é então dada 

pela equação (4.18) e refere-se ao interior do hiper-elipsóide centrado na origem e com 

coordenadas ( ) ( ) ( )1 1 2 2
ˆ ˆ ˆ, , ... , Npar NparP P P P P P− − − . A superfície do hiper-elipsóide tem 

densidade de probabilidade constante dada por uma distribuição chi-quadrada para um 

determinado nível de confiança [Ozisik & Orlande (2000)].  

 

( ) ( )1 2ˆ ˆ
T

Nχ−− − ≤P P V P P  para   j=1,...,Npar (4.21) 

 

A otimização dos experimentos se dá minimizando o hiper-volume da região 

de confiança, de modo que as estimativas dos parâmetros tenham variância mínima. A 

minimização da região de confiança pode ser feita maximizando o determinante de 1−V . 
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Uma vez que 1−V  é dado pela inversa de (4.18), tem-se que projetar o experimento ótimo 

significa maximizar o determinante da matriz TJ J , também conhecida como matriz de 

informação de Fischer. Este critério é o chamado critério D-Ótimo [Colaço et.al. (2006a)].  

Usando a definição da matriz de sensibilidade envolvendo um único sensor a 

matriz de informação de Fischer pode ser escrita como na expressão (4.22). Se a restrição 

de que existe um grande, porém fixo, número de medidas de M sensores, os experimentos 

podem ser otimizados utilizando-se uma forma alternativa da matriz F, cujos elementos são 

dados pela expressão (4.23), onde tf é a duração do experimento [Ozisik & Orlande, 

(2000)]: 
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4.5. Inferência Bayesiana 

 

Segundo Gamerman & Lopes (2006), o desenvolvimento da estatística como 

ciência de tratamento e análise de dados sempre esteve atrelado às capacidades 

computacionais do momento, tendo sido então alavancado nas últimas décadas com a 

disseminação de meios de computação cada vez mais velozes. Ainda segundo Gamerman 

& Lopes (2006), a área que talvez tenha se beneficiado mais com esse avanço foi a de 

inferência Bayesiana. Embora essa abordagem encontre a simpatia de usuários pela sua 

flexibilidade, ela obriga a incorporação de todas as fontes de informação em um dado 

problema.  

Segundo Zabaras (2006), a recente aplicação da inferência Bayesina a partir 

da propagação de métodos eficientes de amostragem, como o Método de Monte Carlo via 
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Cadeia de Markov (MCMC) empregados na solução de problemas inversos em 

transferência de calor, acrescentou novas perspectivas a esta frente de estudos. 

Assim como na inferência frequentista, a inferência Bayesiana trabalha na 

presença de observações Y cujos valores são inicialmente incertos e descritos através de 

uma distribuição de probabilidade com densidade ou função de probabilidade f(Y|P). 

Gamerman & Lopes (2006) acrescentam que a situação canônica é aquela onde uma 

amostra aleatória simples Y = (Y1, Y2,..., Yn ) é extraída de uma população que se distribui 

de acordo com a densidade f(Y|P). Tipicamente neste caso as observações Yn’s são 

identicamente distribuídas e independentes (condicionalmente ao conhecimento de P). 

A quantidade P serve como indexador da família de distribuições das 

observações representando características de interesse que se deseja conhecer. Todavia, a 

quantidade P pode ser mais do que um simples indexador, podendo ser a própria razão da 

tomada de medições uma vez que o interesse principal de estudo seja a determinação do seu 

valor. Além disso, Gamerman & Lopes (2006) ressaltam que é bastante provável que se 

tenha, ou se saiba, como caracterizá-la, sendo nestes casos possível, e até recomendável, 

que esse conhecimento prévio a respeito da quantidade seja incorporado à análise e é nesse 

ponto que o método Bayesiano se diferencia do frequentista. Enquanto o segundo não 

admite essa forma de informação por não ser observável, e portanto não ser passível de 

comprovação empírica, o primeiro sempre incorpora essa informação à análise através de 

uma distribuição p(P), mesmo que esta informação não seja muito precisa. 

Como descrito acima, a inferência Bayesiana contém dois ingredientes: a 

distribuição das observações f(Y|P)e a distribuição p(P). Olhando para o primeiro como 

função de P obtém-se a função de verosimilhança de P, p(Y|P) que fornece informação 

sobre a chance de cada valor de P ter levado àquele valor observado para Y. O segundo 

ingrediente é chamado de densidade a priori,  pois contém a distribuição de probabilidade 

de P antes da observação do valor de Y. Colocado desta forma é razoável que o processo de 

inferência seja baseado na distribuição de probabilidade de P após observar o valor de Y, 

que passa a fazer parte do conjunto de informação disponível. Essa distribuição, p(P|Y), é 

chamada de distribuição a posteriori em direta oposição a priori e pode ser obtida através 

do teorema de Bayes, equação (4.24). Uma vez obtida a distribuição a posteriori, pode-se 

procurar sumarizar a informação nela contida através de algumas medidas, em particular 
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podem ser calculadas medidas de localização para fornecer uma idéia de possíveis valores 

centrais e de dispersão, para dar uma idéia da variabilidade associada à situação descrita 

pela posteriori. As principais medidas de posição são a média, a moda e a mediana, e as 

principais medidas de dispersão são a variância, o desvio-padrão, a precisão e a curvatura 

na moda. Uma relação dessas medidas e a relação delas com regras de decisão é dada por 

Migon & Gamerman (1999): 

 

( ) ( ) 1
( ) ( ) ( )

( )

p p
p p p

p const
= =

Y P P
P Y Y P P

Y
 (4.24) 

 

Assim, a função de densidade de probabilidade posteriori pode ser escrita como sendo 

proporcional ao produto da verossimilhança e da distribuição a priori: 

 

( ) ( ) ( )p p p∝P Y Y P P  (4.25) 

 

Sendo assim, assumindo que os dados de temperatura são independentes e 

identicamente distribuídos (i.i.d.), a verossimilhança pode ser escrita como: 
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onde T(P) é a temperatura calculada em função dos parâmetros a serem estimados, e Y é a 

temperatura medida. Nesta etapa do presente trabalho as temperaturas experimentais foram 

obtidas através de dados experimentais simulados, perturbados por um erro com média 

centrada no valor exato da temperatura e variância constante e conhecida. 

A quantidade desconhecida no problema de condução de calor aqui 

abordado é a condutividade térmica do meio, representado na seção anterior como k(x). 

Lembre-se, todavia, que a abordagem adotada na solução do problema direto optou por 

expandir as propriedades termofísicas em termo de autofunções; tem-se então que em 
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último plano as quantidades desconhecidas são os coeficientes da expansão e os dois 

valores da propriedade nos contornos utilizados na solução filtro.  

Quando não é possível a obtenção das correspondentes distribuições 

marginais analiticamente tem-se a necessidade de fazer uso de algum método baseado em 

simulação. Gamerman & Lopes (2006) descrevem algumas das principais técnicas como: 

linearização e aproximação pela normal, aproximação de Laplace, aproximação via 

quadratura Gaussiana e a técnica de simulação estocástica baseada no princípio de re-

amostragem, e ressaltam  que, com exceção desta ultima técnica, as demais citadas estão 

atreladas a resultados assintóticos (quando o tamanho da amostra cresce) e à normalidade.  

A inferência baseada em técnicas de simulação utiliza amostras da posteriori 

p(P|Y) para extrair informação a seu respeito de P. Obviamente, como uma amostra é 

sempre um substituto parcial da informação contida em uma densidade, métodos baseados 

em simulação são inerentemente aproximados e devem apenas ser utilizados quando for 

constada a impossibilidade de extração analítica de informação da posteriori, como é o caso 

no presente estudo. Infelizmente, segundo Gamerman & Lopes (2006), para a maioria dos 

problemas de relevância prática é complicado fazer uma geração da posteriori p(P|Y). 

Portanto, são necessários métodos mais sofisticados que permitam a obtenção de uma 

amostra de p(P|Y), como por exemplo, a técnica baseada em simulação via cadeias de 

Markov. O método numérico mais utilizado para explorar o espaço de estados da posteriori 

é a simulação de Monte Carlo. A simulação de Monte Carlo é baseada em uma grande 

amostra da função densidade de probabilidade (neste caso, a função de densidade de 

probabilidade da posteriori p(P|Y)). Várias estratégias de amostragem são propostas na 

literatura, entre elas, o Método de Monte Carlo via Cadeia de Markov (MCMC), adotado 

pelo presente trabalho, onde a idéia básica é simular um “passeio aleatório” no espaço de 

p(P|Y) que converge para uma distribuição estacionária, que é a distribuição de interesse no 

problema.  
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4.5.1. Método de Monte Carlo via Cadeia de Markov - MCMC 

 

A teoria dos processos estocásticos, onde a cadeia de Markov está inserida, é 

geralmente definida como a parte dinâmica da teoria das probabilidades, onde se estuda 

uma coleção de variáveis aleatórias, sob o ponto de vista de suas interdependências e de seu 

comportamento limite. O método de Monte Carlo via Cadeia de Markov é uma versão 

iterativa dos métodos de Monte Carlo tradicionais. A idéia é obter uma amostra da 

distribuição a posteriori e calcular estimativas amostrais das características desta 

distribuição usando técnicas de simulação iterativa, baseadas em cadeias de Markov. 

Uma cadeia de Markov é um processo estocástico {P0, P1,...} tal que a 

distribuição de Pi, dados todos os valores anteriores P0, ..., Pi-1 , depende apenas de Pi-1. Ou 

seja, interpreta-se o fato de um processo satisfazer a propriedade de Markov (eq. (4.27)) 

como que, dado o presente, o passado é irrelevante para se prever a sua posição num 

instante futuro [Gamerman & Lopes (2006)]. 

 

0 1 1( ,..., ) ( )i i i ip A p A− −∈ = ∈P P P P P  (4.27) 

 

Uma cadeia de Markov é mais precisamente definida pela sua probabilidade 

de transição p(i,j)=p(i→j), a qual define a probabilidade de que o processo, estando no 

estado si mova-se para o estado sj em um único passo, conforme segue: 

 

1( , ) ( ) ( )t j t ip i j p i j p s s+= → = = =P P  (4.28) 

 

Os métodos MCMC requerem, para que se obtenha uma única distribuição de 

equilíbrio, que a cadeia de Markov seja [Ehlers (2003)]:  

 

• homogênea, isto é, as probabilidades de transição de um estado para outro sejam 

invariantes; 

• irredutível, isto é, cada estado pode ser atingido a partir de qualquer outro em 

um número finito de iterações; 
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• aperiódica, isto é, não haja estados absorventes; 

 

Assim, uma condição suficiente para se obter uma única distribuição 

estacionária é que o processo atenda à seguinte equação de balanço: 

 

( ) ( ) ( ) ( )i jp i j p p j i p→ = →P Y P Y  (4.29) 

onde p(Pi|Y)e p(Pj|Y) são as probabilidades dos estados distintos da distribuição de 

interesse. 

Uma questão importante de ordem prática é como os valores iniciais 

influenciam o comportamento da cadeia. A idéia é que conforme o número de iterações 

aumente, a cadeia gradualmente converge para uma distribuição de equilíbrio. Assim, em 

aplicações práticas é comum que os estados iniciais sejam descartados, como se formassem 

uma amostra de aquecimento. O problema então consiste em construir algoritmos que 

gerem cadeias de Markov cuja distribuição converge para a distribuição de interesse. Os 

algoritmos MCMC mais comumente utilizados são o Metropolis-Hastings (aqui 

empregado) e o Amostrador de Gibbs [Ehlers (2004)]. 

 

 

4.5.2. MCMC – Algoritmo Metropolis-Hastings 

 

A cadeia de Markov segundo o nome genérico de Metropolis-Hastings advém 

dos artigos de Metropolis et.al. (1953) e Hastings (1970). Esses trabalhos foram 

considerados básicos para a identificação do método embora, na opinião de Gamerman & 

Lopes (2006), os trabalhos de Barker (1995) e Peskun (1973) tenham trazidos contribuições 

relevantes. 

O algoritmo de Metropolis-Hastings usa a mesma idéia dos métodos de 

rejeição, i.e. um valor é gerado de uma distribuição auxiliar e aceito com uma dada 

probabilidade. Este mecanismo de correção garante a convergência da cadeia para a 

distribuição de equilíbrio. Ou seja, o algoritmo agora inclui uma etapa adicional, aonde o 

mecanismo de transição depende de uma proposta de transição e de uma etapa posterior de 
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avaliação da densidade de equilíbrio, mas esta está representada na transição global através 

da probabilidade de aceitação. 

O algoritmo de Metropolis-Hastings faz uso de uma função densidade de 

probabilidade auxiliar, q(P*|P), da qual seja fácil obter valores amostrais. Supondo que a 

cadeia esteja em um estado P, um novo valor candidato, P* , será gerado da distribuição 

auxiliar q(P*|P), dado o estado atual da cadeia P, onde P é o vetor dos parâmetros em 

estudo. 

O novo valor P* é aceito com probabilidade dada pela equação (4.30), onde a 

razão que aparece nesta equação é chamada por Hastings (1970) de razão de teste, hoje 

chamada de razão de Hastings “RH”: 

 

* *

*

*

( ) ( )
( , ) min 1,

( ) ( )

p q
RH

p q

 
 =
  

P Y P P
P P

P Y P P
 (4.30) 

 

onde p(P|Y) é a distribuição a posteriori de interesse. Uma observação importante é que só 

precisamos conhecer p(P|Y) a menos de uma constante, uma vez que estamos trabalhando 

com razões entre densidades, e a constante de normalização se cancela.  

Em termos práticos, isto significa que a simulação de uma amostra de 

p(P|Y) usando o algoritmo de Metropolis-Hastings pode ser esquematizado da seguinte 

forma [Ehlers (2004)]: 

 

1. Inicializa-se o contador de iterações da cadeia i = 0 e arbitra-se um valor inicial P(0). 

2. Gera-se um valor candidato P* da distribuição q(P*|P),. 

3. Calcula-se a probabilidade de aceitação *( , )RH P P  do valor candidato através da 

eq. (4.30).  

4. Gera-se um número randômico u com distribuição uniforme, isto é u~U(0, 1), 

5. Se u ≤ *( , )RH P P então aceita-se o novo valor e faz-se P (i+1) = P*,. Caso contrário 

rejeita-se e faz-se P (i+1) = P (i). 

6. Incrementa-se o contador de i para i + 1 e volta-se ao passo 2. 
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O núcleo de transição q define apenas uma proposta de movimento que pode 

ou não ser confirmada por *( , )RH P P . Por este motivo q é normalmente chamado de 

proposta e, quando olhado como uma densidade (ou distribuição) condicional q(P*|. ), 

chamado de densidade (ou distribuição) proposta. 

O sucesso do método depende de taxas de aceitação não muito baixas e de 

propostas fáceis de simular. O método substitui uma geração difícil de p(P|Y) por várias 

gerações propostas de q. 

O presente trabalho optou por adotar cadeias simétricas ou seja, para o 

algoritmo de Metropolis-Hastings, a noção de cadeia simétrica é aplicada sobre a transição 

proposta q. Sendo assim, q define uma transição uniforme em torno das posições anteriores 

na cadeia, isto é, q(P*|P) = q( P|P*), para todo (P*, P). Neste caso a expressão (4.30) 

reduz-se apenas a razão entre as densidades calculadas nas posições, anterior e proposta, da 

cadeia, e não depende de q.  

Nota-se também que a cadeia pode permanecer no mesmo estado por muitas 

iterações, e na prática sugere-se monitorar isto calculando a taxa de aceitação, ou seja, a 

porcentagem média de iterações para as quais novos valores gerados são aceitos. Sendo 

assim, uma cadeia que não se move, isto é, com baixas taxas de aceitação, deve ser evitada. 

Para que se tenha convergência para a distribuição de equilíbrio, a cadeia deve ser capaz de 

percorrer todo o seu domínio. Uma forma de se resolver as baixas taxas de aceitação é fazer 

com que a cadeia caminhe muito lentamente, isto é se desloque através de movimentos 

diminutos. Todavia, cadeias com taxas de aceitação muito altas também são indesejadas, 

uma vez que a cadeia levará muitas iterações para percorrer todo o domínio p(P). Assim, os 

movimentos da cadeia, determinados por q, devem ser dosados de forma a fazê-la ter 

deslocamentos grandes, mas que tenham chances reais, determinados pela eq. (4.30), de ser 

aceitos. 
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Capítulo 5  

 

5. Experimentos com Termografia por Câmera de 

Infravermelho 

 

Este capítulo tem como objetivo apresentar a utilização da técnica não-

intrusiva de medição de temperatura por termografia de infravermelho na realização de 

experimentos em transferência de calor visando a identificação de propriedades 

termofísicas, conjugada à técnica de Inferência Bayesiana na solução dos respectivos 

problemas inversos. Neste sentido, dois experimentos envolvendo condução de calor 

transiente foram montados em uma bancada experimental projetada para este fim, e as 

medidas de temperatura foram obtidas com uma câmera de infravermelho, ThermoVision 

A-10 da Flir Systems Inc. As imagens termográficas aquisitadas ao longo do transiente 

térmico foram tratadas e alimentaram o algoritmo de solução do problema inverso, 

construído na plataforma Mathematica 5.2, como mais tarde ilustrado no capítulo de 

resultados. 

 

 

5.1.Fundamentos da Termografia por Câmera de Infravermelho 

 

Medidas de temperatura com sensores de contato, como por exemplo 

termopares, são por vezes de difícil execução uma vez que a introdução de um sensor no 

meio a ser caracterizado pode causar uma perturbação significativa no mesmo. Tal 

perturbação requer que o sensor seja modelado como parte do sistema, causando 

dificuldades adicionais na análise do problema térmico. A resolução espacial das câmeras 

termográficas na faixa do infravermelho já atinge hoje valores inferiores a 20 µm. Portanto, 
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a termografia por câmera de infravermelho se apresenta como uma técnica não-intrusiva, de 

alta definição e pequena incerteza, e vasta aplicabilidade.  

A radiação na faixa do infravermelho (IR, do inglês “infrared”) é uma parte da 

radiação eletromagnética cujo comprimento de onda é maior que o da luz visível ao olho 

humano. O infravermelho é uma frequência eletromagnética naturalmente emitida por 

qualquer corpo, com intensidade proporcional à sua temperatura. A Termografia é a técnica 

que possibilita a medição de temperaturas e a formação de imagens térmicas de um objeto, 

a partir da radiação infravermelha que emana da superfície. 

Os infravermelhos se subdividem em infravermelhos curtos (0.7 – 5 µm), 

infravermelhos médios (5 – 30 µm) e infravermelhos longos (30 – 1000 µm). Entretanto, 

esta classificação não é precisa porque em cada área de utilização, se tem uma idéia 

diferente dos limites dos diferentes tipos.  

Um detector ou sensor de radiação infravermelha é um transdutor de energia 

eletromagnética, isto é, um dispositivo que converte a energia radiante incidente sobre o 

mesmo em alguma outra forma conveniente de sinal mensurável, geralmente, um sinal 

elétrico. Analisando-se o mecanismo físico envolvido no processo de detecção pode-se 

estabelecer duas categorias distintas de detectores: os Detectores Quânticos e os Detectores 

Térmicos.  

Os detectores quânticos se baseiam no efeito fotoelétrico, onde o material 

exposto a uma radiação eletromagnética de freqüência suficientemente alta, emite elétrons, 

ou seja, estes detectores utilizam a conversão direta dos fótons incidentes em portadores de 

carga via transição eletrônica em um material semicondutor. Neste caso, os fótons 

absorvidos acarretam um aumento na população de portadores de carga fazendo com que a 

resistência elétrica do dispositivo diminua. Um portador de carga refere-se a uma partícula 

livre portadora de uma carga elétrica. Na física de semicondutores, os buracos produzidos 

pela falta de elétrons são tratados também como portadores de carga. Esses dispositivos 

podem ser construídos e operados sob duas formas diferentes:- Fotocondutor ou 

Fotoresistor; e Fotovoltaico (Fotodiodo). 

No caso dos detectores térmicos, a energia eletromagnética absorvida provoca o 

aquecimento do dispositivo. Isto provoca a alteração de alguma propriedade do material 

que é função da temperatura e pode ser mensurada por uma das seguintes formas: 
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- Medida direta da temperatura (calorimetria) 

- Mudança na resistência elétrica do material 

- Um sinal de corrente ou tensão termoelétrica 

- Alteração de carga ou capacitância do dispositivo 

Este tipo de detector apresenta uma resposta proporcional à energia incidente, sendo 

praticamente independente do comprimento de onda da radiação. Devido à inércia térmica 

dos processos de absorção e troca de calor, este tipo de sensor apresenta tempos de resposta 

relativamente longos (>10 ms). Em geral esses detectores não precisam de refrigeração, 

facilitando o seu uso em diversas aplicações de campo com menor custo operacional. Os 

principais tipos de detectores térmicos são: a Termopilha, o Detector Piroelétrico e o 

Bolômetro. 

Detectores do tipo bolômetro tratam-se basicamente de um termoresistor, isto 

é, de um dispositivo cuja resistência elétrica varia com a temperatura. Pode ser construído 

tanto a partir de metais (dispositivos clássicos) quanto com semicondutores (dispositivos 

modernos) que apresentem dependência significativa da resistência elétrica com a 

temperatura. Existe ainda uma terceira categoria de materiais conhecidos como termistores 

que são compostos por óxidos mistos e vem sendo utilizados com sucesso na construção de 

bolômetros.  

 

A Câmera ThermoVision-A10: 

A câmera utilizada em nosso experimento, mostrada na figura 5.1, é o modelo 

ThermoVision® Micron/A10 fabricada pela Índigo/Flir Systems para comprimentos de 

onda longa (entre 7,5 à 13,5 µm), com temperatura de trabalho da câmera entre -40 e 50C°. 

A medição da temperatura pela câmera é baseada na conversão da radiação infra-vermelha 

em um sinal elétrico, que faz com que a imagem termográfica seja gerada. A 

ThermoVision-A10 utiliza detectores de microbolômetros de óxido de vanádio arranjados 

em malha de 51x 51microns.  

Os modos de saída de vídeo da ThermoVision-A10 podem ser em digital (em 8 

ou 14bits) ou em analógico (8bits), para o formato de vídeo em escala de cinza RS-170A 

(com taxa de 30 quadros por segundo com fonte de codificação analógica NTSC padrão nos 

EUA) ou de vídeo em escala cinza CCIR (com fonte de codificação analógica PAL própria 
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e padrão na Europa e em outros países, com taxa de 25 quadros por segundo) por interface 

RS-232.  

A lente da ThermoVision-A10 tem padrão de distância focal de 11mm com 

campo visual de 40° por 30° (resolução 640 por 480 pixels e resolução espacial em torno de 

0,22mm/pixel para o ensaio de 200mm de distância). 

Seu ruído equivalente, mais conhecido pela sigla NETD (noise equivalent 

temperature difference), é menor que 85mK em baixas temperaturas inferiores a 150°C e 

considerando temperatura ambiente em torno de 25°C (Low temperature state – High 

Sensitivity ), e menor que 350mK em altas temperaturas, temperaturas superiores a 500°C e 

ambiente em torno de 25°C (High temperature state – Low Sensitivity).  

Com consumo nominal de 1,5 Watts, massa de apenas 107 gramas, sendo uma 

das menores câmeras disponíveis no mercado (dimensões de 1,35” por 1,45” por 1,9”) e 

montagem simples pela base padrão para câmeras (furação com rosca de 5/16”), ela se 

apresenta como uma opção bastante versátil e de baixo custo para aplicações científicas. A 

tabela 5.1 a seguir apresenta algumas das especificações técnicas da ThermoVision-A10.  

 

 
Fig. 5.1– Câmera ThermoVision A10 (fonte:Flir Systems) 
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Tabela. 5.1 – Especificações técnicas da câmera ThermoVision A10 

Thermo Vision A10 

Vídeo 

Disposição 
Plana Focal 

Detector 
Microbolômetro de Oxido de Vanadio 

(não refrigerado) 
Resposta 
Espectral 

7.5 – 13.5 µm 

Sensibilidade 
Térmica 

< 40mK para f/1.0 
< 80mK para f/1.6 

Performance da 
Imagem 
Térmica 

Tempo para 
Primeira 
Imagem 

<  2 segundos 

Sistema Ótico Foco Fixo  Ajuste Manual 
Sinal de Saída 

do Vídeo 
Analógico : 30Hz para RS-170A ou  25Hz para CCIR 

Suporte de Saída Digitais de 14-bit 
Tamanho Pixel 51 x 51  µm      

Formato da 
Matriz de Saída 

160H  x  120V   (RS-170A) 
160H  x  128V   (CCIR) 

Sistema 

Temperatura de 
Operação 

0°C a +40°C 

Temperatura 
Máxima da 

Amostra 

150°C  - modo padrão 
            400°C  - modo de auto-ganho 

Informações 
Gerais 

Tamanho 1.35”W  x  1.45”H  x  1.90”D 
Peso 120 g 

 

O processamento dos sinais (imagens) fornecidos pela camera ThermoVision 

A10 pode ser feito de forma analógica ou digital. O sinal analógico é um tipo de sinal 

contínuo que varia em função do tempo e é obtido de forma direta sem passar por qualquer 

decodificação complexa. Já o sinal digital é um sinal com valores discretos (descontínuos) 

no tempo e amplitude. As informações obtidas pelos microbolômeros de óxido de vanádio 

da ThermoVision A-10 fornecem informações discretas na escala de 14 bits (0 a 16383, 

(214-1)) a um módulo conversor. Este módulo transmite tanto as informações digitais 

(discretas) quanto converte e transmite de forma analógica (contínua). Por termos uma 

placa de recepção analógica da National Instruments disponível, acabamos por capturar as 

informações analógicas deste módulo. Porém, tais informações são recebidas pela placa da 

National Instruments como uma imagem na escala de cinzas comum, o que a faz retornar 

ao processador do computador informações digitais na escala do Graylevel de 8 bits (0 a 

255). O software no computador interage com a placa através de controles ActiveX 

(fornecidos pela National Instruments junto com a placa) mediante programação orientada 
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a objetos. Uma otimização da captação das informações estaria na aquisição de uma nova 

placa, só que de recepção digital, a fim de se obter toda a amplitude da escala de 14 bits 

oferecida pela câmera, obtendo uma escala 64 vezes mais detalhada (2(14-8)). 

 

 

5.2. Aparato Experimental e Modelos Físicos 

 

A bancada experimental apresentada na figura 5.2 foi projetada, construída e 

testada para realização do presente estudo de identificação de propriedades termofísicas 

usando medidas de temperatura obtidas com a câmera de infravermelho. Os principais 

componentes da bancada são: a) câmera ThermoVision A10; b) suporte para câmera em 

experimento vertical; c) amostra com placas aquecidas em sanduiche; d) suporte para 

câmera em experimento horizontal; e) suporte das amostras; f) conversor digital-analógico; 

g) sistema de aquisição de dados (Agilent 34970-A); h) microcomputador de aquisição e 

tratamento de dados. 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 5.2. – Bancada experimental para identificação de propriedades termofísicas  

com termografia por  câmera de infravermelho. 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
(g) 

(h) 
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A bancada foi idealizada para duas configurações experimentais distintas: um 

experimento de placa aquecida na horizontal com as imagens de termografia sendo tomadas 

na direção normal à placa (aparato da esquerda – Figs. 5.3) e experimentos feitos em placa 

vertical com as imagens feitas com a câmera ajustada horizontalmente (Figs. 5.4). Neste 

últimos casos, pode-se distinguir a posição da resistência aquecedora em dois casos 

distintos, uma vez que as placas em sanduiche sejam mais longas que a resistência. 

Observa-se também na Fig.5.4 a cúpula em acrílico confeccionada para reduzir as 

perturbações externas no processo de convecção natural que ocorre junto às placas 

aquecidas. 

       
Figs. 5.3– Experimento de placa horizontal, com detalhe do  

dispositivo de posicionamento vertical da câmera e do porta-amostras. 

         
Figs. 5.4. – Experimentos de placa vertical, com detalhe do  

dispositivo de posicionamento horizontal da câmera e do porta-amostras. 
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Para os experimentos foram escolhidos dois conjuntos de corpos de prova 

diferentes, um par de placas de alumínio com espessura de 3 mm e de dimensões 4 por 4 

cm e um par de placas de baquelite de 1.58 mm e dimensões 4 por 8 cm (Figs.5.5). As 

superfícies receberam uma pintura em grafite (Graphit 33, Kontact Chemie) para que sua 

emissividade fosse aproximadamente uniforme e relativamente alta em toda a placa (ε ≈ 

0.97), minimizando os erros nas variações da emissividade. Nos experimentos com as 

placas de alumínio, apenas a face voltada para a câmera foi pintada com a tinta de graphite, 

enquanto a face oposta foi deixada com a textura original do alumínio polido. Nos 

experimentos com baquelite, ambas as placas foram pintadas com grafite, visando obter-se 

uma situação mais próxima à simetria. Observa-se também da Fig.5.5 que as placas de 

baquelite, na face em contato com a resistência elétrica, tem um filme de cobre depositado, 

também com dimensões 4x4 cm. 

Como referência para as medidas da câmera, bem como para validação da 

técnica experimental, utilizou-se de medidas de temperatura com termopares do tipo-K, 

afixadas com adesivo especial (Loctite com ativador) na superfície de cada placa, como 

mostrado em detalhe na Fig.5.5a. Em todos os casos foi utilizado um termopar de 

referência no topo da superfície exposta à câmera, método este preferido na correlação dos 

níveis digitais da câmera com a temperatura, tendo em visto a dificuldade de controlar a 

saturação da câmera quando se emprega um calibrador de corpo negro. Foram também 

fixados termopares do tipo-K na face oposta à câmera de modo a possibilitar comparações 

com as temperaturas medidas pela câmera, sendo um total de 5 termopares adicionais para 

o experimento com placas de alumínio e apenas 1 termopar para os experimentos com 

placas de baquelite. A Fig. 5.5b. mostra em detalhe a face interna das placas de baquelite, 

com um depósito de cobre de mesmas dimensões da resistência elétrica que será utilizada 

no aquecimento da placa com o objetivo de uniformizar o fluxo de calor fornecido. 

Utilizou-se no aquecimento das placas uma resistência com dimensões 4x4 cm 

e de 38.18Ω (medida com 4 fios e multímetro de 7 dígitos Agilent) isolada eletricamente 

com fita kapton (preparada pelo Prof. Saulo Gunths, UFSC), como mostrado na figura 5.6. 

Na montagem, a resistência foi colocada entre as duas placas untadas com pasta térmica 

para uniformizar o contato térmico. A resistência está ligada a uma fonte de corrente 

contínua eletronicamente controlada (marca INSTRUTHERM). A fixação deste conjunto 



 67

placa-resistência-placa se deu através de uma moldura em acrílico com aperto por 

parafusos, com braçadeiras nas extremidades da moldura para sustentação no suporte, como 

mostrado no detalhe da figura 5.7. Os corpos de prova de alumínio, como têm as mesmas 

dimensões da resistência e alta condutividade térmica, foram empregados para 

experimentos sem variação significativa espacialmente de temperatura, enquanto as placas 

de baquelite, com o dobro do comprimento da resistência e baixa condutividade térmica, 

oferecem experimentos com variação apreciável de temperatura ao longo do seu 

comprimento.  

 

 
Fig.5.5a. – Detalhe das placas de baquelite (4x8cm) 

com os termopares tipo K afixados. 

 

Fig.5.5b. – Detalhe da face interna das placas de 

baquelite, com depósito de cobre (4x4cm). 

 

 

 

 

 

Fig. 5.6. – Detalhe da resistência elétrica (4 x 4cm) 

com isolamento em filme kapton. 

  

 

Fig. 5.7. – Detalhe da fixação do conjunto placa-

resistencia-placa no experimento vertical 
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Em todas as configurações experimentais, o sistema de aquisição de dados 

utilizado foi baseado em microcomputador, na placa de recepção analógica da National 

Instruments e no sistema modular fabricado pela Agilent Technologies (modelo 34970-A) 

que faz a transferência dos dados para o computador via conexão RS232 com uma taxa de 

115Kbits/s, para a aquisição das temperaturas dos termopares e da voltagem na resistência 

(ver figura 5.8). O software utilizado na aquisição dos dados da câmera e dos termopares 

foi o LabView 7.0 da National Instruments. O painel frontal do programa construído e 

utilizado nos experimentos reportados no presente trabalho pode ser visto na figura 5.9.  

 

 

Fig. 5.8. – Sistema de aquisição de dados de 

temperatura e voltagem – Agilent 34970-A 

 

Fig. 5.9. – Painel frontal do programa de aquisição 

construído na plataforma LabView 7.0 

 

 

5.3. Procedimento Experimental 

 

O procedimento experimental inicia-se fixando o valor da voltagem a ser 

imposta na resistência com os fios desconectados de modo a não iniciar o processo de 

aquecimento das placas. Em seguida a fonte é desligada e os fios da resistência são então 

conectados a fonte. A aquisição das imagens e das temperaturas dos termopares é então 

simultaneamente iniciada. Após um certo número de medidas iniciais utilizadas para definir 

a temperatura ambiente média no começo do experimento, inicia-se o aquecimento do 

corpo de prova em questão pelo ligamento da fonte já fixada previamente na voltagem 

desejada. O aumento da temperatura da placa pode ser acompanhado na tela do computador 
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pelas curvas de temperatura dos termopares que estão sendo aquisitados, assim como pelas 

imagens da câmera, que mostram qualitativamente o aquecimento do corpo de prova. As 

figuras 5.10 a 5.12 ilustram as imagens aquisitadas pela TermoVision A-10, no momento do 

ligamento da fonte, Figs.5.10, três minutos após o ligamento da fonte (Figs.5.11), quando já 

pode-se observar o posicionamento da placa e do termopar, e a última imagem aquisitada 

em cada experimento, já no regime permanente (Figs.5.12). A sequência à esquerda 

(Figs.5.10.a, 5.11.a, e 5.12.a) referem-se ao aquecimento superior, ou seja quando a 

resistência está posicionada na parte superior do sanduíche de placas, enquanto a seqüência 

à esquerda refere-se ao aquecimento inferior, onde a fita de alumino identifica o final da 

placa. 

Uma vez atingido o regime permanente, e aquisitado por tempo suficiente, o 

sistema de aquisição é encerrado e a fonte é então desligada. Os arquivos de temperatura 

dos termopares e das imagens da câmera são devidamente identificados e salvos para 

futuras comparações com resultados de simulação e/ou solução dos problemas inversos 

correspondentes. 

 

 

Fig. 5.10.a. – Imagem antes de ligar a fonte, no 

experimento horizontal aquisitada pela câmera; 

 

Fig. 5.10.b. – Imagem antes de ligar a fonte, no 

experimento vertical aquisitada pela câmera; 
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Fig. 5.11.a. – Imagem no momento seguinte ao 

ligamento da fonte, no experimento horizontal 

aquisitada pela câmera; 

 

Fig. 5.11.b. – Imagem no momento seguinte ao 

ligamento da fonte, no experimento vertical 

aquisitada pela câmera; 

 

Fig. 5.12.a. – Imagem do experimento horizontal 

aquisitada pela câmera de infravermelho, durante 

o aquecimento 

 

Fig. 5.12.b. – Imagem do experimento vertical 

aquisitada pela câmera de infravermelho, durante 

o aquecimeto 

 

 

5.4. Tratamento de Dados 

 

As imagens da câmera de infravermelho são salvas no formato “JPEG”, e são 

então lidas e tratadas por um código computacional construído no presente estudo na 

plataforma Mathematica 6.0. As imagens são tratadas como matrizes de “digital level”, em 

valores que variam de -255 a 255. Para converter a informação em digital level para 

temperatura em graus Celsius, é necessário um ponto de referência na imagem sobre o qual 

se tenha a informação da variação do digital level no tempo, assim como a informação sobre 
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a variação no tempo da sua temperatura. Para realizar esta correlação entre digital level e 

temperatura é necessário que ambas as informações retratem o mesmo tempo físico, ficando 

claro nesta etapa do tratamento das imagens a importância da sincronização das medidas da 

câmera e do sistema de aquisição (Agilent). A correlação entre estas duas quantidades se dá 

a cada tempo e em termos da temperatura em graus Kelvin à quarta potencia, uma vez que o 

detector micro-bolométrico produz um sinal proporcional ao fluxo de calor por radiação 

sobre ele incidente:  

 

radDL q∝  (5.1) 

 

A equação (5.2) abaixo representa o fluxo de calor por radiação que emana da 

placa aquecida a cada posição na superfície da placa: 
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Deve-se lembrar que nos experimentos abordados pelo presente trabalho 

utilizou-se uma tinta de grafite com emissividade próxima de , 0.97x yε ≈ , para reduzir a 

parcela refletida da radiação térmica, que poderia se tornar relevante em temperaturas mais 

baixas (próximas ao valor da temperatura ambiente); deste modo, para os nossos 

experimentos, pode-se dizer que a refletividade é de aproximadamente , 0.03x yρ ≈ . 

Entretanto, na correlação aqui proposta entre temperatura e digital level, não se assume a 

priori o conhecimento do valor numérico dessa emissividade, uma vez que se emprega um 

termopar de referência ao longo do processo transiente de medição. 

A parcela da radiosidade que deixa um elemento de área da superfície da placa 

e chega à câmera é função do fator de forma de cada elemento de área em relação ao 

detector da câmera, e de acordo com a relação de reciprocidade (5.3), tem-se que: 

 

( , ) , ( , )cam cam x y x y x y camA F A F− −=  (5.3) 
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A correlação entre o digital level de qualquer posição na placa, o digital level 

da posição do termopar de referência e das respectivas temperaturas em graus Kelvin, pode 

então ser escrita na forma dada pela equação (5.5): 
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( ) ( ) (1 )

cam x y x y x yx y

ref cam ref ref ref ref

F T x y t TDL t

DL t F T t T

ε σ ε σ

ε σ ε σ

− ∞

− ∞

+ −
=

+ −
 (5.5) 

 

Para a situação de , 1x yε ≈ , a parcela refletida costuma ser desprezada, e tem-se 

que a equação (5.2) pode ser escrita como: 

 

4
,( , , ) ( , , )rad x yq x y t T x y tε σ=  (5.6) 

 

Neste caso, a equação (5.5) pode fornecer uma relação entre o produto do fator 

de fator de forma de cada posição na placa pela sua respectiva emissividade com relação aos 

respectivos valores dos digital level na condição inicial conhecida, ( , , )T x y t T∞≈ : 

 

, ( , ) ,(0)

(0)
x y x y cam x y

ref ref cam ref

DL F

DL F

ε

ε

−

−

=  (5.7) 

 

Em geral a câmera é utilizada a uma distância suficientemente grande da placa 

para que os fatores de forma tenham valores relativamente uniformes, e as diferenças de 

digital level na condição inicial acabam sendo provenientes das diferenças de emissividades 

locais. 

Entretanto, com a finalidade de eliminar ruídos e a influência de variações das 

condições ambientais, decidiu-se filtrar a imagem correspondente à condição inicial para 

modificar as imagens a serem correlacionadas com a temperatura. Ao subtrair de cada 

imagem aquela representativa da condição inicial, tem-se a eliminação dos pixels que 
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permaneceram inalterados nas imagens ao longo do período transiente do experimento e, 

deste modo, segregando a parcela da imagem de maior interesse. Assim, o digital level 

filtrado torna-se proporcional ao fluxo de calor incidente filtrado: 

 

( , , ) ( , ,0)cam camDLS q x y t q x y∝ −  (5.8) 

 

Reescrevendo a correlação entre o digital level de qualquer posição na placa, o 

digital level da posição do termopar de referência e das respectivas temperaturas em graus 

Kelvin tem-se: 

 

( )
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4 4
( , ) ,,

4 4

( , , )( )

( ) ( )

cam x y x yx y

ref cam ref ref ref

F T x y t TDLS t

DLS t F T t T

ε

ε

− ∞

− ∞

−
=

−
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Fazendo uso da equação (5.7) tem-se: 

 

( )
( )

4 4

, ,

4 4

( , , )( ) (0)

( ) (0) ( )
x y x y

ref ref ref

T x y t TDLS t DL
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∞
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−
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−
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Logo, a partir da equação (5.10) chega-se à forma empregada para correlação 

dos sinais em digital level filtrados, com os valores de temperatura para qualquer posição da 

placa em relação aos valores de digital level e temperatura da posição do termopar de 

referência: 

 

( ), 4 4 4
4

,

( ) (0)
( , , ) ( )

( ) (0)
x y ref

ref
ref x y

DLS t DL
T x y t T t T T

DLS t DL ∞ ∞= − +  (5.11) 

 

Todos os valores de temperatura acima são dados em graus Kelvin, e o 

resultado final é subtraído por 273.15 para fornecer a temperatura em cada ponto em graus 

Celsius. 
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Capítulo 6  

 

6. Resultados e Discussões 

 

No presente capítulo são apresentados os resultados obtidos para problemas 

diretos e inversos a partir das formulações apresentadas nos capítulos 3 e 4, bem como os 

resultados experimentais encontrados e as validações necessárias. 

A apresentação dos resultados inicia-se com a análise crítica da solução via 

transformada integral do problema de condução de calor unidimensional transiente, 

apresentado no capítulo 3, para três diferentes aplicações. Em seguida apresenta-se os 

resultados das estimativas das propriedades termofísicas e das condições de contorno em 

problemas teóricos através da abordagem Bayesiana via MCMC. E por último apresenta-se 

resultados de estimativa de propriedades termofísicas e condições de contorno a partir de 

resultados experimentais reais obtidos através de medidas termográficas. 

 

 

6.1. Problema Direto – Transformação Integral  

 

A abordagem proposta no capítulo 3 deste trabalho para solução do problema 

direto de condução de calor unidimensional transiente em meios heterogêneos foi 

implementada na plataforma Mathematica 5.2 [Wolfram (2005)], e alguns resultados 

representativos são aqui apresentados de modo a ilustrar o comportamento da convergência 

das expansões em autofunções do problema de autovalor original. A convergência da 

expansão dos coeficientes da equação também foi criticamente analisada e os resultados 

encontram-se apresentados logo a seguir. 

Foram, portanto, analisadas as três aplicações discutidas no capítulo 3, visando 

desafiar a metodologia proposta no tratamento de heterogeneidades, representadas pelas 
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variações espaciais dos coeficientes da equação de difusão de naturezas física e matemática 

bem distintas entre si. O primeiro exemplo, referente ao estudo de um FGM (Functionally 

Graded Material), retrata a situação física de um material projetado e fabricado para 

desempenhar mais de uma função (por exemplo, estrutural e térmica) em geral nas faixas 

extremas das propriedades físicas correspondentes. Nesse caso, os coeficientes da equação de 

difusão experimentam variações de até algumas ordens de grandeza ao longo da dimensão 

espacial. 

A figura 6.1 abaixo ilustra o efeito do parâmetro β no comportamento das 

propriedades termofísicas do primeiro exemplo de acordo com a eq.(3.70), relacionado à 

variação significativa do coeficiente de difusão no caso do FGM. Vale ressaltar, para o caso 

de β=3, a razão de aproximadamente 400 vezes entre os dois valores de ( )k x  nos contornos 

opostos.  

 

 
Figura 6.1 – Comportamento do coeficiente de difusão ( )k x  para o caso do FGM eq.(3.70) para:  

β= -3, -1, 1 e 3 

 

Resultados numéricos para os autovalores e para a distribuição da temperatura 

no exemplo do FGM são reportados a seguir, para os valores numéricos de β= -3, -1, 1 e 3, e 

para os valores de 0 10w =  e 0 1k = . Na geração destes resultados as equações dos 

coeficientes foram empregadas na forma analítica original eq.(3.70), sem expansão em termos 
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de autofunções. A tabela 6.1.a,b ilustra a excelente convergência dos primeiros 10 autovalores 

associados ao problema original, eq. (3.66) a (3.69), com variação dos coeficientes, ( )k x  e 

( )w x  dados pela equação (3.70). As diferentes colunas correspondem ao aumento na ordem 

de truncamento na expansão da autofunção original em termo das autofunções auxiliares, 

para: Ni=20, 30, 40 e 50. Deve-se notar que os dez primeiros autovalores estão completamente 

convergidos em seis dígitos significativos para o caso β=1 com 50 termos na expansão (tabela 

6.1.a.) e em cinco dígitos significativos para a situação mais critica de β=3 (tabela 6.1.b.). 

 

Tabela 6.1.a – Convergência dos dez primeiros autovalores para o caso do FGM (β=1) 

Autovalor 

µµµµi 
Ni=20 Ni=30 Ni=40 Ni=50 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.04258 

2.01194 

2.99712 

3.98643 

4.97738 

5.96918 

6.96145 

7.95403 

8.94680 

9.93973 

1.04258 

2.01193 

2.99711 

3.98641 

4.97736 

5.96915 

6.96141 

7.95398 

8.94674 

9.93964 

1.04257 

2.01193 

2.99711 

3.98640 

4.97735 

5.96914 

6.96140 

7.95397 

8.94673 

9.93963 

1.04257 

2.01193 

2.99711 

3.98640 

4.97735 

5.96914 

6.96140 

7.95396 

8.94672 

9.93962 

 

Tabela 6.1.b – Convergência dos dez primeiros autovalores para o caso do FGM (β=3) 

Autovalor 

µµµµi 
Ni =20 Ni =30 Ni =40 Ni =50 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.37371 

2.20190 

3.12789 

4.08578 

5.05739 

6.03623 

7.01911 

8.00481 

8.99207 

9.98090 

1.37368 

2.20182 

3.12777 

4.08558 

5.05716 

6.03589 

7.01875 

8.00426 

8.99150 

9.98001 

1.37367 

2.20180 

3.12774 

4.08554 

5.05711 

6.03582 

7.01868 

8.00416 

8.99139 

9.97987 

1.37367 

2.20179 

3.12773 

4.08552 

5.05709 

6.03580 

7.01865 

8.00412 

8.99135 

9.97982 

 

As figuras 6.2.a,b ilustram o comportamento transiente dos perfis de temperatura 

para três tempos adimensionais diferentes t = 0.01, 0.05 e 0.1, para as duas situações extremas 

consideradas β=3 e β= - 3, respectivamente. No primeiro caso, a propriedade termofísica 
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cresce aproximadamente 400 vezes na direção dos valores mais baixos das temperaturas, isto 

é, lado direito do gráfico, onde tanto a condutividade quanto a capacidade térmica estão 

significativamente aumentadas, e o efeito de resfriamento na direção do contorno x=1 é 

intensificado. No segundo caso, as propriedades termofísicas estão significativamente 

reduzidas na extremidade x=1, afetando sensivelmente o resfriamento. Deve ser chamada a 

atenção aqui, para o fato de que a difusividade térmica adimensional 0α  foi mantida a mesma 

para os dois exemplos, mas a condições iniciais são diferentes uma vez que esta é função do 

valor do parâmetro β no resultado em regime permanente, eq. (3.77). Além disso, com o 

propósito de validação, os resultados encontrados com a solução exata para a mesma forma 

funcional dos coeficientes aqui considerados, foram também traçados nos gráficos com 

símbolos. Pode-se observar em ambas as figuras a excelente concordância entre os resultados 

reportados via GITT com 50 termos na expansão e a solução exata, proveniente das eqs. 

(3.72) a (3.76) 

 

 
Figura 6.2.a – Comportamento físico e validação (GITT x Solução Exata) da distribuição de 

temperatura para o exemplo do FGM com β=3 

GITT 

Exata 
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Figura 6.2.b – Comportamento físico e validação (GITT x Solução Exata) da distribuição de 

temperatura para o exemplo do FGM com β= - 3 

 

O segundo exemplo propõe a analise de meios heterogêneos caracterizados pela 

união de diferentes materiais, com região de transição entre eles, quer pela interposição de um 

material de ligação ou pelo próprio processo de fabricação que resulta em uma fase de mistura 

entre os materiais. Nesse caso busca-se avaliar variações abruptas no comportamento espacial 

dos coeficientes no problema de difusão. 

A figura 6.3 ilustra o comportamento do coeficiente variável ( )k x  para o 

exemplo de duas camadas com zona de transição, para os valores de 1 1k = , 2 20k =  e 

0.3cx = , segundo as equações (3.82) e (3.84) e para diferentes valores do parâmetro γ  = 10, 

20, 100, 500 e 1000. Na escala da figura os dois últimos valores, γ  =  500 e 1000 produzem 

uma variação praticamente descontínua na propriedade termofísica. Deve-se chamar a atenção 

para o fato que existe solução exata para o problema de condução de calor de multiregiões 

com coeficientes constantes em cada região. Todavia, o problema aqui abordado não se trata 

de solucionar um problema descontínuo, o que exigiria um problema de autovalor 

descontínuo para ser formalmente correto [Mikhailov. & Ozisik (1984), Cotta & Nogueira 

GITT 

Exata 
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(1998)], mas sim solucionar um problema mais geral de propriedades variáveis quaisquer, 

entre outros exemplos, um problema com variação abrupta dos coeficientes. Esta aplicação é 

particularmente importante quando lida-se com a identificação de propriedades termofísicas 

nos casos onde a posição da interface entre diferentes materiais não é conhecida a priori e/ou 

existe uma região de transição onde se faz necessário estimar a variação da propriedade.  

 

 

Figura 6.3 – Comportamento do coeficiente de difusão ( )k x  para o caso de duas camadas com região 

de transição, para γ  = 10, 20, 100, 500 e 1000 

 

As tabelas 6.2.a,b, ilustram a convergência dos dez primeiros autovalores para o 

problema de duas camadas com região de transição, para os valores de γ  =  100 e 500, 

respectivamente, para ordens de truncamento crescentes na expansão, Ni =30, 60, 90 e 120, 

com 
1 1k = , 

2 20k = , 0.3cx = , 
1 1w =  e 

2 4w = . Além disso, a última coluna ilustra o 

resultado para a solução exata do caso descontínuo de duas camadas apenas para referência, 

mas não como resultado benchmark a ser atingido, uma vez que formalmente não se pode 

recuperar exatamente tais valores com a abordagem de um problema de autovalor contínuo. 

Vale ressaltar que estes resultados até aqui apresentados ainda não utilizam  a expansão dos 

coeficientes em termos de autofunções, mas sim na sua forma analítica original como dada 

nas equações (3.82) e (3.83). O primeiro autovalor 0µ =0 foi omitido da tabela uma vez que 

ele é exatamente recuperado em todos os casos. Para a situação menos abrupta com γ  =  100 

e 
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(tabela 6.2.a), os 10 primeiros autovalores estão convergidos com 6 dígitos significativos para 

uma ordem de truncamento Ni=90 ou menor, enquanto que para o caso mais abrupto γ  = 500 

(tabela 6.2.b), é necessário empregar mais termos na expansão, Ni=120, para a garantir no 

mínimo 3 ou 4 dígitos convergidos nos autovalores. Pode-se observar ainda a tendência dos 

autovalores na direção dos resultados do problema descontínuo de duas regiões à medida que 

se aumenta γ .  

 

Tabela 6.2.a – Convergência dos autovalores para o caso de  

duas camadas com região de transição (γ =100) 

Autovalor 

µµµµi 
Ni=30 Ni =60 Ni =90 Ni =120 

Problema 

Descont. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5.69548 

10.0904 

16.9740 

20.2694 

27.9236 

30.6674 

38.4493 

41.3598 

48.6995 

52.2297 

5.69249 

10.0903 

16.9645 

20.2674 

27.9082 

30.6564 

38.4303 

41.3228 

48.6742 

52.1382 

5.69248 

10.0903 

16.9645 

20.2673 

27.9081 

30.6564 

38.4303 

41.3227 

48.6742 

52.1380 

5.69248 

10.0903 

16.9645 

20.2673 

27.9081 

30.6564 

38.4303 

41.3227 

48.6742 

52.1380 

5.21316 

10.0779 

15.6389 

20.1568 

26.0627 

30.2380 

36.4832 

40.3228 

46.8986 

50.4129 

 

Tabela 6.2.b – Convergência dos autovalores para o caso de  

duas camadas com região de transição (γ =500) 

Autovalor 

µµµµi 
Ni =30 Ni =60 Ni =90 Ni =120 

Problema 

Descont. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5.38136 

10.0791 

16.1432 

20.1674 

26.9008 

30.2779 

37.6438 

40.4352 

48.3439 

50.6907 

5.32149 

10.0785 

15.9615 

20.1623 

26.5920 

30.2577 

37.2041 

40.3739 

47.7844 

50.5246 

5.30854 

10.0784 

15.9227 

20.1614 

26.5274 

30.2544 

37.1147 

40.3648 

47.6730 

50.5034 

5.30481 

10.0784 

15.9115 

20.1612 

26.5090 

30.2535 

37.0893 

40.3623 

47.6416 

50.4977 

5.21316 

10.0779 

15.6389 

20.1568 

26.0627 

30.2380 

36.4832 

40.3228 

46.8986 

50.4129 

 

A figura 6.4 apresenta o comportamento da décima autofunção para o caso mais 

abrupto γ  = 1000, para diferentes ordens de truncamento Ni =30, 60, 90, 120. Pode-se 
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perceber que na escala do gráfico a décima autofunção neste caso severo está convergida já 

com Ni =60 termos, com melhor convergência para a primeira região ( x  < cx ). 

 

 

Figura 6.4 – Convergência da décima autofunção para exemplo de duas camadas com região de 

transição, paraγ  = 1000 

 

A figura 6.5 ilustra a excelente taxa de convergência da expansão em 

autofunções no cálculo do perfil de temperatura para o exemplo de duas camadas, novamente 

para o caso mais abrupto γ  = 1000, em três diferentes tempos t=0.001, 0.01, 0.05, com 

resultados convergidos em escala gráfica com Ni <30. 

A tabela 6.3 demonstra a excelente convergência da temperatura para ordens de 

truncamento crescentes na expansão, Ni =30, 60, 90 e 120 no caso mais abrupto do exemplo 

de duas camadas, com γ  = 1000, apresentando os valores de temperatura no contorno da 

segunda camada x=1, onde a convergência da autofunção é aparentemente mais lenta, e para o 

tempo t=0.01. Pode-se observar em todos os casos, inclusive para a solução exata descontínua 

de duas regiões, a convergência em seis dígitos para ordens maiores que i=6 na expansão das 

autofunções originais. No outro sentido, aumentando N, pode-se notar que o campo de 

temperatura encontra-se convergido em no mínimo quatro dígitos significativos mesmo para 

Ni=30 

Ni=60 

Ni=90 

Ni=120 
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Ni =30, concordando com a solução exata para o problema descontínuo também em quatro 

dígitos.  

 

 

Figura 6.5 – Convergência do perfil de temperatura para exemplo de duas camadas com região de 

transição, paraγ  = 1000 

 

Tabela 6.3 – Convergência da temperatura para o caso de duas camadas com região  

de transição, para (γ =1000) 

Ordem i Ni =30 Ni =60 Ni =90 Ni =120 
Problema 

Descont. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.578603 

0.521377 

0.403499 

0.402522 

0.401761 

0.401756 

0.401752 

0.401752 

0.401752 

0.401752 

0.401752 

0.578603 

0.521690 

0.403586 

0.402532 

0.401764 

0.401758 

0.401755 

0.401755 

0.401755 

0.401755 

0.401755 

0.578603 

0.521724 

0.403567 

0.402491 

0.401721 

0.401716 

0.401712 

0.401712 

0.401712 

0.401712 

0.401712 

0.578603 

0.521768 

0.403588 

0.402500 

0.401730 

0.401724 

0.401721 

0.401721 

0.401721 

0.401721 

0.401721 

0.578602 

0.521924 

0.403616 

0.402461 

0.401686 

0.401681 

0.401677 

0.401677 

0.401677 

0.401677 

0.401677 

 

O comportamento espacial a princípio arbitrário dos coeficientes do problema 

de difusão, pode requerer integrações numéricas no procedimento de transformação integral 

Ni=30 

Ni=60 

Ni=90 

Ni=120 
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aqui proposto, para geração das matrizes de coeficientes do problema de autovalor algébrico 

transformado. Para uma utilização muito intensiva deste procedimento de simulação direta, 

como por exemplo, nos processos de otimização associados ao problema inverso de 

identificação de propriedades termofísicas, pode ser computacionalmente interessante propor 

representações alternativas para os coeficientes que levem à integração analítica em todas as 

etapas do processo de transformação integral. Uma alternativa possível aqui investigada é a 

representação dos coeficientes, eles próprios, em termos de expansões em autofunções 

conhecidas. 

Em seguida é apresentada uma ilustração da convergência na representação 

dos coeficientes variáveis em termos de expansões em autofunções, para os exemplos de 

dupla camada com zona de transição e para o caso de variação randômica da propriedade 

termofísica. Por exemplo, as figuras 6.6.a,b ilustram o comportamento do coeficiente variável 

( )k x  para o caso de duas camadas, expandido em autofunções, com 1 1k = , 2 20k =  e 

0.3cx =  para diferentes valores do parâmetro γ, 20γ =  e 200γ = , respectivamente. Pode-se 

observar na figura 6.6.b que na escala gráfica 200γ =  produz uma variação da propriedade 

termofísica praticamente descontínuas.  

 

 
Figura 6.6.a – Comportamento do coeficiente de difusão variavel k(x) e sua expansão em autofunções 

para o caso de duas camadas com γ=20  

Nk=3 

Nk=9 

Nk=15 

γ =20 

Descontinua 
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Figura 6.6.b – Comportamento do coeficiente de difusão variavel k(x) e sua expansão em autofunções 
para o caso de duas camadas com γ=200 

 

No procedimento de expansão dos coeficientes em autofunções foi adotada 

uma função filtro linear que liga os dois valores extremos (0)k  e (1)k , (0)w  e (1)w , não 

levando em conta o conhecimento da posição da interface. O mesmo problema de autovalor 

auxiliar usado na expansão das autofunções originais foi empregado na expansão dos 

coeficientes k(x) e w(x), só que com condições de contorno de primeiro tipo, isto é: 

 

( ) 2 sin( )j jx xνΓ =ɶ   para   , 1,2,3,...j j jν π= =  (6.1) 

 

Para o caso menos abrupto da variação espacial da condutividade térmica, k(x), 

no exemplo de dupla camada, figura 6.6.a, a convergência da expansão deste coeficiente é 

alcançada, na escala gráfica, para ordens de truncamento bem baixas, como Nk= 6 e Nk= 9, e 

praticamente concordando com a curva original do coeficiente ( )k x . Para o caso mais abrupto 

de variação, figura 6.6.b, um número maior de termos na expansão deste coeficiente é 

necessário para recuperar apropriadamente o comportamento do coeficiente, como ilustrado 

Nk=30 

Nk=50 

Nk=70 

γ =200 

Descontinua 
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pela curva com Nk =70, que praticamente é coincidente com a curva da representação exata do 

coeficiente.  

Resultados similares foram obtidos e analisados para os coeficientes do exemplo 

de propriedades randômicas, como ilustrado abaixo nas Figuras 6.7.a,b para o coeficiente k(x), 

eq. (3.85), tomando k0=0.5, e Figuras 6.8.a,b para o coeficiente w(x), eq. (3.86), gerado para 

0w =0.5, com um ganho de G=0.2 e G=0.8.  

Um total de 40 pontos igualmente espaçados foi tomado ao longo do domínio 

para a geração das propriedades randômicas, enquanto os números randômicos em cada 

posição foram mantidos os mesmos nos dois casos com diferentes ganhos. Em oposição ao 

caso em [Lin (1992)], os dois coeficientes foram gerados de forma independente, para 

desafiar ainda mais o procedimento proposto. As ordens de truncamento para a expansão em 

autofunções dos coeficientes são ilustradas para Nk= Nw=20, 40 e 80.  

As mesmas tendências são observadas para o comportamento randômico dos 

dois coeficientes k(x) e w(x), claramente, o caso com menor ganho, G=0.2, apresenta um 

comportamento mais favorável de convergência, devido ao efeito de amortecimento nas 

amplitudes das oscilações, com os resultados para Nk=Nw=80 sendo completamente 

coincidentes com as curvas originais interpoladas que estão sobrescritos pelos resultados da 

expansão. Para o caso de maiores amplitudes nas variações randômicas, G=0.8, a curva para 

Nk=Nw=40 ainda apresenta desvios perceptíveis com relação à curva interpolada original, 

enquanto a curva para Nk=Nw=80 praticamente sobrescreve o gráfico para os coeficientes 

originais, exceto nas cristas mais acentuadas que podem ainda requerer alguns termos 

adicionais na expansão. 
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Figura 6.7.a – Comportamento do coeficiente difusivo variavel k(x) e da sua expansão em autofunções 

para o exemplo de propriedades randômicas com G=0.2 

 

 

Figura 6.7.b – Comportamento do coeficiente difusivo variavel k(x) e da sua expansão em autofunções 

para o exemplo de propriedades randômicas com G=0.8 
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Figura 6.8.a – Comportamento do coeficiente capacitivo variavel w(x) e da sua expansão em 

autofunções para o exemplo de propriedades randômicas com G=0.2 

 

 
Figura 6.8.b – Comportamento do coeficiente capacitivo variavel w(x) e da sua expansão em 

autofunções para o exemplo de propriedades randômicas com G=0.8 
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A solução do problema de autovalor obtida com os coeficientes expandidos é 

agora demonstrada, primeiramente considerando o exemplo de dupla camada, de novo com 

1 1k = , 2 20k = , 0.3cx = , 1 1w =  e 2 4w = , para γ =20 e 200. As Tabelas 6.4.a,b mostram os 

valores convergidos dos primeiros dez autovalores µi´s para diferentes ordens de truncamento 

nas expansões dos coeficientes, Nk e Nw, comparados nas duas últimas colunas com a solução 

obtida a partir dos coeficientes contínuos originais e com a solução exata do problema de 

autovalor descontínuo, aqui mostrado apenas como um caso limite. As expansões em 

autofunções do problema de autovalor original tiveram suas ordens de truncamento fixadas 

em Ni=50 para o caso de γ =20, e Ni=100 para γ =200, que são mais que suficientes para 

prover resultados convergidos para os primeiros dez autovalores aqui apresentados, como os 

anteriormente obtidos com a representação original dos coeficientes.  

Na Tabela 6.4.a, para o comportamento mais suave dos coeficientes, ordens de 

truncamento razoavelmente baixas (Nk=Nw=27) nas expansões dos coeficientes já fornecem 

quatro dígitos significativos de convergência nos primeiros dez autovalores, em comparação 

com os autovalores obtidos com integração numérica das representações originais dos 

coeficientes. Por outro lado, para a variação bastante abrupta com γ =200, mostra-se na 

Tabela 6.4.b que Nk=Nw=110 termos são necessários para chegar-se a quatro dígitos 

significativos completamente convergidos nestes mesmos dez primeiros autovalores.  

De novo, fica claro que os resultados na Tabela 6.4.b são mais próximos da 

solução exata do caso descontínuo, conforme a representação dos coeficientes se aproxima de 

valores constantes em cada camada, em contraste com o caso de γ =20. 

 

 

 

 

 

 

 

 

 



 89

Tabela 6.4.a – Influência da ordem da expansão dos coeficientes na convergência dos autovalores para o 

exemplo de duas camadas com γ=20. 

Autovalor 

µµµµi 
Nk=Nw=3 Nk=Nw=9 Nk=Nw=15 Nk=Nw=21 Nk=Nw=27 

Coeficientes 

Originais 

Problema 

Descont. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

7.86584 

12.0937 

18.1562 

24.1409 

30.0858 

36.0473 

42.0149 

47.9863 

53.9608 

59.9374 

7.56036 

11.0779 

18.1547 

23.6115 

29.2754 

35.0508 

40.8188 

46.6067 

52.3996 

58.1925 

7.58226 

11.1062 

18.1168 

23.4188 

29.1625 

35.0189 

40.7035 

46.5132 

52.2864 

58.0674 

7.58278 

11.1072 

18.1191 

23.4229 

29.1583 

35.0032 

40.6934 

46.5116 

52.2758 

58.0627 

7.58282 

11.1073 

18.1192 

23.4232 

29.1588 

35.0038 

40.6930 

46.5098 

52.2743 

58.0623 

7.58283 

11.1073 

18.1192 

23.4233 

29.1589 

35.0040 

40.6934 

46.5102 

52.2744 

58.0618 

5.21316 

10.0779 

15.6389 

20.1568 

26.0627 

30.238 

36.4832 

40.3228 

46.8986 

50.4129 

 

 

 

Tabela 6.4.b – Influencia da ordem da expansão dos coeficientes na convergência dos autovalores para o 
exemplo de duas camadas com γ=200. 

Autovalor 

µµµµi 
Nk=Nw=30 Nk=Nw=50 Nk=Nw=70 Nk=Nw=90 Nk=Nw=110 

Coeficientes 

Originais 

Problema 

Descont. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3.92070 

10.0070 

13.5127 

19.9172 

24.3117 

29.7991 

35.5958 

39.6450 

49.1208 

49.7108 

5.35783 

10.0756 

16.0994 

20.1566 

26.8147 

30.2606 

37.4502 

40.4020 

47.9772 

50.5804 

5.43630 

10.0800 

16.2970 

20.1772 

27.1049 

30.3167 

37.8105 

40.5349 

48.3633 

50.8729 

5.44375 

10.0805 

16.3147 

20.1793 

27.1299 

30.3214 

37.8416 

40.5439 

48.3998 

50.8906 

5.44380 

10.0805 

16.314 

20.1794 

27.1286 

30.3213 

37.8407 

40.5431 

48.4000 

50.8884 

5.44376 

10.0805 

16.3139 

20.1794 

27.1284 

30.3213 

37.8402 

40.5431 

48.3994 

50.8882 

5.21316 

10.0779 

15.6389 

20.1568 

26.0627 

30.238 

36.4832 

40.3228 

46.8986 

50.4129 
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Agora o caso de propriedades randômicas é examinado mais de perto, visando 

observar o comportamento da metodologia proposta no tratamento de coeficientes com 

inúmeras alterações no domínio espacial, como na situação física de sistemas dispersos sem 

controle de concentrações locais de fase dispersa e/ou como resultado de redistribuições 

aleatórias no processo de fabricação do material compósito. Iniciando-se pela ilustração do 

comportamento da convergência dos primeiros dez autovalores para uma ordem fixa na 

expansão dos coeficientes (Nk=Nw=60), mas com ordens crescentes na expansão em 

autofunções do problema original (Ni < 150). O objetivo é demonstrar que o procedimento 

proposto é capaz de chegar à convergência nos autovalores de um caso como este de 

coeficientes variáveis randômicos para o pior caso de ganho G=1, dentro de valores razoáveis 

das ordens de expansão. Como pode ser observado na Tabela 6.5 abaixo, pelo menos quatro 

dígitos significativos estão completamente convergidos nos primeiros dez autovalores, na 

presente faixa de ordens de truncamento da expansão em autofunções do problema original 

(Ni). 

 

 

Tabela 6.5 –.Convergência dos dez primeiros autovalores para o exemplo de propriedades randomicas 

com G=1 e Nk=Nw=60. 

Autovalor 

µµµµi 
Ni=30 Ni =50 Ni =70 Ni =90 Ni =110 Ni =130 Ni =150 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2.90236 

5.23446 

8.10146 

11.0150 

14.2056 

18.0474 

21.7988 

23.8719 

26.1803 

28.0210 

2.81658 

5.10402 

7.98014 

10.7348 

13.7055 

17.5089 

21.3903 

22.7118 

25.4689 

27.1340 

2.79154 

5.02386 

7.92516 

10.6866 

13.5243 

17.4113 

21.3198 

22.4950 

25.2843 

26.9713 

2.78586 

5.00907 

7.91856 

10.6733 

13.4471 

17.3497 

21.2922 

22.3415 

25.2324 

26.9298 

2.78378 

5.00218 

7.91641 

10.6694 

13.4149 

17.3335 

21.2888 

22.3052 

25.2139 

26.9163 

2.78283 

4.99923 

7.91562 

10.6673 

13.4000 

17.3257 

21.2873 

22.2910 

25.2064 

26.9121 

2.78251 

4.99836 

7.91551 

10.6667 

13.3948 

17.3232 

21.2869 

22.2843 

25.2034 

26.9104 
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Além disso, a influência das ordens de truncamento das expansões dos 

coeficientes (Nk e Nw)no comportamento dos autovalores é investigada, para as seguintes 

ordens selecionadas, Nk=Nw=20, 40, 60, e 80, e os coeficientes são dados nas Figuras 6.7.a,b e 

6.8.a,b, respectivamente para G=0.2 e 0.8. Os dez primeiros autovalores completamente 

convergidos são mostrados para as quatro ordens de truncamento nas Tabelas 6.6.a,b, 

enquanto a última coluna representa a solução exata para o caso de propriedades constantes 

tomando os valores médios efetivos ( 0 0.5k = , 0 0.5w = ), que correspondem a fazer G=0. 

Pode-se observar que o caso G=0.2 (Tabela 6.6.a) apresenta um comportamento mais 

acelerado da convergência, com cinco dígitos significativos completamente convergidos para 

Nk=Nw=80, e quatro dígitos mesmo em ordens muito menores (Nk=Nw=40). O caso G=0.8 

(Tabela 6.6.b) requer Nk=Nw=80 para convergência em três ou quatro dígitos. Também, os 

resultados para o caso G=0.2 estão muito mais próximos daqueles do caso de coeficientes 

médios, em comparação com os resultados do caso com maiores amplitudes (G=0.8). 

 

 

Tabela 6.6.a – Influência da ordem na expansão dos coeficientes na convergência dos autovalores para o 

caso de propriedades randomicas com G=0.2 e Ni=130. 

Autovalor 

µµµµi 
Nk=Nw=20 Nk=Nw=40 Nk=Nw=60 Nk=Nw=80 

Coeficientes  

Médios 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3.16555 

6.28652 

9.36202 

12.6601 

15.7812 

19.0825 

22.2211 

25.0214 

28.1124 

31.4528 

3.15678 

6.26833 

9.33868 

12.6152 

15.7351 

19.0163 

22.1142 

24.8849 

27.9357 

31.0315 

3.15695 

6.26858 

9.33895 

12.6163 

15.7352 

19.0168 

22.1176 

24.8881 

27.9379 

31.0302 

3.15686 

6.26838 

9.33878 

12.6160 

15.7347 

19.0160 

22.1168 

24.8868 

27.9368 

31.0296 

3.14159 

6.28319 

9.42478 

12.5664 

15.7080 

18.8496 

21.9911 

25.1327 

28.2743 

31.4159 

 

 

 



 92

Tabela 6.6.b – Influência da ordem na expansão do coeficiente na convergência dos autovalores para o 

caso de propriedades randomicas com G=0.8 e Ni=130. 

Autovalor 

µµµµi 
Nk=Nw=20 Nk=Nw=40 Nk=Nw=60 Nk=Nw=80 

Coeficientes  

Médios 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3.09140 

5.81296 

8.69607 

12.2436 

15.2666 

19.1082 

22.9467 

24.9176 

27.6446 

31.4090 

2.99458 

5.67551 

8.50171 

11.6288 

14.8153 

18.4638 

21.7388 

24.0072 

26.3021 

28.3980 

2.98961 

5.65526 

8.50780 

11.6549 

14.7007 

18.3620 

21.7486 

23.9370 

26.3031 

28.4054 

2.98921 

5.65416 

8.51193 

11.6589 

14.6916 

18.3454 

21.7476 

23.8987 

26.2804 

28.4077 

3.14159 

6.28319 

9.42478 

12.5664 

15.7080 

18.8496 

21.9911 

25.1327 

28.2743 

31.4159 

 

 

Finalmente, examinamos o comportamento da distribuição de temperaturas no 

meio com propriedades randômicas, como função do ganho G para os valores G=0, 0.2, 0.5, 

0.8 e 1, que governa a amplitude das variações dos coeficientes, mas mantendo os mesmo 

números randômicos em cada posição para os diferentes ganhos. As Figuras 6.9.a,b ilustram o 

comportamento do perfil de temperatura em dois tempos adimensionais diferentes, 

respectivamente, t=0.05 e 0.1. O caso-base G=0 provê resultados para a situação de 

propriedades constantes, quando as variações locais de propriedades são ignoradas e 

substituídas por um valor médio efetivo. Como podemos ver, as diferenças entre os casos de 

coeficientes constantes médios e variáveis, são mais significativas para valores crescentes de 

G e do tempo, e mais próximo ao contorno x=1, nesta aplicação em particular. Uma 

reprodução razoável da solução do problema heterogêneo real empregando valores efetivos só 

foi obtida para o caso moderado de G=0.2. 
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Figura 6.9.a – Distribuição de temperatura no tempo t=0.05 para o caso de propriedades randomicas 

com G=0, 0.2, 0.5, 0.8 e 1 

 

 

Figura 6.9.b – Distribuição de temperatura no tempo t=0.1 para o caso de propriedades randomicas 

com G=0, 0.2, 0.5, 0.8 e 1 
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6.2. Problema Inverso 

 

Esta seção está subdividida em subseções onde são apresentados os resultados 

para: (i) a estimativa da condutividade térmica variável em uma situação onde considera-se 

conhecida a variação da capacidade térmica; (ii) a estimativa simultânea de condutividade e 

capacidade térmica variáveis; (iii) a estimativa simultânea da condutividade e da capacidade 

térmica variáveis no campo transformado.  

A apresentação dos resultados inicia-se com as análises de pré-processamento de 

problemas inversos, com a análise de sensibilidade das soluções e em seguida as análises dos 

resultados de estimativas de parâmetros via inferência Bayesiana. 

 

 

6.2.1. Estimativa de Condutividade Térmica Variavel 

 

Esta subseção ilustra a aplicação da inferência Bayesiana através do Método de 

Monte Carlo via Cadeia de Markov (MCMC), [Kaipio e Somersalo (2004), Lee (2004), 

Gamerman e Lopes (2006), Migon e Gamerman (1999), Orlande et.al.(2008), Fudym et.al. 

(2008)], na estimativa da condutividade térmica variável em um problema unidimensional 

transiente de condução de calor em um meio heterogêneo, exemplificado por um meio de 

duas fases dispersas com variação abrupta das propriedades. 

O algoritmo de Metropolis-Hastings foi utilizado no procedimento de 

amostragem implementado na plataforma Mathematica 5.2. Com o objetivo de examinar a 

acurácia e a robustez do algoritmo de estimativa proposto, fez-se uso de temperaturas 

experimentais simuladas obtidas com a solução do problema direto para funções de 

distribuição de concentração e propriedades termofisicas prescritas e, em seguida, 

perturbando-se a solução exata com erros randômicos com distribuição Gaussiana, aditivos, 

não correlacionados e com um desvio padrão prescrito. As temperaturas simuladas utilizadas 

na análise inversa foram obtidas via transformada integral, geradas com alta precisão, 

enquanto que na solução do problema inverso foram usadas expansões de ordens mais baixas, 

com o objetivo de se evitar o chamado crime inverso [Kaipio e Somersalo (2004)]. Com o 

objetivo de testar e analisar a robustez da solução inversa, comparou-se a utilização de prioris 
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Gaussianas e prioris Uniformes não-informativas nas estimativas e, ainda, a utilização de 

diferentes correlações como informação a priori para a média das prioris normais.  

A formulação adimensional da equação de condução para este caso é dada por: 

 

( ) ,
( , ) ( , )

( ) [ ] 0 1, 0k x
T x t T x t

w x x t
t x x

∂ ∂ ∂
= < < >

∂ ∂ ∂
 (6.2.a) 

 

Com condições inicial e de contorno dadas por: 

 

( ,0) ( ), 0 1T x CI x x= < <                                                                 (6.2.b) 

( , ) ( , )
0, 0, 0

0 1

T x t T x t
t

x xx x

∂ ∂= = >
∂ ∂= =

                                   (6.2.c,d) 

 

Para a presente aplicação, a condição inicial foi randomicamente gerada entre 0 

e 1, como apresentada na figura abaixo, de modo a aumentar os gradientes de temperaturas 

locais e conseqüentemente a sensibilidade do problema de estimativa [Fudym et.al. (2008)]. 

 

3
0

3

( )
( ) 1 1

g x
CI x CI G

g
=

  
+ −  
  

 

Figura 6. 10.a – Condição inicial randômica adimensional para CI0 = 0.5  e G = 0.8 

 

Para a geração dos dados experimentais simulados empregados nas análises do 

problema inverso apresentadas nesta subseção, empregou-se os valores extraídos do trabalho de 

Kumlutas et.al.(2003) para o caso de um material compósito composto de uma matriz 
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polimérica (HDPE) e nanopartículas de óxido de alumínio (alumina), como apresentado na 

tabela 6.7. 

 
Tabela 6.7 – Valores utilizados na geração dos dados experimentais simulados, Kumlutas et.al.(2003). 

Comprimento adimensional L=1 

Concentração percentual de partículas em  x=0 φ0=0 

Concentração percentual de partículas em  x=L φL=45 

Propriedades da matriz polimérica (HDPE) ρm=968 kg/m3 

cpm=2300 J/kgC    

km=0.545 W/mC 

Propriedades das particulas (alumina) ρd=3970 kg/m3      

cpd=760 J/kgC            

kd=36 W/mC 

Modelo para a condutividade térmica efetiva Lewis- Nielsen (A=1.5; φm=0.637 ) 

Parametros da função de concentração de particulas  γ=25 

xc=0.2 

 

A distribuição espacial para a variação abrupta da concentração do particulado 

na matriz polimérica é governado pelo parâmetro γ de acordo com a forma funcional abaixo:  

 

0 0( ) ( ) ( )x Lx xx xφ φ φ φ δ== == + −  (6.3.a) 

( )

1
( )

1 cx x
x

e
γδ
− −

=
+

 (6.3.b) 

 

onde xc representa a posição de transição entre as regiões de baixa e alta concentrações de 

particulas.  

A partir da distribuição de concentração de partículas no domínio espacial, dada 

pela equação (6.3.a), que pode ser a princípio obtida por diferentes técnicas de medição, pode-

se deterministicamente obter a capacidade térmica ao longo da coordenada espacial pela 

teoria de misturas. Sendo assim, para esta primeira análise do problema inverso a ser 

apresentada nesta subseção, considerou-se conhecida a distribuição espacial de concentração 
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de partículas na matriz polimérica e, conseqüentemente, também conhecendo-se a capacidade 

térmica, ou seja, o coeficiente w(x),  que pode ser obtido pela seguinte expressão:  

 

1 (( ) 1) ( )
pd d

m pm

c
w x x

c

ρ
φ

ρ
= + −  (6.4) 

 

A figura 6.11 a,b ilustra o comportamento da distribuição de partículas 

empregada nas simulações subsequentes, além do correspondente comportamento da 

capacidade térmica adimensional de acordo com a equação (6.4), para o caso de γ=25 e 

xc=0.2. 

 

(a) 

 

 

(b) 

Figuras 6.11 – Comportamento espacial da concentração de particulas (a) e a capacidade térmica 

adimensional resultante (b), de acordo com os dados da tabela 6.7. 
 

Todavia, para a determinação da condutividade térmica, a informação sobre a 

fração volumétrica de partículas e a sua distribuição espacial não são suficientemente 
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informativas para previsão desta propriedade física, especialmente para altas concentrações, 

[Kumlutas et.al.(2003)]. 

Diversos modelos empíricos e teóricos tem sido propostos para predizer a 

condutividade térmica efetiva de um sistema de duas fases dispersas. Uma revisão e discussão 

detalhadas sobre a aplicabilidade de alguns destes modelos pode ser encontrada no trabalho de  

Kumlutas e Tavman (2006). Apresenta-se abaixo uma breve discussão sobre alguns destes 

modelos que serão relevantes nas análises inversas subsequentes. 

Como valores limites máximo e mínimo para a condutividade térmica efetiva, 

tem-se respectivamente as correlações para arranjos em paralelo e em série, que são dados 

pelas seguintes relações: 

 

1 1 1

(1

(1

) , modelo de condutividade em paralelo

) , modelo de condutividade em série

c m d

c m d

k k k

k k k

φ φ

φ φ− − −

= −

= −

+

+

 
(6.5.a,b) 

 

Um modelo mais simples de media geométrica para a condutividade térmica 

efetiva de compósitos também é apresentada na literatura, [Kumlutas e Tavman (2006)]: 

 

(1 )
c mdk k kφ φ−=  (6.5 c) 

 

Um dos modelos teóricos mais conhecidos na previsão da condutividade térmica 

efetiva é devido a Maxwell [Maxwell (1954)], na forma de uma solução exata para a 

condutividade de esferas homogêneas não-interativas e randomicamente distribuídas em um 

meio homogêneo: 

 

2 2 ( )

2 ( )
m md d

c m
m md d

k
k k k k

k
k k k k

φ
φ

 
=  

 

+ + −
+ − −

 (6.6) 

 

O modelo de Maxwell prevê a condutividade térmica efetiva razoavelmente bem 

para baixas concentrações de partículas, mas para regiões de altas concentrações de partículas, 

este modelo subestima os valores da condutividade.  Lewis e Nielsen (1970)  propuseram um 
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modelo que leva em consideração a forma e a orientação do material de enchimento para um 

sistema de duas fases. A expressão resultante é dada por: 

 

2

( / ) 1 11
, 1

1 ( / )
md m

c m
md m

k
k kAB

k onde B e
B k k A

φφ ψ φ
φψ φ

  
=        

− −+
= = +

− +
 (6.7a-c) 

 

Os valores de  A e φm são sugeridos por Lewis e Nielsen (1970) para um número variado de 

diferentes formas geométricas e orientações. Para esferas com acomodação randômica das 

partículas no meio, tem-se A=1.50 e φm=0.637. 

 Agari e Uno (1986) propuseram um outro modelo que leva em consideração de 

forma combinada os mecanismos de condução dados pelos modelos de arranjo em paralelo e 

em série, na forma: 

 

2 1log log (1 ) log( )c mdk C k C kφ φ= + −  (6.8) 

 

onde as constantes C1 e C2 são experimentalmente determinadas. Uma vez que este modelo 

apresenta dois parâmetros ajustados experimentalmente, em geral resulta em melhores 

concordâncias com os respectivos resultados experimentais disponíveis. As figuras abaixo 

ilustram o comportamento de alguns destes modelos para o presente trabalho, de acordo com 

os dados apresentados na tabela 6.7. A figura 6.12.a  apresenta em vermelho o modelo de 

arranjo em paralelo, e em azul o modelo em série, assim como o modelo de médias 

geométricas (curva verde) e os dois modelos de derivação teórica Maxwell (curva preta) e 

Lewis-Nielsen (curva cyan). A figura 6.12.b apresenta uma comparação mais detalhada entre 

os modelos de Maxwell e Lewis-Nielsen. Por fim o desvio na predição da condutividade 

térmica efetiva para estes dois últimos modelos é apresentado na figura 6.12.c. 
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(a) Modelo de arranjo em paralelo (vermelha), média geometrica (verde), Lewis-Nielsen (cyan), 

Maxwell (preta), arranjo em série (azul) 

 

(b) Lewis- Nielsen (cyan) e Maxwell (preta) 

 

(c) Desvio percentual entre o modelo de Lewis- Nielsen e o modelo de Maxwel. 

 

Figura 6.12 – Comportamento da condutividade témica efetiva de diferentes modelos. 
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As análises subseqüentes, sobre a solução direta do problema de condução de 

calor unidimensional transiente, foram feitas utilizando a técnica da transformada integral 

generalizada (GITT), empregando a expansão dos coeficientes, k(x) e w(x), em termos de 

autofunções como descrito no capítulo 3 e na seção 6.1 do presente trabalho. O problema de 

autovalor empregado na solução do problema descrito pelas eqs. (6.2) é dado por: 

 

2
( ) ,

( )
[ ] ( ) ( ) 0 0 1i

i ik x
d xd

w x x x
dx dx

ψ
µ ψ+ = < <                               (6.9.a) 

 

com condições de contorno dadas por:  

0 1

0, 0
( ) ( )i i

x x

d x d x

dx dx

ψ ψ

= =
= =                                (6.9.b,c) 

 

Com o intuito de demonstrar a aplicabilidade da presente abordagem, o 

problema auxiliar utilizado na solução do problema de autovalor apresentado acima baseou-se 

na escolha de coeficientes os mais simples possíveis, como k*(x)=1, w*(x)=1, e d*(x)=0, e 

mantendo as mesmas condições de contorno dadas pelas eqs.(6.9.b,c), resultando em: 

 

 0( ) 2 ( ), and ( ) 1, com , 0,1, 2...n n nx cos x x n nΩ = λ Ω = λ = π =ɶ ɶ             (6.10.a-c) 

 

Sendo assim, o procedimento de solução inversa adotado para esta parte do 

presente trabalho destina-se à estimativa apenas dos coeficientes da expansão em autofunções 

da condutividade térmica k(x), assim como dos dois valores da função nos contornos, 

utilizados na função filtro linear adotada no procedimento de expansão de k(x). Uma vez que 

considerou-se conhecia a concentração de particulas e consequentemente a capacidade 

térmica w(x), (eq.6.4). Desta forma, os parâmetros e o número de parâmetros a serem 

estimados são dados por: 

                 
0 1 2 3 , 2, , , , ,...,

k
P kx L Nx com N Nk k k k k k==

  = +  
=P  (6.11.a) 

onde,                           
1

( ) ( ) ( )
kN

f j j

j

k x k x x k
=

= + Γ∑ ɶ  (6.11.b) 
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Na abordagem inversa proposta, o número de termos usados na expansão da 

condutividade térmica, Nk, controla o número de parâmetros a serem estimados. Uma analise 

da convergência da expansão de k(x), para o caso do uso do modelo de Lewis-Nielsen dado 

pelas eqs.(6.7), é apresentado nas Figuras 6.13.a-c, para três diferentes ordens de truncamento, 

Nk = 4, 7 e 10. Pode-se observar que as três ordens de truncamento apresentadas nestas figuras 

são capazes de recuperar o comportamento característico da função de condutividade térmica. 

Todavia, o resultado para a ordem de truncamento mais baixa, Nk = 4, ainda apresenta alguma 

oscilação em torno da função exata, enquanto que para Nk = 10 pode-se observar uma 

concordância bem melhor entre a função expandida e a função exata.  

 

(a) Nk=4 

 

(b) Nk=7 

 

(c) Nk=10 

 

Figura 6.13. – Analise da convergencia da expansão da condutividade térmica para três diferentes 

ordens de truncamento da série: a) Nk=4, b) Nk=7, c) Nk=10.    
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Antes de se iniciar o procedimento de estimativa de parâmetros, procuorou-se 

avaliar a influência do número de parâmetros a serem estimados na solução do problema 

inverso, através da análise do determinante da matriz de sensibilidade JJT [ Beck e Arnold 

(1977); Ozisik e Orlande (2000)]. 

Analisou-se então, o determinante da matriz JJT

 para o caso da variação do 

número de parâmetros a serem estimados para um número fixo de medidas espaciais e uma 

freqüência fixa de medidas no tempo (figura 6.14.a). Em seguida analisou-se a variação do 

número de medidas espaciais para um número fixo de parâmetros (figura 6.14.b). 

A figura 6.14.a mostra a evolução no tempo do determinante da matriz de 

informação para um total de 20 mil medidas sendo Nx=200 ao longo do domínio espacial e 

Nt=100 no tempo. As três curvas correspondem a valores crescentes no numero de parametros 

NP=6, 9 e 12 que correspondem respectivamente a um número crescente de termos na 

expansão da condutividade térmica Nk = 4, 7 e 10, somados aos dois valores empregados na 

função filtro. 

Claramente, observa-se que o aumento gradual no número de parâmetros 

decresce consideravelmente o valor do determinante, como ilustrado pelos seus valores no 

final da escala no tempo, 7.8x10
-12

, 6.0x10
-24

, e 1.0x10
-38

, respectivamente para NP=6, 9 e 12. 

Com isso, tem-se que o aumento no número de parâmetros a serem estimados afeta 

sensivelmente o condicionamento do procedimento de estimativa.  

A figura 6.14.b apresenta o determinante para o caso de uma estimativa 

envolvendo NP=9 parâmetros, mas com um número variável de medidas igualmente 

espaçadas ao longo do domínio espacial (Nx=200, 100, 50 e 5, de baixo para cima). O valor 

mais baixo de Nx=5, foi considerado para avaliar o emprego de medidas tradicionais de 

temperatura com termopares, enquanto que os valores mais altos representam a aquisição das 

temperaturas através de técnicas de medidas como termografia por infravermelho. Observa-se 

que o valor do determinante da matriz de informação decresce quando reduz-se o número de 

medidas ao longo do domínio  (61x10
-24

, 1.4x10
-26

, 3.4x10
-29

, e 3.3x10
-38

, para Nx=200, 100, 

50 e 5, respectivamente). 

Na figura 6.14.c tem-se uma análise mais detalhada do comportamento do 

determinante da matriz de informação para a curva mais acima apresentada na figura 6.14.b, 
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com um número fixo de medidas ao longo do domínio espacial (Nx=200) e para uma 

frequencia fixa de medidas no tempo (∆t = 5x10
-4

), para o caso de uma estimativa envolvendo 

nove parâmetros (NP=9). Pode-se observar desta figura o efeito do crescimento do número de 

medidas no tempo (Nt=20, 50 e 100), resultando no aumento de apenas uma ordem de 

magnitude no valor do determinante (1.7x10-25, 2.7x10-24, and 6.0x10-24).  

 

 

(a) Nx=200, ∆∆∆∆t=0.0005,  

NP=6 (curva vermelha), NP=9 (curva azul) e NP=12 (curva preta) 

 

(b) NP=9 parametros, ∆∆∆∆t =0.0005  

Nx =200 (curva vermelha), Nx =100 (curva azul), Nx =50 (curva cyan), e Nx =5(curva preta). 
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(c) NP=9 parametros, Nx =200,  ∆∆∆∆t=0.0005 e  Nt=20, 50 e 100 

Figura 6.14.– Evolução do determinante da matriz de sensibilidade. 

 

Os dados experimentais simulados foram gerados com um desvio padrão de 1% 

do valor exato da temperatura calculada pela solução direta com NT=100 termos na expansão 

da tempertura, Ni=100 termos na expansão da autofunção original e Nk= Nw=20 termos na 

expansão das propriedades k(x) e w(x). Nas análises inversas realizadas subseqüentemente, 

foram utilizadas, todavia, Ni=NT=15 termos tanto na expansão da temperatura quanto na 

expansão da autofunção, de modo a evitar o chamado crime inverso [Kaipio e Somersalo  

(2004)]. 

Na expansão do coeficiente w(x), manteve-se o número de termos igual a Nw=20, 

de modo a garantir uma convergência de quatro dígitos significativos em sua representação. 

Baseado na análise do determinante da matriz de sensibilidade apresentada acima, 

considerou-se para a solução do problema inverso Nx=200 medidas espaciais e Nt=20 medidas 

no tempo, e adotou-se Nk=7 termos na expansão da condutividade térmica, de modo que o 

número de parametros a serem estimados foi de NP=9.  

Um aspecto relevante na utilização da expansão em autofunções dos coeficientes 

no procedimento de estimativa de parâmetros é a definição de valores máximos e mínimos 

para os coeficientes da expansão a serem estimados, a partir dos correspondentes valores 

máximos e mínimos da propriedade termofísica correspondente, 
maxk  e 

mink .  

A função de condutividade térmica usada na presente aplicação, em função dos 

parâmetros a serem estimados, é dada por: 
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0
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=
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que por sua vez pode ser reescrito na forma: 
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Operando com 
0

( ) ___

L

l x dxΓ∫ ɶ  em ambos os lados da equação acima, tem-se: 

 

0
0

0

( ) ( )

L
x L x

l l l x l

k k
k x k x dx g k f

L

= =
=
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onde, 

0

( )

L

l lg x x dx= Γ∫ ɶ  

0

( )

L

llf x dx= Γ∫ ɶ  

(6.13.b) 

 

(6.13.c) 

 

Assim, para um valor constante, mínimo ou máximo, de k(x) tem-se minbk k= ou maxbk k= . 

 

0
, 0( ) x L x

l b b x l l

k k
k k k f g

L

= =
=

− 
= − −  

 
 (6.14) 

 

Uma vez que os valores da condutividade térmica nos contornos não são 

conhecidos a priori, para maximizar ou minimizar os valores dos coeficientes transformados 

da equação (6.14), tem-se que levar em consideração o sinal dos coeficientes lg e lf .   
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Da análise da expressão acima, e com os valores dos coeficientes transformados, 

lg e lf , chega-se aos limites conservadores, superior e inferior, dos coeficientes da expansão, 

,maxlk
 
e ,minlk , na forma: 

 

para 0 min maxpar ( ; )x x L bl k k k k k= == → = = = : 

max min
,max

2 2( )

1
l

k k
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l
L

π

−
=

 

max min
,min

2 2( )

1
l

k k
k

l
L

π

−
= −  

(6.15.a) 

 

(6.15.b) 

para 0 min maximpar ( ; )x x Ll k k k k= == → = =  

max min
,max

2( )

1
l

k k
k

l
L

π

−
=  

(6.16.a) 

para min 0 maximpar ( ; )x L xl k k k k= == → = =  

 

max min
,min

2( )

1
l

k k
k

l
L

π

− −
=  

(6.16.b) 

 

Os parâmetros foram então estimados através do algoritmo de Metropolis-

Hastings, aceitando ou rejeitando, conjuntamente, os parâmetros candidatos a cada iteração. 

Para a estimativa dos intervalos de máximo e mínimo do coeficiente k(x) adotou-se como 

limite superior a condutividade da partícula, max ( ) dk x k=
 

e como limite inferior a 

condutividade da matriz, min ( ) mk x k= .  Poder-se-ia ter utilizado alguns dos modelos 

discutidos anteriormente como limites mínimos e máximos de modo a reduzir o intervalo de 

procura [kmin, kmax]. Todavia, no presente estagio de demonstração da ferramenta de estimativa 

aqui desenvolvida, preferiu-se usar intervalos mais dilatados. 
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Para a estimativa inicial dos coeficientes k(x), foram escolhidos valores de modo 

a considerar uma função inicialmente constante dada pelo valor médio entre os limites 

superior e inferior, max, min,
,

2

l l
inicial l

k k
k

+
= . 

Os dois primeiros parâmetros, 0xk =  e x Lk = , tem os seus valores máximos, 

mínimos e iniciais dados pelos coeficientes 
max ( )k x , 

min ( )k x , 
inicial ( )k x  avaliados em 0x =  e 

x L=  respectivamente. Os demais parâmetros, referentes aos coeficientes da expansão de 

k(x), têm os seus valores máximos e mínimos determinados a partir da expansão em termos 

das autofunções dos coeficientes máximo e mínimo, max ( )k x , min ( )k x , como mostrado 

anteriormente, e os seus valores iniciais são tomados iguais à metade do valor entre o 

parâmetro máximo e mínimo encontrado. O passo de procura utilizado no procedimento de 

geração dos parâmetros candidatos dentro do intervalo [mínimo,máximo] foi de 20% do valor 

exato do parâmetro.  

A tabela 6.8 apresenta os valores máximos, mínimos, iniciais e o passo de 

procura para os 9  parâmetros a serem estimados. 

 

Tabela 6.8 – Valores exatos, iniciais, passo de procura e limites maximos e minimos para o problema inverso 

de estimativa de condutividade térmica. 

Parametros Exato Inicial passo  kmin   kmax  

kx=0 1.0072 18.27 0.201 0.545 36 

kx=L 4.2070 18.27 0.841 0.545 36 

1k  1.0066 0 0.201 -31.921 31.921 

2k  0.01874 0 0.00375 -7.980 7.980 

3k  -0.2592 0 0.0518 -10.640 10.640 

4k  -0.2441 0 0.0488 -3.990 3.990 

5k  -0.1218 0 0.0244 -6.384 6.384 

6k  -0.009845 0 0.00197 -2.660 2.660 

7k  0.04450 0 0.00890 -4.560 4.560 
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Cinco casos foram analisados, correspondendo a diferentes informações a priori. 

No caso 1, considerou-se uma distribuição uniforme a priori, enquanto que no caso 2 a priori 

foi dada na forma de uma distribuição normal com média centrada no modelo de 

condutividade térmica de Lewis-Nielsen e um desvio padrão de 40% do valor da média.  No 

caso 3, similarmente ao caso 2, adotou-se uma priori normal centrada no modelo de Lewis-

Nielsen, mas com desvio padrão adotou-se um valor de 80% do valor da média. Os casos 4 e 

5 tratam de prioris normais com médias dadas pela correlação de Maxwell, respectivamente, 

com desvios padrão de 40% e 80% do valor da média. Espera-se para o caso 1 as piores 

estimativas, uma vez que a priori adotada neste caso é não informativa. Os casos 2 e 3 

empregam prioris Gaussinas centradas no mesmo modelo adotado na geração dos dados 

experimentais simulados, mas com valores para os desvios padrão relativamente altos, de 

modo a desafiar o algoritmo na estimativa da função de condutividade térmica. Não obstante, 

deve-se chamar a atenção para o fato de que uma vez que evitou-se o crime inverso, não é 

esperado a recuperação exata dos parâmetros empregados na geração dos dados experimentais 

simulados.  

Os casos 4 e 5 também desafiam a abordagem aqui adotada na solução do 

problema inverso, uma vez que a priori Gaussiana fornecida para estes dois casos baseia-se 

em um modelo para a condutividade térmica efetiva (Maxwell) diferente do modelo 

empregado na geração dos dados experimentais simulados (Lewis-Nielsen). Vale ressaltar que 

para baixas concentrações estes dois modelos predizem valores para a condutividade térmica 

razoavelmente concordantes, todavia para concentrações mais altas tem-se valores distintos 

para cada modelo, como foi observado na figura 6.12.c.  

Assumindo um período de aquecimento de 10 mil estados na cadeia de Markov, 

para um total de 50 mil estados em toda a cadeia, obteve-se a estimativas para os parâmetros 

em cada caso tomando-se a média amostral dos 40 mil estados restantes. A Tabela 6.9 abaixo 

sumariza as estimativas encontradas assim como os intervalos de confiança para um grau de 

confiança de 95% para os cinco casos analisados. 
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Tabela 6.9 – Parâmetros estimados para os cinco casos analisados 

(Caso 1: priori Uniforme;  Caso 2: priori Normal Lewis-Nielsen c/ 40% desvio padrão; 

Caso 3: priori Normal Lewis-Nielsen c/ 80% desvio padrão; Caso 4: priori Normal Maxwell c/ 40% desvio 

padrão;  Caso 5: priori Normal  Maxwell c/ 80% desvio padrão) 

P Exato Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 

kx=0 1.0072 
1.426 

[0.630, 2.775] 

1.075 

[0.7041, 1.487] 

1.163 

[0.655, 1.813] 

1.010 

[0.684, 1.390] 

1.063 

[0.644, 1.569] 

kx=L 4.2070 
6.921 

[1.950, 14.327] 

4.300 

[2.483, 6.424] 

4.646 

[2.199, 7.837] 

3.979 

[2.505, 5.576] 

4.538 

[2.373, 7.102] 

1k  1.0066 
0.307 

[-2.189, 3.207] 

0.957 

[0.356, 1.610] 

0.841 

[-0.279, 1.908] 

0.757 

[0.249, 1.261] 

0.655 

[-0.226, 1.510] 

2k  0.01874 
0.328 

[-0.068, 0.586] 

0.0185 

[0.0034, 0.033] 

0.018 

[-0.016, 0.049] 

0.0747 

[0.029, 0.121] 

0.067 

[-0.0013, 0.147] 

3k  -0.2592 
-0.336 

[-1.238, 0.663] 

-0.270 

[-0.452, -0.086] 

-0.293 

[-0.625, 0.048] 

-0.146 

[-0.248, -0.047] 

-0.169 

[-0.353, 0.0223] 

4k  -0.2441 
-0.487 

[-1.816, 0.706] 

-0.244 

[-0.419,-0.0582] 

-0.280 

[-0.596, 0.044] 

-0.180 

[-0.309, -0.05] 

-0.204 

[-0.437, 0.030] 

5k  -0.1218 
-0.511 

[-1.305, 0.288] 

-0.1216 

[-0.214,-0.0248] 

-0.113 

[-0.294, 0.0782] 

-0.107 

[-0.187, -0.029] 

-0.116 

[-0.274, 0.056] 

6k  -0.00985 
0.154 

[0.029, 0.271] 

-0.0101 

[-0.017,-0.0024] 

-0.00976 

[-0.027, 0.006] 

-0.0388 

[-0.064, -0.016] 

-0.031 

[-0.090, 0.023] 

7k  0.04450 
0.202 

[-0.167, 0.625] 

0.0453 

[0.013, 0.0795] 

0.0425 

[-0.024, 0.113] 

0.0088 

[0.0021, 0.016] 

0.0089 

[-0.005, 0.023] 

 

 

Claramente, o caso 1 apresenta o pior conjunto de estimativas, com um amplo 

intervalo de confiança, que por vezes nem inclui o valor exato, como para o caso do 

coeficiente 6k . O emprego de uma priori uniforme também leva a uma estimativa com pouca 

aderência, devido aos limites amplos empregados para os intervalos de mínimo e máximo, 

que poderiam ter sidos reduzidos fornecendo assim uma melhor informação ao procedimento 

de estimativa, como por exemplo com o emprego dos modelos em paralelo e em série na 

definição de limites mais estreitos.    



 111

Como esperado, os casos 2 e 3 apresentaram resultados bem mais próximos aos 

valores exatos, mesmo para o caso 3 onde foi empregado um desvio padrão relativamente alto 

para a distribuição a priori, resultando em intervalos de confiança mais amplos para os 

parametros estimados.  

Nos casos 4 e 5 o algoritmo ainda consegue corrigir o comportamento da função 

de condutividade, recuperando de forma razoavelmente acurada os parâmetros exatos. 

Todavia, um aspecto deve ser ressaltado com respeito às estimativas obtidas para o caso da 

escolha da priori normal centrada no modelo de Maxwell, embora os dois modelos de 

condutividade, Lewis-Nielsen e Maxwell, sejam localmente divergentes em no máximo 22%, 

após a transformação integral para expressar as duas funções em termos de autofunções, o 

desvio entre os coeficientes de cada expansão é bem maior, chegando à ordem de 300% de 

desvio. Este aspecto, não é imediatamente evidente através da simples comparação entre os 

dois modelos apresentado na figura 3.b, todavia, certamente é a principal razão para as 

diferenças encontradas nas análises inversas destes dois últimos casos. 

A figura 6.15.a apresenta os limites máximos, minimos, o valor inicial e a função 

de condutividade térmica a ser reconstruída pela solução do problema inverso. Enquanto isso, 

as figuras 6.15.b-f apresentam as condutividades térmicas estimadas em comparação com a 

função exata para cada um dos cinco casos aqui considerados, baseadas na estimativa dos 

nove parâmetros apresentados na Tabela 6.9. 

Estas figuras confirmam as observações feitas anteriormente baseadas nos 

resultados apresentados na Tabela 6.9. Pode-se observar ainda que a oscilação presente na 

reconstrução da condutividade térmica para o caso envolvendo a priori não-informativa (caso 

1), figura 6.15.b, é uma conseqüência da baixa concordância nas estimativas dos coeficientes 

da expansão com os valores exatos esperados. 

 A figura 6.15.c apresenta a melhor estimativa obtida (caso 2) e a figura 6.15.d 

apresenta as estimativas para o caso do aumento no desvio padrão da priori para 80% (caso 3), 

onde pode-se observar apenas um leve desvio na condutividade térmica estimada, quando 

comparada à função exata.  

Para os dois últimos casos, com priori dada pelo modelo de Maxwell, nota-se a 

tentativa de correção do modelo por parte do algoritmo, que distorce a função inicial na 
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tentativa de se aproximar da função exata, percebendo-se uma concordância um pouco melhor 

para as estimativas no caso com menor desvio padrão 40% (figuras 6.15.e-f) 

 

 
 

a)  Exata, inicial e limites min. max. b) Caso 1 

  

c)  Caso 2 d) Caso 3 

  

e)  Caso 4 f)  Caso 5 

Figura 6.15.– Condutividade térmica exata, chute inicial, limites máximo e minimos e a comparação entre 

a função exata e as funções estimadas para os 5 casos considerados. 

 

Finalmente, as figuras 6.16. e 6.17. ilustram a evolução das cadeias de Markov 

durante os 50 mil estados para os nove parametros nos casos 1 e 2, respectivamente. A partir 

da figura 6.16, que é relativa à priori não-informativa, e em vista dos limites superiores e 

inferiores bem amplos aqui propostos, pode-se notar a amplitude significativa das oscilações 

das cadeias. Por outro lado, as cadeias obtidas para o caso 2, onde prioris normais centradas 

no modelo de Lewis-Nielsen foram empregadas, tem-se uma menor amplitude de oscilação e 

uma completa convergência das cadeias mesmo antes de se alcançar os 50 mil estados. 
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Figura 6.16 – Evolução da cadeia de Markov para os 9 parametros no caso 1. 
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Figura 6.17 – Evolução da cadeia de Markov para os 9 parametros no caso 2. 
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6.2.2. Estimativa Simultânea da Capacidade Térmica e da 

Condutividade Térmica Variáveis 

 

Esta subseção apresenta a estimativa simultânea da variação espacial da 

capacidade e da condutividade térmicas em um problema unidimensional transiente de 

condução de calor em meios heterogêneos, aqui ilustrado para um sistema de duas fases com 

partículas dispersas em uma matriz polimérica. Empregou-se o método de Monte Carlo via 

Cadeia de Markov (MCMC), [Kaipio e Somersalo (2004); Gamerman e Lopes (2006); Migon 

e Gamerman (1999); Orlande et.al. (2008); Fudym et.al. (2008)], através da implementação, 

na plataforma Mathematica [Wolfram (2005)], do procedimento de amostragem de 

Metropolis-Hastings [Metropolis et.al. (1953); Hastings (1970)]. 

Para as análises que serão apresentadas nesta subseção considerou-se uma 

formulação unidimensional transiente para descrever o processo de condução de calor em 

uma região x∈[0,L] como a apresentada pelas equações (1) abaixo. A presente formulação 

inclui a variação espacial da capacidade e da condutividade térmicas, ( ) e ( ),w x k x  que por 

sua vez são responsáveis por carregar as informações relativas à heterogeneidade do meio:  

 

 

( )
( )( , ) ( , ) ( , )

( ) ( ) ( ) ( , ) , 0 ; 0
efm m

p m x

z z

h xT x t T x t q x t
x C x k x T x t T x L t

t x x L L
ρ ∞

∂ ∂∂  
= − − + < < > ∂ ∂ ∂ 

 

     (6.16.a) 
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0

( , )
0, 0m

x

T x t
t

x =

∂
= >

∂
             

( , )
0, 0m

x L

T x t
t

x =

∂
= >

∂
 

(6.16.b-d) 

 

 

A formulação adotada e descrita pelas equações (1) foi construída baseada na 

aproximação de parâmetros concentrados na direção transversal da amostra, sendo 

representativa do aparato experimental descrito no capítulo 5, para uma placa termicamente 

fina com fluxo de calor prescrito em uma das suas faces e perdas de calor por convecção na 

face oposta, conforme ilustrado na figura 6.18.  
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Figura 6.18– Esquema representative de um aparato experimental para determinação de 

propriedades termofísicas. 

 

Para este aparato experimental representativo, considera-se que as medidas de 

temperatura se dão pelo mapeamento na face oposta à aplicação do fluxo de calor, via 

termografia por infravermelho. Antes de efetuar a transformação integral do problema (6.16), 

uma solução filtro simplificada foi adotada com o objetivo de melhorar a convergência da 

expansão, na forma:  

*( , ) ( , )T x t T T x t∞= +                                                               (6.17) 

 

Outros filtros analíticos mais complexos poderiam ter sido adotados de modo a 

homogeneizar completamente a equação original (6.16.a), eliminando o termo fonte, mas a 

escolha da temperatura ambiente como filtro para este problema já apresentou resultados 

satisfatórios na presente análise demonstrativa da solução do problema inverso 

correspondente. A formulação filtrada é então dada por: 

 
* *

*( , ) ( , )
( ) ( ) ( ) ( , ) ( , ), 0 ; 0x

T x t T x t
w x k x d x T x t P x t x L t

t x x

 ∂ ∂ ∂
= − + < < > ∂ ∂ ∂ 

 (6.18.a) 
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 (6.18.b-d) 

onde, 

( ) ( , )
( ) ( ) ( ); ( ) ; ( , )

ef

p

z z

h x q x t
w x x C x d x P x t

L L
ρ= = =  

(6.18.e-g) 
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A solução exata para o problema (6.18) é então obtida via Transformada 

Integral Clássica [Mikhailov e Ozisik (1984); Cotta (1993)] e escrita como : 

 

2
( )́

0
1

( , ) ( ) ( ) ´i

t t t

i i

i

T x t T x g t e dt
µψ

∞
− −

=
∞= +∑ ∫ɶ                                                            (6.19) 

 

onde os autovalores µi e autofunções ( )i xψ  são obtidas do problema de autovalor que 

incorpora toda a informação sobre a heterogeneidade do meio, na forma:  

 

( ) 2
[ ( ) ] ( ( ) ( )) ( ) 0, [0, ]

d

dx

d xi
k x w x d x x x Li i

dx

ψ
µ ψ+ − = ∈                          (6.20.a) 

 

com condições de contorno dadas por: 

 

( )
,0 0

xid

dx
x

ψ
= =                                                                          (6.20.b) 

( )
,0

xid

dx
x L

ψ
= =                                                                          (6.20.c) 

 

Na solução do problema de Sturm-Liouville apresentado pelas equações 

(6.20.a-c) empregou-se a Técnica da Transformada Integral Generalizada GITT, através da 

proposição de um problema de autovalor, mais simples, e então da expansão da autofunção 

desconhecida em termos de uma outra autofunção conhecida [Cotta (1993)].  Também para os 

coeficientes da equação ( ) e ( )w x k x propõe-se a expansão em termos de autofunções 

conhecidas. Esta abordagem é particularmente vantajosa na avaliação das matrizes An,m e Bn,m. 

do sistema algébrico, uma vez que todas as integrais podem ser então expressas em termos de 

autofunções, permitindo a sua integração analítica.  

 Os coeficientes ( ) e ( )w x k x podem ser então escritos como nas equações 

abaixo, em termos de autofunções conhecidas e de uma função filtro, de modo a acelerar a 

convergência desta expansão nos contornos: 
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1

( ) ( ) ( ) ,f j j

j

w x w x x w
∞

=

= + Γ∑ ɶ                                    (6.21.a) 

1

( ) ( ) ( ) ,f j j

j

k x k x x k
∞

=

= + Γ∑ ɶ                                     (6.21.b) 

 

As funções consideradas desconhecidas nesta etapa do presente trabalho foram 

a capacidade térmica w(x), a condutividade térmica k(x), e o coeficiente de transferência de 

calor efetivo hef(x), que por simplicidade foi assumido uniforme. Todavia, como a abordagem 

adotada na solução do problema direto envolve a expansão destes coeficientes em termos de 

autofunções, as quantidades desconhecidas de fato são os coeficientes desta expansão, os dois 

valores nos contornos, de cada propriedade, empregados no procedimento de solução como 

função filtro, e o coeficiente de transferência de calor uniforme. Logo, o número e os 

parâmetros a serem estimados são: 

 

1 2 30 0 1 2 3, , , , ,

com 5

, , , ..., , , , , ,...,
w k

N

P w k

x L x L Nx x d

N N N

w w w w w w k k k k k k= == =
 
 

= + +

=P

 

(6.22) 

 

 

O problema inverso aqui ilustrado envolve a análise de uma variação abrupta 

da concentração de partículas envolvendo um sistema de duas fases dispersas. Com o objetivo 

de avaliar a acurácia e a robustez da proposta de solução do problema inverso, utilizou-se de 

dados de temperatura simulados ao longo do comprimento do domínio, no regime transiente. 

Tais medidas simuladas foram obtidas pela solução do problema direto  através da 

especificação das funções das propriedades termofísicas. As temperaturas simuladas foram 

então perturbadas com erros aditivos, Gaussianos, não-correlacionados de média zero e desvio 

padrão conhecido. Para a geração dos dados experimentais simulados e para as análises 

inversas subseqüentemente apresentadas empregou-se os valores apresentados na Tabela 6.10, 

que foram extraídos dos trabalhos de [Tavman, I.H., (1996); Kumlutas et.al. (2003)]. 
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Tabela 6.10 – Valores usados na geração dos dados experimentais simulados 

Comprimento  Lx=0.04 m 

Concentração volumétrica de particulas em x=0 φ0=0% 

Concentração volumétrica de particulas em x=Lx φL=45% 

Propriedades da matriz polimérica (HDPE) ρm=968 kg/m
3
 

Cpm=2300 J/kgC    

km=0.545 W/mC 

Propriedades das particulas (alumina) ρd=3970 kg/m
3
      

cpd=760 J/kgC            

kd=36 W/mC 

Modelo de condutividade térmica efetiva Lewis and Nielsen (A=1.5; φm=0.637 ) 

Parametros da função para descrever a 

concentração de particulas dispersas na matriz 

γ=25 

xc=0.2 

Coeficiente de tranferencia de calor efetivo  hef=16.7 W/m
2
C 

Parametros adotados na função do fluxo de calor  γ=100 

xc=0.5 

q0=0 

qL=598 W/m
2
 

Temperatura ambiente e inicial  T∞=23 C 

Espessura da placa Lz=0.003 m 

 

A distribuição espacial para a variação abrupta da concentração de partículas na 

matriz polimérica é governada pelo parâmetro γ de acordo com a forma funcional abaixo:  

 

0 0( ) ( ) ( )x Lx xx xφ φ φ φ δ== == + −  (6.23.a) 

( )

1
( )

1 cx x
x

e
γδ
− −

=
+

 (6.23.b) 

onde xc representa a posição de transição entre as regiões de baixa e alta concentração de 

partículas.  

A partir da distribuição de concentração de partículas na matriz polimérica ao 

longo do domínio, pode-se determinar por teoria de misturas a capacidade térmica w(x):  
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1 (( ) 1) ( )
pd d

m pm

C
w x x

c

ρ
φ

ρ
= + −  (6.24) 

 

Todavia, para a condutividade térmica a informação sobre a fração volumétrica 

de particulas e a sua distribuição espacial não são suficientemente informativas para previsão 

desta propriedade física, especialmente para altas concentrações, [Kumlutas et.al.(2003)]. 

Muitos modelos empíricos e teóricos tem sido propostos para predizer a condutividade 

térmica effetiva de um sistema de duas fases dispersas. Para a presente análise utilizou-se o 

modelo de Lewis-Nielsen, como apresentado na subseção anterior. 
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 (6.25.a-c) 

 

 

As figuras 6.19.a-c ilustram o comportamento da distribuição de concentração 

alem das funções de capacidade e condutividade térmicas empregadas na geração dos dados 

experimentais simulados. 

O fluxo de calor prescrito neste problema também foi considerado como tendo 

um comportamento abrupto na coordenada espacial, como dado pela equação (6.3), mas 

usando xc=0.5 Lx e o argumento γ =100, que praticamente reproduz uma função degrau. Os 

dois patamares da função fluxo de calor foram considerados como apresentado na tabela 6.10, 

q0=0 e qL=qw. Nesta fase do presente trabalho, qw não é estimado devido à dependência linear 

resultante com os demais parâmetros remanescentes na estimativa. Optou-se então por dividir 

os parâmetros pelo valor de qw , de modo que depois de se obter as estimativas, os parâmetros 

procurados são então multiplicados pelo valor de qw  e sua respectiva incerteza.  
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(c) 

Figura 6.19 – Variação espacial da (a) concentração de particulas na matriz, (b) capacidade térmica, (c) 
condutividade térmica, de acordo com os parametros apresentados na tabela 6.10. 

 

Na abordagem inversa proposta, a ordem de truncamento nas expansões da 

capacidade e da condutividade térmicas, Nw e Nk, controlam o número de parâmetros a serem 

estimados. Neste sentido, uma análise da convergência das expansões de w(x) e k(x), 

eqs.(23b,c), é apresentada nas figuras 6.20.a-c, para diferentes ordens de truncamento, Nw e Nk 

=4, 7 e 10. Pode-se observar que com o aumento da ordem de truncamento, melhora-se 

significativamente a concordância entre a função expandida e a função exata. Para a ordem de 

truncamento mais baixa, Nw e Nk =4, ainda percebe-se alguma oscilação em torno da função 

exata, mas para Nw e Nk =7 já se consegue uma boa aderência entre as funções expandidas e 

exatas, e para Nw e Nk =10 praticamente tem-se a concordância plena entre as funções. 
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 (a) Nw e Nk =4  
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(b) Nw e Nk =7 

0.00 0.01 0.02 0.03 0.04
x @mD0.0

0.5

1.0

1.5

2.0

2.5

kHxL @WêmCD

0.00 0.01 0.02 0.03 0.04
x @mD2.0 µ 106

2.1 µ 106

2.2 µ 106

2.3 µ 106

2.4 µ 106

2.5 µ 106

2.6 µ 106

2.7 µ 106
wHxL @Jêm3 CD

  

(c) Nw e Nk =10 

Figura 6.20 – Analise da convergência das expansões da condutividade e da capacidade térmicas 

(linha solida – função exata, linha pontilhada – função expandida)  

 a) Nw e Nk=4, b) Nw e Nk =7, c) Nw e Nk =10,    

 

Antes de se iniciar o procedimento de solução do problema inverso, analisou-se 

o determinante da matriz de informação JJT , para o caso de se variar o número de parametros 

envolvidos na estimativa para um número fixo de medidas espaciais e uma freqüência fixa de 

medidas no tempo (figura 6.21.a). Em seguida, avaliou-se o comportamento do determinante 

devido à variação do número de medidas ao longo do domínio espacial para um número fixo 

de parâmetros a serem estimados (figura 6.21.b). 

A figura 6.21.a mostra a evolução no tempo do determinante da matriz de 

informação para um total de 12 mil medidas sendo (Nx=40 ao longo do domínio espacial e 
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Nt=300 no tempo). As três curvas, de baixo para cima, representam um número crescente de 

parâmetros envolvidos na estimativa, NP=13, 19 e 25, que correspondem respectivamente a 

Nw e Nk = 4, 7 e 10 mais os dois valores dos contornos de cada propriedade presentes nos 

filtros das expansões, além de “d”. Claramente, com o aumento gradual no número de 

parametros, tem-se um decréscimo de algumas ordens de grandeza do valor do determinante, 

como ilustrado pelos seus valores no fim da escala temporal (1.7427×10
15

,  5.36019, e  

5.39711×10-23), respectivamente para NP=13, 19 e 25, afetando assim o condicionamento do 

processo de estimativa. 

A figura 6.21.b apresenta o comportamento do determinante da matriz de informação 

para um número variável de medidas espaciais igualmente espaçadas ao longo do domínio 

(Nx=160, 40 e 4, de cima para baixo), para o caso de uma estimativa envolvendo dezenove 

parâmetros, NP=19. O menor valor de Nx considerado refere-se a uma situação onde seriam 

empregadas técnicas de medida de temperatura tradicionais, como por exemplo termopares, 

enquanto que os valores mais altos representariam, por exemplo, o emprego de técnicas 

termográficas. O determinante da matriz de informação tem seu valor reduzido sensivelmente 

à medida que se tem uma redução do número de medidas espaciais, (1.4734×10
12

, 5.36019, e 

8.10324×10-48, para Nx=160, 40 e 4 respectivamente).  
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(a) Nx=40, ∆∆∆∆t=10s, NP=13 (curva superior), 19 (curva do meio) and 25 (curva inferior) 
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(b) NP=19, ∆∆∆∆t =10 s, Nx =4 (curva inferior), 40 (curva do meio), e 160 (curva superior) sensores. 

 

Figura 6.21 – Evolução do determinante da matriz de informação para diferentes números de medidas 

espaciais, temporais e número de parâmetros envolvidos nas estimativas:  

(a)  Nx=40 sensores, ∆∆∆∆t=10s, (NP=13, 19 e 25 parâmetros);  

(b) NP=19 parâmetros, ∆∆∆∆t =10 s e Nx =4, 40, e 160 sensores. 

 

Os dados experimentais simulados foram gerados com uma incerteza padrão no 

valor da temperatura de 0.1ºC, 0.5ºC e 1ºC, a partir da solução do problema direto computado 

com 50 termos na expansão da temperatura (NT=50) e 14 termos na expansão das 

propriedades (Nw= Nk=14). As análises inversas subseqüentes foram realizadas com 15 termos 

na expansão da temperatura, de maneira a evitar-se o chamado crime inverso [Kaipio e 

Somersalo (2004)]. Baseado nas análises de sensibilidade apresentadas anteriormente, 

realizou-se estimativas para os casos de  NP=13 e 19, respectivamente Nw = Nk =4 e 7 termos 

na expansões da capacidade e da condutividade térmicas, para o caso de Nx=40 medidas 

espaciais e Nt=300 medidas no tempo. 

Da mesma forma como apresentado na seção anterior, a definição dos limites 

máximos e mínimos é uma etapa crucial no procedimento de estimativa, uma vez que se tem 

uma informação física dos valores máximos e mínimos para as propriedades, e a partir destes 

valores define-se os limites superiores e inferiores para os coeficientes de suas respectivas 

expansões. Todavia, como os valores das propriedades nos contornos não são conhecidos, ou 

seja, são estimados juntamente com os demais parâmetros, faz-se necessário a definição 
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destes limites de maneira bem conservativa em função do índice de cada termo da expansão 

proposta, na forma: 

 

para  0 min maxpar ( ; )x x L bl k k k k k= == → = = = : 
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(6.26.b) 
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para min 0 maximpar ( ; )x L xl k k k k= == → = =  
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Para a estimativa dos intervalos de máximo e mínimo dos coeficientes de k(x) e 

w(x), adotou-se como limite superior a condutividade e a capacidade térmica da partícula,  

max max( ) e ( )d dw x w k x k= = ,
 
e como limite inferior a condutividade e a capacidade térmica 

da matriz polimérica, min min( ) e ( )m mw x w k x k= = .  Poder-se-ia ter utilizado alguns dos 

modelos anteriormente discutidos como limites mínimos e máximos de modo a reduzir o 

intervalo de procura [wmin, wmax] e [kmin, kmax], todavia, optou-se por trabalhar com intervalos 

mais dilatados de forma a desafiar o método e a abordagem aqui adotados. 

A estimativa inicial para os coeficientes de k(x) e w(x) foram escolhidos de 

modo a considerar uma função inicialmente constante dada pelo valor médio entre os limites 

superiores e inferiores para cada parâmetro. A tabela 6.11 resume os valores máximos, 

mínimos, iniciais e o passo de procura pelos parâmetros candidatos, para os 19  parâmetros a 

serem estimados. 
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 Tabela 6.11 – Valores exatos, iniciais, passo de procura e limites dos intervalos usados na solução inversa.  

Parâmetro Exato Inicial Passo  Pmin  Pmax 

hef
 

16.694 18.364 0.0334 10. 20. 

kx=0 0.54897 0.60386 0.00220 0.545 5.7856 

kx=L 2.2929 2.5221 0.00909 0.545 5.7856 

1k  0.10972 0.12069 0.000455 -0.9436 0.9436 

2k  0.00204 0.00225 4.1668x10
-6

 -0.2359 0.2359 

3k  -0.02825 -0.03108 0.000111 -0.3145 0.3145 

4k  -0.02661 -0.02927 0.000122 -0.1180 0.1180 

5k  -0.01328 -0.01461 0.0000443 -0.1887 0.1887 

6k  -0.00107 -0.00118 1.7004x10
-6

 -0.07864 0.07864 

7k  0.00485 0.00534 0.0000185 -0.1348 0.1348 

wx=0 
2.2288x10

6
 2.4517x10

6
 4457.56 2.226x10

6
 2.938x10

6
 

wx=L 
2.5823x10

6
 2.8405x10

6
 5161.94 2.226x10

6
 2.938x10

6
 

1w
 

25047.5 27552.2 50.516 -128155. 128155. 

2w
 

4370.18 4807.2 8.6067 -32038.7 32038.7 

3w
 

-2701.11 -2971.23 5.3624 -42718.2 42718.2 

4w
 

-4449.02 -4893.93 9.3753 -16019.3 16019.3 

5w
 

-3613.83 -3975.21 6.9235 -25630.9 25630.9 

6w
 

-1955.27 -2150.79 3.6800 -10679.6 10679.6 

7w
 

-512.218 -563.44 1.0244 -18307.8 18307.8 

 

Como informação a priori para as estimativas das propriedades, considerou-se 

que fosse possível ter uma medida da distribuição da concentração volumétrica de partículas 

ao longo do domínio espacial, assumindo que esta concentração poderia ter sido medida com 

um desvio padrão de até 20%  do valor exato, o que levaria a uma incerteza de mais de 50% 
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no seu valor absoluto (figura 6.22.a). Através das medidas de concentração seria então 

possível construir prioris para a capacidade térmica a partir da teoria de misturas e para a 

condutividade térmica a partir do emprego de algum dos modelos discutidos anteriormente, 

como por exemplo, Lewis-Nielsen. As prioris para os coeficientes das expansões de cada 

propriedade seriam então posteriormente determinadas a partir da expansão das prioris das 

propriedades. As figuras 6.22.b-c apresentam as propriedades obtidas para a distribuição de 

concentração com 20% de desvio padrão (linha sólida) e as suas respectivas expansões para 

um número de termos nas séries de Nw e Nk = 7 (linha pontilhada). 

Cinco casos testes, sumarizados na tabela 6.12, foram estudados de modo a 

validar e demonstrar a metodologia de solução proposta pelo presente trabalho. 

O caso 1 foi escolhido para validação do algoritmo implementado, uma vez que 

o número de termos na expansão para geração dos dados experimentais e na solução do 

problema inverso para este caso foram escolhidos iguais, ou seja, 15 termos na expansão da 

temperatura (NT=15) e 4 termos nas expansões das propriedades (Nw e Nk = 4, NP=13 

parâmetros). Para os casos 2 e 3, os dados experimentais simulados foram gerados com 50 

termos na expansão da temperatura e 14 termos na expansão das propriedades e uma 

distribuição da concentração com desvio padrão de 20%, mantendo-se para a solução do 

problema inverso um número de termos nas expansões da temperatura e das propriedades 

reduzido (NT=15 e Nw e Nk = 4, tal que NP=13 parâmetros). 

Para o caso 1, considerou-se então que as temperaturas teriam uma pequena 

incerteza, de 0.1ºC, e que as medidas da distribuição de concentração não teriam nenhum erro, 

de modo que as prioris normais para os coeficientes foi centrada nos seu respectivos valores 

exatos. Todavia, os desvios padrão considerados para as prioris normais das propriedades foi 

de 40% do valor exato. Já para o coeficiente de transferência de calor, pode-se ter quase 

sempre uma idéia da sua ordem de grandeza através de correlações disponíveis na literatura, e 

por isso considerou-se que seria possível oferecer uma priori normal também para este 

parâmetro, centrado no valor obtido por uma destas correlações. Para este primeiro caso de 

validação utilizou-se então para o coeficiente de transferência de calor uma distribuição 

normal centrada no seu valor exato e com um desvio padrão de 20% da sua média. 
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Figura 6.22 – Distribuições a priori: (a) distribuição da concentração para um desvio padrão de 20%  

(b) capacidade térmica e (c) condutividade térmica 

(Linha solida) propriedade calculada a partir de (a) e  (Linha pontilhada) propriedade expandida. 
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O caso 3 é essencialmente igual ao caso 2, aumentando-se contudo a incerteza das 

medidas de temperaturas para 0.5ºC. Os casos 4 e 5, por sua vez, levam em consideração a 

solução do problema inverso para um número maior de parâmetros (NP=19, com Nw = Nk = 7), 

mantendo-se uma incerteza na temperatura de 0.5ºC. A diferença entre estes dois últimos 

casos deve-se aos diferentes valores para o desvio padrão empregados em cada uma das 

analises.  

 

Tabela 6.12  – Definição dos dados de entrada para a solução do problema inverso.  

Dados Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 

NT, Nw, Nk 

 (dados simul.) 
15, 4, 4 50, 14, 14 50, 14, 14 50, 14, 14 50, 14, 14 

NT, Nw, Nk 

(sol.inversa) 

15, 4, 4 15, 4, 4 15, 4, 4 15, 7, 7 15, 7, 7 

NP 

(sol.inversa) 
13 13 13 19 19 

Passo 1% 1% 1% 1% 1% 

Desvio Padrão 

(concentração) 
Não Sim 20% Sim 20% Sim 20% Sim 20% 

Desvio Padrão 

(k, w, hef) 

40%, 40%, 

20% 

40%, 40%, 

20% 

40%, 40%, 

20% 

40%, 40%, 

20% 

40%, 20%, 

20% 

Incerteza Exp. 

(Temperatura) 
0.1 ºC 0.1 ºC 0.5 ºC 0.5 ºC 0.5 ºC 

 

 

Adotando-se um período de aquecimento de 10 mil estados para as cadeias de 

Markov, em um total de 50 mil estados para cada cadeia, tem-se que as estimativas dos 

parametros podem ser dadas pelas estatísticas amostrais dos 40 mil estados remanescentes. A 

tabela 6.13 sumariza estas estimativas encontradas para cada um dos parametros nos cinco 

casos analisados.   
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. Tabela 6.13 – Parametros estimados para os 5 casos analisado.  

P Exato Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 

hef
 

16.694 16.690 16.686 16.676 16.692 16.692 

kx=0 0.54897 0.55742 0.54552 0.55593 0.56523 0.57677 

kx=L 2.2929 2.3041 2.4129 2.4219 2.3023 2.3359 

1k  0.10972 0.10801 0.10061 0.09989 0.10723 0.10327 

2k  0.00204 0.00225 0.00231 0.00230 0.00205 0.00232 

3k  -0.02825 -0.02912 -0.02654 -0.02662 -0.02969 -0.03080 

4k  -0.02661 -0.02636 -0.03320 -0.03368 -0.02728 -0.02658 

5k  -0.01328 - - - -0.01275 -0.01351 

6k  -0.00107 - - - -0.00111 -0.00105 

7k
 

0.00485 - - - 0.00580 0.00589 

wx=0 
2.229×106 2.234×106 2.239×106 2.277×106 2.281×106 2.247×106 

wx=L 
2.582×10

6
 2.587×10

6
 2.5848×10

6
 2.573×10

6
 2.618×10

6
 2.595×10

6
 

1w
 

25047.5 24264.8 23953.3 22037.0 15923.9 22196.6 

2w
 

4370.18 4928.48 4983.48 3290.25 4892.01 5009.25 

3w
 

-2701.11 -3156.08 -2968.88 -3051.92 -2405.1 -2622.2 

4w
 

-4449.02 -5132.59 -5029.64 -3746.84 -4654.52 -4857.93 

5w
 

-3613.83 - - - -3912.02 -4337.8 

6w
 

-1955.27 - - - -2367.64 -2283.89 

7w
 

-512.22 - - - -610.09 -529.54 
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Como era esperado, o caso 1 apresentou as melhores estimativas uma vez que 

se tratava de um caso de validação do algoritmo computacional construído. Para os casos 2 e 

3 evitou-se o crime inverso e conseqüentemente os resultados das estimativas não estão tão 

aderentes aos valores exatos como no caso 1. Todavia, mesmo com o aumento da incerteza na 

temperatura de 0.1ºC para 0.5ºC, percebe-se que ainda sim tem-se uma boa estimativa dos 

parâmetros. Ambos os casos, 4 e 5, envolvem estimativas com uma incerteza na temperatura 

de 0.5ºC e um número maior de parâmetros e mesmo assim conseguem recuperar os valores 

dos parâmetros de maneira satisfatória, percebendo-se uma melhora na estimativa nos 

parâmetros referente à capacidade térmica para o caso 5, em que se utiliza de um desvio 

padrão reduzido para esta propriedade. 

As figuras 6.23 a 6.27 sumarizam a reconstrução das duas propriedades a partir 

dos parâmetros estimados apresentados na tabela 6.13 acima e comparam com a função exata 

(linha sólida preta), com a função exata expandida com mesmo numero de termos usado na 

estimativa inversa (curva solida vermelha) e a função resconstruida a partir das estimativas 

(curva pontilhada em azul), com os seus respectivos intervalos de 99% de confiança para cada 

uma das propriedades nos cinco casos analisados.  

As figuras 6.23.a-d vem confirmar graficamente o que já era esperado e que já 

havia sido observado anteriormente pela analise da tabela 4, de que o caso 1 tem a melhor 

aderência entre as funções exatas e estimadas. 

As figuras 6.24.a-d apresentam a comparação entre as funções exatas e 

estimadas para o caso 2, onde o crime inverso não foi cometido. Pode-se observar uma 

pequena divergência entre a função exata expandida e a função estimada próximo ao contorno 

x=Lx na estimativa da condutividade térmica, enquanto que na estimativa da capacidade 

térmica tem-se ainda uma boa concordância entre as funções.  
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                                                            (c)                                                                                    (d) 

 

Figuras 6.23.a-d –caso 1:  

a) k(x)       e     c) w(x) 

Função exata (linha sólida preta), função exata expandida com 4 termos (linha solida vermelha), função 

estimada com 4 termos (linha pontilhada azul); 

b) k(x)       e    d) w(x) 

Função exata (linha sólida preta),  função estimada com 4 termos (linha pontilhada azul) e intervalos com 

99%de confiança máximos e mínimos; 
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                                          (c)                                                                                                   (d) 

 
Figuras 6.24.a-d –caso 2:  

a) k(x)       e     c) w(x) 

Função exata (linha sólida preta), função exata expandida com 4 termos (linha solida vermelha), função 

estimada com 4 termos (linha pontilhada azul); 

b) k(x)       e    d) w(x) 

Função exata (linha sólida preta),  função estimada com 4 termos (linha pontilhada azul) e intervalos com 

99%de confiança máximos e mínimos; 
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Pelas figuras 6.25.a-d referentes ao caso 3, pode-se observar que novamente tem-se 

um pequeno desvio na estimativas da condutividade témica no contorno x=Lx e, além disso, a 

capacidade térmica tem um comportamento um pouco menos concordante do que no caso 2 próximo 

ao contorno x=0, contudo ainda apresentando um intervalo de confiança suficientemente amplo. 
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Figuras 6.25.a-d –caso 3:  

a) k(x)       e     c) w(x) 

Função exata (linha sólida preta), função exata expandida com 7 termos (linha solida vermelha), função 

estimada com 7 termos (linha pontilhada azul); 

b) k(x)       e    d) w(x) 

Função exata (linha sólida preta),  função estimada com 7 termos (linha pontilhada azul) e intervalos com 

99%de confiança máximos e mínimos; 
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As figuras 6.26.a-d, relativas ao caso 4, ilustram o comportamento das propriedades 

com 7 termos na série, que claramente oferecem uma melhor concordância com a função original 

(linha sólida preta). Para este caso, foi testado um desvio padrão relativamente alto 40%, de modo a 

desafiar a abordagem aqui proposta, e pode-se notar pela analise destas figuras que o resultado das 

estimativas conseguidas foram bem satisfatórios, mesmo para este caso mais severo. 
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Figuras 6.26.a-d –caso 4:  

a) k(x)       e     c) w(x) 

Função exata (linha sólida preta), função exata expandida com 7 termos (linha solida vermelha), função 

estimada com 7 termos (linha pontilhada azul); 

b) k(x)       e    d) w(x) 

Função exata (linha sólida preta),  função estimada com 7 termos (linha pontilhada azul) e intervalos com 

99%de confiança máximos e mínimos; 
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O caso 5, figuras 6.27.a-d, resulta em estimativas bastante acuradas mesmo para 

um número maior de parametros. Comparando as figuras 6.27.c e 6.26.c percebe-se a melhora 

das estimativas da capacidade témica para o caso 5 como uma consequência da redução do 

desvio padrão considerado para esta propriedade neste ultimo caso. A estimativa da 

condutividade térmica apresentou-se satisfatóriamente concordante em ambos os casos 4 e 5, 

enquanto que para o coeficiente de transferencia de calor efetivo obteve-se estimativas bem 

acuradas para todos os 5 casos analisados.  
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Figuras 6.27.a-d –caso 5:  

a) k(x)       e     c) w(x) 

Função exata (linha sólida preta), função exata expandida com 7 termos (linha solida vermelha), função 

estimada com 7 termos (linha pontilhada azul); 

b) k(x)       e    d) w(x) 

Função exata (linha sólida preta),  função estimada com 7 termos (linha pontilhada azul) e intervalos com 

99%de confiança máximos e mínimos; 
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6.2.3. Estimativa Simultânea da Capacidade Térmica e da 

Condutividade Térmica Variáveis no Campo Transformado 

 

Em seqüência à análise da seção anterior, buscou-se desafiar a metodologia de 

solução do problema inverso para estimativa simultânea das propriedades termofísicas, no 

tratamento de uma situação com variação acentuada das propriedades (FGM), na forma do 

comportamento exponencial com a variável espacial apresentada na seção de solução do 

problema direto, sem informação a priori da distribuição espacial das concentrações 

volumétricas das partículas. Tendo em vista a dificuldade encontrada na inversão a partir da 

utilização dos campos de temperatura, quer na qualidade das estimativas quer no custo 

computacional requerido ao se utilizar um grande número de sensores e medidas 

experimentais, surgiu a idéia de se empregar a temperatura transformada como medida 

experimental na expressão da versossimilhança. Desta forma, os dados experimentais 

referentes a todos os sensores seriam reduzidos a um conjunto bem menor de campos 

transformados, a cada medida na variável temporal. Ou seja, a transformação integral dos 

resultados experimentais disponíveis ao longo da variável espacial, permite a compactação dos 

dados em um número de campos transformados que seja suficiente para representar o campo 

de temperaturas garantindo convergência da expansão com erro inferior ao das próprias 

medidas experimentais. Assim, obteve-se a identificação de parâmetros pretendida, dentro dos 

limites de precisão desejados e a um custo computacional compatível com a dificuldade do 

problema tratado, como descrito a seguir. 

O problema físico a ser tratado diz respeito a uma placa térmicamente fina de 

espessura Lz=1mm sendo aquecida por uma resistência elétrica em uma das faces, em apenas 

uma porção xL
CONT 3x =  do seu comprimento total, Lx=12cm. Na face oposta considera-se 

uma perda de calor devido à convecção natural e radiação, e os demais contornos são 

considerados isolados. Modelou-se este problema físico como sendo um problema de 

condução de calor transiente unidimensional usando parâmetros concentrados na direção 

transversal, como formulado nas equações abaixo e apresentado esquematicamente na figura 

6.28. Para as análises inversas que serão apresentadas a seguir assumiu-se conhecido o fluxo 

de calor oriundo da potência dissipada na resistência “ infq ” e a variação espacial do fluxo de 
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calor ( )q x
 
e propõe-se fazer a estimativa simultânea da distribuição espacial da capacidade e 

da condutividade térmicas, da distribuição do coeficiente de transferência de calor efetivo e a 

dependência temporal do fluxo de calor, respectivamente, ( ), ( ) , ( ) , ( )efw x k x h x f t . 

 

 

 

 

 

 

 

 

Figura 6.28 – Modelo físico estudado na estimativa simultânea no campo transformado 

 

(6.28.a-d) 

 

(6.28.e-g) 

 

Analisando-se o termo de geração, tem-se que a dependência temporal do fluxo 

de calor, na forma paramétrica adotada, depende dos parâmetros , ,a b c  em que  “ c ” é  a 

fração do valor do fluxo de calor em regime permanente. As figuras 6.29.a-b abaixo fazem 

uma breve análise da influência destes valores no comportamento temporal do fluxo de calor. 
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Em ambas as análises, o parâmetro c assumiu o valor igual a 1, isso porque considerou-se que 

em regime permanente toda a potência dissipada pelo elemento de aquecimento (resistência 

elétrica) é fornecida à placa. A figura 6.29.a mostra, para um valor fixo do parâmetro “ a ”, a 

influência de três ordens de grandeza diferentes para o parâmetro “ b ”. A figura 6.29.b 

apresenta uma análise similar para um valor fixado de b, ou seja, o comportamento da função 

para três diferentes valores de “ a ”. 
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              Curva vermelha:      qinf  

Curva cyan:       a=0.7;      b=0.05;        c=1 ;  

Curva preta:       a=0.7;      b=0.005;      c=1 ; 

Curva azul:         a=0.7;      b=0.0005;    c=1 ; 

                     

                   Curva vermelha:      qinf    

Curva cyan:       a= 0;       b=0.005;      c=1 ;  

 Curva preta:     a=0.7;     b=0.005;      c=1 ; 

 Curva azul:      a=0.3;     b=0.005;       c=1; 

 
Figura 6.29.- Análise da dependência temporal do fluxo de calor; 

 

Para o termo de dissipação linear considerou-se a correlação do coeficiente de 

transferência de calor por convecção natural para fluxo de calor prescrito uniforme em placa 

plana horizontal, dada pelas eqs. (6.29.a-c) [Bejan (1993)], enquanto para a parcela da perda 

de calor por radiação considerou-se a aproximação de linearização dada pela equação 

(6.29.d), de modo que o coeficiente de transferência de calor efetivo apresentou a forma 

funcional em degrau da eq. (6.30), como ilustrado na figura 6.30.  
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Figura 6.30.- Comportamento espacial do coeficiente de transferência de calor efetivo (a)  

e do número adimensional de Biot (b); 
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Na presente análise do problema inverso considerou-se as propriedades 

termofísicas na forma de uma matriz polimérica (HDPE), com nanopartículas de óxido de 

alumínio (Al2O3) dispersas na matriz, onde a variação espacial de particulas é descrita pela 

forma funcional de uma exponencial, considerando que em x=0 tem-se apenas a matriz 

polimérica, ou seja 0% de partículas dispersas e em x=Lx tem-se 60% de concentração de 

particulas dispersas no meio.   

A matriz polimérica considerada tem capacidade e condutividade térmicas de 

3

6

mw 2.2264 10 J
m C

= ×
 
e mk 0.545W

mC= , respectivamente, enquanto que as partículas de óxido 

de alumínio tem propriedades dadas por 3

6

p
w 3.0172 10 J

m C
= ×

 
e p

k 36 W
mC= . Sendo assim, se 

utilizarmos a teoria de misturas para calcular a capacidade térmica e  a correlação de Lewis-

Nielsen [Lewis e Nielsen (1970)] para calcular a condutividade térmica, ambas sob uma 

concentração final de 60%, tem-se que em x=Lx a capacidade térmica é de 

3

6

x=Lxw 2.7008 10 J
m C

= ×
 
e a condutividade térmica é de x=Lx

k 9.078W
mC=

 
.  

Sob a forma funcional de uma exponencial dada pelas equações (6.31.a,b) 

abaixo tem-se que o comportamento espacial das propriedades pode ser verificado nas figuras 

6.31.a-c. 

 

 

0( ) [2 1 ]
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x
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 = − 
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=               

0( ) [2 1 ]

0.0966

x
w x w Exp
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β

 = − 
 
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(6.31.a-b ) 
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Figura 6.31.- Comportamento espacial do propriedades termofísicas 

(a)condutividade térmica; (b)capacidade térmica; (c)difusividade térmica; 

 

Como esta subseção trata de uma análise teórica de solução do problema 

inverso, utilizou-se de dados simulados de temperatura experimental ao longo do 

comprimento do domínio, no regime transiente. Tais medidas simuladas foram obtidas pela 

solução do problema direto através da especificação das funções e das distribuições das 
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propriedades termofísicas. As temperaturas simuladas foram então perturbadas com um erros 

Gaussianos aditivos, não-correlacionados de média zero e desvio padrão conhecido. Para a 

geração dos dados experimentais simulados e para as análises inversas subseqüentemente 

apresentadas, empregou-se os valores apresentados na Tabela 6.14. 

 

Tabela 6.14  – Valores usados na geração dos dados experimentais simulados 

tfinal 3 600s  ε 0.97 

Lx 0.12m a 0.7 

Ly 0.04m b 0.005 

Lz 0.001m c 1 

xCONT 0.04m T(x, t=0) Tamb=23.4ºC 
 

 

O perfil de temperatura resultante da solução do problema direto, com os valores 

dados pela Tabela 6.14, é apresentado nas figuras 6.32.a-b. Na figura 6.32.a tem-se a 

distribuição de temperatura para três diferentes posições na placa ao longo do tempo. Percebe-se 

que para toda a placa o regime permanente foi alcançado para tempos maiores que 1200 

segundos. A figura 6.32.b apresenta o comportamento espacial da temperatura para diferentes 

tempos e  pode-se observar o gradiente de temperatura que se forma ao longo da placa devido ao 

aquecimento desigual ao longo do seu comprimento. Para posições situadas próximas a  x=Lx, 

opostas à região do aquecimento (x=0 a x=xCONT), a placa permanece praticamente à temperatura 

ambiente. 

Antese de proceder à análise do problema inverso, realizou-se um estudo de 

convergência da solução direta via Tranformação Integral, através da analise da convergência 

da expansão da temperatura. As tabelas 6.15.a-c apresentam as temperaturas obtidas com até 

40 termos na expansão para três diferentes tempos (360s, 1200s e 3600s), respectivamente, 

em três diferentes posições da placa. Observando estas tabelas pode-se perceber uma 

convergência de até 4 dígitos significativos nos valores das temperaturas, para as posições e 

tempos analisados, com 40 termos na série.  

Todavia, a utilização desta ordem de truncamento no procedimento de solução 

do problema inverso levaria a um custo computacional desnecessáriamente alto. Desta forma, 

a ordem de truncamento empregada na solução do problema inverso foi escolhida de modo 



 144

que este número fosse suficientemente grande para garantir a convergência da expansão com 

um erro razoavelemente inferior ao das próprias medidas experimentais. 
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Figura 6.32.a – Distribuição de temperatura ao longo do tempo para diferentes posições da placa 
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Figura 6.32.b – Distribuição de temperatura ao longo da placa para diferentes tempos 

 

As figuras 6.33.a-c comparam graficamente a solução via Transformação 

Integral com 10 termos na expansão, com a solução obtida pela rotina do Mathematica, 

NDSolve, para três diferentes tempos, onde se percebe uma pequena oscilação da solução 

transformada para o tempos muito pequenos e uma melhor aderência entre as duas soluções 

para tempos maiores. 
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Tabela 6.15.a – Analise da convergência da expansão da temperatura para t=360s 

Ordem  x = 0 x = xCONT= Lx/3 x = Lx 

1 23.468 23.820 26.937 

2 23.982 26.360 17.496 

3 26.268 32.951 31.916 

4 38.054 44.944 12.185 

5 52.347 44.710 27.229 

6 54.572 42.529 22.997 

7 54.460 42.676 22.755 

8 53.699 43.367 24.260 

9 52.918 43.452 22.791 

10 52.486 43.141 23.653 

11 52.374 43.001 23.414 

12 52.453 43.097 23.247 

13 52.619 43.208 23.586 

14 52.776 43.187 23.267 

15 52.866 43.107 23.454 

16 52.883 43.086 23.419 

17 52.845 43.129 23.341 

18 52.783 43.164 23.470 

19 52.724 43.149 23.351 

20 52.691 43.117 23.420 

21 52.687 43.111 23.411 

22 52.705 43.131 23.373 

23 52.734 43.145 23.433 

24 52.761 43.136 23.379 

25 52.776 43.121 23.409 

26 52.776 43.120 23.407 

27 52.765 43.132 23.388 

28 52.748 43.138 23.414 

29 52.733 43.131 23.394 

30 52.726 43.123 23.401 

31 52.729 43.127 23.404 

32 52.740 43.134 23.396 

33 52.752 43.130 23.403 

34 52.757 43.124 23.401 

35 52.752 43.130 23.398 

36 52.742 43.132 23.402 

37 52.736 43.125 23.400 

38 52.740 43.129 23.399 

39 52.747 43.130 23.401 

40 52.750 43.126 23.400 
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Tabela 6.15.b – Analise da convergência da expansão da temperatura para t=1200s 

Ordem  x = 0 x = xCONT= Lx/3 x = Lx 

1 23.540 24.268 30.706 

2 24.425 28.643 14.440 

3 27.663 37.975 34.856 

4 42.716 53.293 9.6546 

5 60.282 53.006 28.143 

6 62.935 50.406 23.098 

7 62.804 50.578 22.814 

8 61.923 51.378 24.558 

9 61.024 51.476 22.867 

10 60.528 51.119 23.855 

11 60.399 50.959 23.582 

12 60.490 51.069 23.391 

13 60.679 51.196 23.777 

14 60.858 51.171 23.415 

15 60.960 51.081 23.627 

16 60.979 51.057 23.588 

17 60.936 51.106 23.499 

18 60.865 51.145 23.646 

19 60.799 51.128 23.510 

20 60.762 51.092 23.589 

21 60.756 51.085 23.578 

22 60.777 51.108 23.536 

23 60.810 51.124 23.603 

24 60.840 51.113 23.542 

25 60.857 51.096 23.575 

26 60.858 51.095 23.574 

27 60.846 51.109 23.552 

28 60.826 51.116 23.581 

29 60.809 51.107 23.558 

30 60.801 51.098 23.567 

31 60.804 51.103 23.570 

32 60.817 51.111 23.561 

33 60.831 51.107 23.569 

34 60.836 51.100 23.566 

35 60.831 51.106 23.564 

36 60.819 51.109 23.568 

37 60.812 51.101 23.566 

38 60.817 51.106 23.565 

39 60.825 51.107 23.567 

40 60.829 51.102 23.566 
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Tabela 6.15.c – Analise da convergência da expansão da temperatura para t=3600s 

Ordem  x = 0 x = xCONT= Lx/3 x = Lx 

1 23.550 24.329 31.224 

2 24.457 28.809 14.570 

3 27.714 38.200 35.114 

4 42.820 53.571 9.8255 

5 60.436 53.283 28.367 

6 63.095 50.676 23.309 

7 62.964 50.849 23.025 

8 62.081 51.650 24.772 

9 61.180 51.749 23.078 

10 60.684 51.391 24.068 

11 60.555 51.231 23.794 

12 60.645 51.341 23.603 

13 60.835 51.468 23.990 

14 61.014 51.444 23.627 

15 61.116 51.353 23.840 

16 61.135 51.329 23.800 

17 61.093 51.378 23.711 

18 61.021 51.417 23.858 

19 60.955 51.400 23.722 

20 60.917 51.364 23.801 

21 60.912 51.357 23.791 

22 60.933 51.380 23.748 

23 60.966 51.396 23.815 

24 60.996 51.386 23.754 

25 61.013 51.368 23.788 

26 61.014 51.367 23.786 

27 61.002 51.381 23.764 

28 60.982 51.388 23.794 

29 60.965 51.380 23.771 

30 60.957 51.370 23.780 

31 60.960 51.375 23.783 

32 60.973 51.383 23.774 

33 60.987 51.379 23.782 

34 60.992 51.372 23.779 

35 60.987 51.379 23.776 

36 60.975 51.381 23.780 

37 60.968 51.373 23.778 

38 60.973 51.378 23.777 

39 60.981 51.379 23.779 

40 60.985 51.375 23.778 
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(b) t=360s; 
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(c) t=3600s; 

Figura 6.33– Analise da convergência da temperatura via Transformação Integral e Método das Linhas 

(NDSolve) para (a) t=36s;      (b) t=360s;   (c) t=3600s 
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Como discutido nas análises inversas apresentadas nas subseções anteriores, a 

ordem de truncamento assim como a escolha da função filtro na expansão das funções a serem 

estimadas, determinam por sua vez o número de parâmetros a serem estimados. A Tabela 6.16 

abaixo sumariza a abordagem adotada no tratamento de cada função e o número de 

parâmetros que estão envolvidos na estimativa de cada propriedade k(x), w(x), do termo de 

dissipação linear 
( )

( ) ef

z

h x

Ld x =  e do comportamento temporal do fluxo de calor f(t). Logo, o 

número total de parâmetros “NP” é dado pela soma do numero de parâmetros empregados em 

cada expansão e nos seus respectivos filtros:  

 

T T T T T

k w d f

( ) ( ) ( )

P Pk Pw Pd f

P kF k wF w dF d f

N N N N N

N N N N N N N N

≡ ∪ ∪ ∪

= + + +

= + + + + + +

P P P P P

 (6.32) 

 

A Tabela 6.17 apresenta a função filtro escolhida para ser empregada no 

processo de expansão de cada um destes coeficientes da equação de energia, onde os valores 

nos contornos ( 0 0 0, , , e ,x xL x xL x xLk k w w d d ), presentes nos filtros, são desconhecidos, de modo 

que devem ser estimados juntamente com os coeficientes das expansões. Para as propriedades 

k(x) e w(x) optou-se por empregar um filtro linear na expansão das propriedades, uma vez que 

este seria o filtro mais simples que homogeniza as duas condições de contorno referentes às 

expansões em autofunções para uma variação qualquer das propriedades, de modo que a 

expansão em autofunções seja uniformemente convergente. Já para o termo de dissipação 

linear d(x), optou-se por usar um filtro mais informativo, na forma de uma função degrau, 

considerando que se teria, numa situação experimental real, a informação a priori de que o 

fluxo de calor aplicado tem a forma de uma função degrau, e que conseqüentemente o 

coeficiente de transferência de calor tende a aproximar-se deste comportamento para o caso 

de uma parede termicamente fina. O argumento “γ”, presente na definição desta função filtro 

fornece a informação sobre o comportamento da função na região de  transição, e no caso do 

presente estudo considerou-se um variação bastante abrupta fazendo-se  “γ =500”. 
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                     Tabela 6.16 – Funções e parâmetros a serem estimados 

Função Abordagem Adotada No. Parametros 

k(x) 
Expansão em 

Autofunções 
k

T

k 1 2[ , , ,..., ]kF NN k k k≡P  

w(x) 
Expansão em 

Autofunções 
w

T

w 1 2[ , , ,..., ]wF NN w w w≡P  

d(x) 
Expansão em 

Autofunções 
d

T

d 1 2[ , , ,..., ]dF NN d d d≡P  

f(t) Parametrização T

f [ , ]a b≡P  

 
Tabela 6.17 – Filtros utilizados nas expansões das funções 

Função Filtro Forma Funcional do Filtro 
No. Parâmetros  

no Filtro 

k(x) Linear 
( )0

0

xL x

x

x

k k
x k

L

−
+  2kFN =  

w(x) Linear 
( )0

0

xL x

x

x

w w
x w

L

−
+  2wFN =  

d(x) Degrau ( )
0

0

1 [ ]

xL x
x

CONT

x

d d
d

x x
Exp

L

γ
−

+
−

+ −

 
2dFN =  

 

Realizou-se também uma análise de convergência das expansões das funções 

k(x), w(x) e d(x), de forma a identificar o número mínimo de termos na série que garantisse a 

convergência das mesmas. As figuras 6.34.a-c abaixo e as tabelas 6.18.a-c apresentam uma 

análise gráfica e quantitativa da convergência para a condutividade térmica k(x) com 10 

termos na série, para a capacidade térmica w(x), também com 10 termos na sua série, e para o 

termo de dissipação linear d(x), com apenas 5 termos na série. Pode-se observar que para as 

três expansões tem-se uma convergência de pelo menos 2 dígitos significativos mesmo para 

apenas  2 termos na série no caso de k(x) e w(x) e  uma convergência completa para d(x) 

mesmo para um único termo na série, isso porque seu filtro, a depender dos valores dos dois 

patamares do degrau, carrega toda informação sobre a própria função. 
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Figura 6.34.a – Análise qualitativa da convergência da expansão da Condutividade Térmica k(x); 

 

Tabela 6.18.a – Análise quantitativa da convergência da expansão da Condutividade Térmica k(x); 

Ordem deTruncamento  Nk k[x=0.04] k[x=0.08] 

1 3.873 1.029 

2 3.480 1.421 

3 3.480 1.421 

4 3.536 1.365 

5 3.569 1.398 

6 3.569 1.398 

7 3.557 1.386 

8 3.550 1.393 

9 3.550 1.393 

10 3.554 1.390 

exato 3.555 1.392 
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Figura 6.34.b – Análise qualitativa da convergência da expansão da Capacidade Térmica w(x); 

 

Tabela 6.18.b – Análise quantitativa da convergência da expansão da Capacidade Térmica w (x); 

Ordem deTruncamento  Nw w[x=0.04] w[x=0.08] 

1 2.5325 x 106 2.3743 x 106 

2 2.5324 x 106 2.3744 x 106 

3 2.5324x 10
6
 2.3744 x 10

6
 

4 2.5324x 10
6
 2.3744 x 10

6
 

5 2.5325x 10
6
 2.3745 x 10

6
 

6 2.5325 x 10
6
 2.3745 x 10

6
 

7 2.5324 x 106 2.3745 x 106 

8 2.5324 x 10
6
 2.3745 x 10

6
 

9 2.5324 x 10
6
 2.3745 x 10

6
 

10 2.5324 x 10
6
 2.3745 x 10

6
 

exato 2.5324 x 10
6
 2.3745 x 10

6
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Figura 6.34.c – Análise qualitativa da convergência da expansão de d(x); 

 

Tabela 6.18.c – Análise quantitativa da convergência da expansão de  d(x); 

Ordem deTruncamento  Nd d[x=0.04] d[x=0.08] 

1 16174.5 5728.61 

2 16174.5 5728.61 

3 16174.5 5728.61 

4 16174.5 5728.61 

5 16174.5 5728.61 

exato 16174.5 5728.61 

 

Antes de se iniciar o procedimento de estimativa realizou-se ainda a análise do 

determinante da matriz de informação para diferentes números de sensores e parâmetros 

envolvidos na estimativa.  

As Tabelas 6.19.a-c abaixo apresentam resultados para diferentes números de 

sensores que poderiam ser considerados em um procedimento experimental real, usando por 

exemplo termografia por  infravermelho como técnica de medida de temperatura. Logo, a 

depender da capacidade do equipamento disponível poderia se ter um grande volume de 

informação espacial, chegando a mais de 500 mil dados experimentais para um experimento 

com 3 000 segundos de duração.  

Neste contexto, a abordagem proposta nesta subseção, de realizar a estimativa 

dos parâmetros no campo transformado, torna-se mais evidentemente desejável, a partir da 

colapsação da informação espacial através do processo de transformação integral dos dados 

experimentais, levando a uma significativa redução de custo computacional a medida que se 

almeje utilizar toda a informação espacial disponível no procedimento de estimativa. 

Para uma avaliação do número de parâmetros que estariam envolvidos nas 

estimativas, realizou-se a análise do determinante da matriz de informação para três diferentes 

números de parâmetros, NP=11, 15 e 19, sendo que esta variação no número total de 
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parâmetros deve-se somente à variação do número de parâmetros utilizados nas expansões de 

k(x) e w(x), uma vez que como apresentado anteriormente, para d(x) é necessário apenas um 

termo na sua série para garantir a convergência deste coeficiente. 

A Tabela 6.20, resume as escolhas do números de parâmetros que foram 

tratados nesta análise de sensibilidade e as figuras 6.35.a-c ilustram graficamente o 

comportamento das expansões dos coeficientes a estimar quando comparadas às funções 

exatas para as diferentes ordens de truncamento das séries. 

 

 

Tabela 6.19.a – Número de sensores e freqüência de medidas no tempo 

No. Sensores ∆x 

61 2 mm 

121 1mm 

241 500 µm 

481 250 µm 

961 125 µm 

1921 62.5 µm 

 

Tempo final Exp. ∆t 

3 600 s 10 s 

      
Tabela 6.19.b – Número de Dados Experimentais 

No. Medidas no tempo 

300 

No. Sensores No. Dados Experimentais 

61 18 300 

121 36 300 

241 72 300 

481 144 300 

961 288 300 

1921 576 300 

 
Tabela 6.20 – Número de parâmetros avaliados na analise de sensibilidade do problema 

Função No. Parâmetros 

k(x) NPk=2+1 NPk =2+3 NPk =2+5 

w(x) NPw=2+1 NPw =2+3 NPw =2+5 

d(x) NPd=2+1 NPd =2+1 NPd =2+1 

f(t) Nf=2 Nf =2 Nf =2 

No. Total de Parâmetros 

NP = 11 15 19 
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(c) 

Figura 6.35.a-c – Comportamento dos coeficientes em função  do número de parâmetros adotados na 

analise de sensibilidade 
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A figura 6.36.a e a tabela 6.21.a apresentados a seguir ilustram o 

comportamento do determinante da matriz de informação JTJ, para o caso de uma estimativa 

envolvendo 15 parâmetros, ou seja, 3 termos na expansões de w(x) e k(x) e 1 termo apenas na 

expansão de d(x), somados aos 6 parâmetros dos três filtros e os 2 parâmetros de f(t), para 

diferentes quantidades de dados experimentais. Como esperado, tem-se um aumento do 

determinante à medida que se tem mais informação disponível, ou seja, mais dados 

experimentais, sendo a curva com valores mais altos (azul marinho) aquela correspondente a 

481 sensores e a curva com valores mais baixos (vermelha) a situação com apenas 61 

sensores, onde percebe-se o ganho de mais de 10 ordens de grandeza no valor do 

determinante para um experimento com 300 medidas temporais com uma freqüência fixa de 

10 segundos.  

A figura 6.36.b e a tabela 6.21.b apresentam o comportamento do determinante 

da matriz de sensibilidade, quando varia-se o número de parâmetros envolvidos na estimativa, 

para um numero fixo de medidas e sensores disponíveis. A curva com valores mais baixos 

(cyan) representa uma estimativa com 19 parâmetros enquanto que a curva mais acima (azul 

marinho) diz respeito à estimativa com 11 parâmetros. Pode-se perceber que para um 

experimento com 300 medidas tem-se um decréscimo de mais de 20 ordens de grandeza 

quando aumenta-se a estimativa de 11 para 19 parâmetros. 
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Figura 6.36.a – Analise grafica do determinante da matriz de informação 

Curva azul: 481 sensores; Curva cyan: 241 sensores; Curva preta: 121 sensores; 

Curva vermelha: 61 sensores 
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Tabela 6.21.a – Analise quantitativa do determinante da matriz de informação 

NT=10          NP = 15 

No. Sensores 
Determinante 

120 medidas 200 medidas 300 medidas 

61 5.108 180 2. 6.661 x 10
7
 

121 665 9 6.041 x 10
9
 1.113 x 10

12
 

241 1.983 x 1010 1.794 x 1014 3.353 x 1016 

481 6.087 x 1014 5.626 x 1018 1.044 x 1021 
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Figura 6.36.b – Analise grafica do determinante da matriz de informação 

Curva azul: 11 parâmetros; Curva vermelha: 15 parâmetros;  

Curva cyan: 19 parâmetros 

 
Tabela 6.21.b – Análise quantitativa do determinante da matriz de informação 

No. Sensores = 241           NT = 10 

No. Parâmetros 
Determinante  

120 medidas 200 medidas 300 medidas 

11 3.743 x 10
19

 3.356 x 10
22

 1.589 x 10
24

 

15 1.983 x 10
10

 1.794 x 10
14

 3.353 x 10
16

 

19 0.000147 8.455 4377.5 

 

Na geração dos dados experimentais simulados utilizou-se 50 termos na 

expansão da temperatura e 10 termos nas expansões de k(x), w(x) e d(x) e considerou-se a 

geração de 86760 dados de temperaturas aquisitadas por 241 sensores, distribuídos 

igualmente espaçados ao logo do comprimento da placa, e tomadas a uma freqüência de 10 

segundos ao longo de uma hora de experimento, considerando-se dois possíveis erros 

experimentais, 0.1º e 0.5ºC. Como critério de validação do código computacional construído e 
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da abordagem inversa aqui proposta, analisou-se inicialmente as estimativas para um caso 

com um erro reduzido de 0.01ºC e ordens mais baixas e iguais nas expansões dos dados 

experimentais gerados e na solução inversa, NT=10, Nk=3, Nw=3, e Nd=1 termos na expansão, 

respectivamente, para T(x,t), k(x), w(x) e d(x). 

Depois de geradas as temperaturas experimentais, iniciou-se então o 

procedimento de transformação integral destes dados, definindo-se um par transformada-

inversa (eqs.6.33.a,b), e integrando-se espacialmente os dados experimentais ao longo de todo 

o domínio a cada tempo. Como os dados a serem integrados são discretos, realizou-se uma 

interpolação que apresenta-se como uma aproximação do seu comportamento espacial.  

 

Par Transformada-Inversa: 

Transformada exp, exp amb

0

( ) ( ) ( ) ( , )

Lx

i iT t w x x T x t T dxψ  = − ∫ ɶ  (6.33.a ) 

Inversa exp amb exp,

0

( , ) ( ) ( )
Ni

i i

i

T x t T x T tψ
=

= +∑ ɶ
 

(6.33.b) 

 

A tabela 6.22  abaixo apresenta a análise realizada para investigar o erro 

relativo em conseqüência do procedimento de interpolação por segmentos, para o caso de 

validação onde a incerteza padrão experimental é de 0.01ºC e se tem 10 termos na expansão 

da temperatura. Analisou-se para este caso a influência da ordem da interpolação: ordem 1 

(reta) e ordem 3 (cúbica), usando diferentes números de sensores. Para tanto, determina-se o 

máximo erro relativo encontrado em todas as medidas ao longo do tempo (200 medidas), para 

cada campo transformado (10 campos), em função das escolhas de ordem de interpolação e 

número de sensores empregado. Observa-se então que o número de sensores empregado pode 

reduzir este erro máximo de cerca de 4% a 0.3%, com o aumento do número de sensores de 

61 para 241 para a interpolação de primeira ordem, enquanto o erro máximo cai de 0.2% até 

menos que 0.007% , quando se aumenta o número de sensores na interpolação de terceira 

ordem. Claramente, a utilização da aproximação por cúbicas oferece uma aproximação muito 

melhor, com resultados comparáveis quando se utiliza apenas 61 sensores, em relação ao 

resultado com 241 sensores para a aproximação de primeira ordem. Também na Tabela 6.22 

ilustra-se que o ganho de precisão é insignificante ao se aumentar o número de iterações de 20 
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para 40 no procedimento de integração numérica, bem como requerendo-se maior precisão 

relativa, de 6 para 8 digitos significativos, na função NIntegrate do Mathematica.  

Nas soluções inversas que serão apresentadas a seguir, os dados experimentais 

foram transformados integralmente utilizando 241 sensores, uma interpolação de terceira 

ordem, um número máximo de 20 iterações na integração numérica, e uma precisão de 6 

dígitos significativos. Estes resultados foram também covalidados com o procedimento de 

integração semi-analítica de expansões em autofunções [Cotta et al., 2009]. 

 
Tabela 6.22 – Analise do Erro Relativo na Integração Numérica dos Dados Experimentais 

No. Medidas = 200 

exp, calc,

calc,

( ) ( )
Erro relativo = Abs

( )

i i

i

T t T t

T t

 −
  
 

 

 

No. Iterações  = 40 

Precisão = Default = 6 digitos 

Ordem da 

Interpolação 

Espacial 

No. Sensores  

61 121 241 

1 0.0443 0.0112 0.00280  

3 0.00198 0.000201 0.0000653 

 

No. Sensores = 241 

Ordem da 

Interpolação 

Espacial 

No. Iterações  20 
Precisão: 6 digitos 

No. Iterações    40 
Precisão: 6 digitos 

No. Iterações    40 
Precisão: 8 digitos 

1 0.00280  0.00280  0.00279 

3 0.0000653 0.0000653 0.0000654  

 

 

Uma vez realizada a transformação integral das temperaturas experimentais 

(considerando 241 sensores disponíveis espacialmente) tem-se uma redução considerável do 

número de dados experimentais a serem utilizados na solução inversa. As Tabelas 6.23.a,b 

apresentam de forma resumida uma comparação da redução deste volume de dados. A Tabela 

6.23.a mostra para a estimativa no campo de temperatura, com um número fixo de 241 

medidas espaciais, o número de dados experimentais relativamente alto, de acordo com o 

número de medidas no tempo. A Tabela 6.23.b mostra a redução conseguida no número de 

dados experimentais totais com a transformação integral, utilizando temperaturas fornecidas 
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por 241 sensores, para três ordens de truncamento diferentes na expansão da temperatura. 

Tem-se por exemplo, uma redução de mais de 95% ao se trocar a estimativa no campo da 

temperatura usando 200 medidas no tempo (48200 dados experimentais) por uma estimativa 

no campo transformado com 10 termos na série para as mesmas 200 medidas temporais (2000 

dados experimentais). 

 
Tabela 6.23.a – Análise do número de dados experimentais na estimativa no campo de temperaturas 

No. Sensores 
No. Medidas 

no tempo 
No. Dados Experimentais 

241 

120 25 680 

200 48 200 

300 72 300 

 
Tabela 6.23.b – Análise do número de dados experimentais na estimativa no campo transformado 

No. Termos na Expansão 

da Temperatura 

No. Medidas 

no tempo 
No. Dados Experimentais 

NT=10 

120 1 200 

200 2 000 

300 3 000 

 

NT=20 

120 2 400 

200 4 000 

300 8 000 

 

NT=40 

120 4 800 

200 8 000 

300 12 000 

 
 

Através da análise do determinante da matriz de informação para as estimativas 

no campo transformado ilustrada na figura 6.37 e na tabela 6.24 abaixo, tem-se que o aumento 

do número de termos na série leva a um aumento no valor do determinante. Com o aumento 

do numero de termos na série de 10(curva vermelha)  para 20 (curva preta) e para 40 (curva 

azul) tem-se que o número de dados a serem tratados na solução inversa vai tendo seu valor 

dobrado; todavia, este aumento, para um número fixo de medidas no tempo, representa um 

aumento considerável do custo computacional mas não representa um aumento significativo 

do valor do determinante. Sendo assim, a escolha do número de termos na série deve ser feita 

de maneira a ser mínima, garantindo apenas que o erro da expansão seja menor do que o erro 

experimental. 
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Figura 6.37  – Analise de sensibilidade para a estimativa no campo transformado 

Curva azul: NT=40; Curva preta: NT=20; Curva vermelha: NT=10 
 

 
Tabela 6.24  – Analise quantitativa do determinante da matriz de informação 

 no campo transformado 

No. Sensores usados na Transformação Integral = 241 

NP = 15 

No. Medidas 

no tempo 

Determinante 

NT=10 NT=20 NT=40 

120 9.34x10
73

 3.50x10
76

 2.17x10
78

 

200 4.19x10
77

 1.69x10
80

 1.09x10
82

 

300 8.35x1079 3.63x1082 2.80x1084 

 
 

Neste contexto, as estimativas que se seguiram foram realizadas com 10 termos 

na expansão da temperatura, 3 termos nas expansões de k(x) e w(x), e 1 termo na expansão de 

d(x). A tabela 6.25 abaixo resume essas informações sobre o número de termos empregados 

nas expansões da geração dos dados experimentais simulados. 
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Tabela 6.25. – Geração dos dados experimentais simulados 

Dados Experimentais Simulados No. Termos na Expansão 

T(x,t) 50 

k(x) 10 

w(x) 10 

d(x) 10 

 

Estimativa no Caso de Validação 

NT = 10 Incerteza Temp.= 0.01ºC 

 

Estimativas com Erro Experimental 
Incerteza Exp.= 0.5ºC 

NT = 10 

Função No. Parâmetros No. Total de Parâmetros 

k(x) Nk=2+3 

NP = 15 
w(x) Nw=2+3 

d(x) Nd=2+1 

f(t) Nf=2 

 

No. Medidas No. Sensores No. Dados Experimentais 

360 241 86 760 

 

As figuras 6.38 e 6.39 ilustram a distribuição de temperatura experimental ao 

longo do tempo para diferentes posições (a) e ao longo da placa para diferentes tempos (b), 

para as duas incertezas padrão experimentais citadas anteriormente. 

No contexto da estimativa Bayesiana que é adotada na presente proposta de 

solução de problema inverso, tem-se então a reformulação da verossimilhança uma vez que os 

dados experimentais são agora tratados como temperaturas transformadas, como apresentado 

nas equações (6.34.a,b) a seguir. Neste processo de estimativa no campo transformado tem-se 

a comparação das temperaturas experimentais e calculadas transformadas, para cada campo 

transformado, ao longo de todas as medidas temporais, ponderadas por um desvio padrão 

experimental que varia para cada campo transformado.  

 

Verossimilhança 

no campo de 

Temperatura 

( )
. .

2

exp calc2

1 1
[ ( , ) ( , ) ]

2

No Sensores No Medidas

s m s m

s m s

Exp T x t T x t
σ

∝ − −∑ ∑  (6.34.a) 

Verossimilhança 

no campo 

Transformado 

( )
. 2

exp, calc,2

1 1
[ ( ) ( ) ]

2

NT No Medidas

i m i m

i m i

Exp T t T t
σ

∝ − −∑ ∑  (6.34.b ) 
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Figura 6.38.a – incerteza 0.01ºC   

Distribuição de temperatura ao longo do tempo para diferentes posições da placa 
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Figura 6.38.b – incerteza 0.01ºC   

Distribuição de temperatura ao longo da placa para diferentes tempos 
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Figura 6.39.a – incerteza 0.5ºC   

Distribuição de temperatura ao longo do tempo para diferentes posições da placa 
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Figura 6.39.b – incerteza 0.5ºC   

Distribuição de temperatura ao longo da placa para diferentes tempos 
 

 

As figuras 6.40 e 6.41 ilustram a distribuição de temperatura experimental 

transformada ao longo do tempo para cada campo transformado, para as duas incertezas 

padrão experimentais analisados 0.01ºC, 0.5ºC, respectivamente. Percebe-se por estas figuras 

a importância mais significativa dos primeiros cinco campos da expansão. As tabelas 6.26 e 
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6.27 apresentam os valores das temperaturas transformadas médias para o regime permanente, 

os desvios padrão das temperaturas experimentais transformadas e os desvios percentuais com 

relação às respectivas temperaturas transformadas médias. Tais desvios foram calculados 

como sendo os desvios médios das temperaturas para as ultimas 50 medidas no tempo (entre 

3100s e 3600s) para cada campo transformado, já em regime permanente.   
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Figura 6.40 – incerteza experimental 0.01ºC   

Distribuição de temperatura transformada ao longo do tempo para as diferentes ordens da série 

 

Tabela 6.26. – Analise da Temperatura Experimental Transformada para o incerteza experimental 0.01ºC 

Ordem i exp,iT  iσ  
iσ   % 

1 3243.2 0.833 0.0257 

2 6293.3 0.474 0.00754 

3 8151.7 0.658 0.00808 

4 11995.1 0.540 0.00451 

5 9540.8 0.572 0.00600 

6 -1790.7 0.604 0.0337 

7 458.79 0.553 0.120 

8 -1071.4 0.572 0.0534 

9 47.823 0.546 1.141 

10 136.94 0.557 0.407 
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Figura 6.41– incerteza experimental 0.5ºC   

Distribuição de temperatura Transformada ao longo do tempo para as diferentes ordens da série 

 

Tabela 6.27. – Analise da Temperatura Experimental Transformada para o incerteza experimental 0.5ºC 

Ordem i exp,iT  iσ  iσ   % 

1 3244.4 28.43 0.876 

2 6305.8 25.82 0.409 

3 8174.3 25.08 0.307 

4 11998.3 26.22 0.219 

5 9506.5 27.86 0.293 

6 -1800.2 23.75 1.320 

7 460.42 22.84 4.961 

8 -1037.4 25.48 2.457 

9 70.128 25.25 36.00 

10 157.64 26.73 16.95 

 

Cinco casos teste, sumarizados na tabela 6.28, foram estudados de modo a 

validar e demonstrar a metodologia de solução apresentada pelo presente trabalho. Os casos 1, 

2 e 3 foram escolhidos para validação do algoritmo implementado, uma vez que o erro 

experimental considerado nestes casos foi de 0.01ºC e o número de termos nas expansões na 

geração dos dados experimentais e na solução do problema inverso para estes três casos foram 

escolhidos iguais: 10 termos na expansão da temperatura, 3 termos nas expansões de w(x) e 

k(x), e 1 termo na expansão de d(x), sendo que para o caso 1 a estimativa se dá no campo de 

temperatura e para os casos 2 e 3 as estimativas se dão no campo transformado. Para os 

demais casos as estimativas foram feitas no campo transformado e os dados experimentais 
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simulados foram gerados com 50 termos na expansão da temperatura e 10 termos nas 

expansões de w(x), k(x) e d(x), enquanto a solução do problema inverso foi construída com 10 

termos na expansão da temperatura, 3 termos nas expansões de w(x) e k(x) e 1 termo na 

expansão de d(x).Como discutido nas análises inversas apresentadas anteriormente, a ordem 

de truncamento determina o número de parâmetros envolvidos na estimativa. Logo, o número 

total de parâmetros “NP” é dado pela soma do numero de termos empregados na expansão de 

cada coeficiente, seus respectivos filtros e os coefiencietes presentes na parametrização da 

função temporal do fluxo de calor.  

 

( ) ( ) ( ) ( )0 1 2 0 1 2 0 1 2, , , ,..., ,..., , , , , ,..., ,..., , , , , ,..., ,..., , ,
k w dx xL j N x xL j N x xL j NP k k k k k k w w w w w w d d d d d d a b=   

Em todos os casos utilizou-se de priori não-informativa (Uniforme) na 

estimativa do parâmetro “a e b”; para os demais parâmetros analisou-se através dos casos, a 

influência na escolha de uma priori Gaussiana centrada nos valores esperados para cada um 

dos parâmetros com um desvio padrão de até 34% do valor da sua respectiva média. A tabela 

6.28 traz a informação da escolha das prioris para cada caso, onde a escolha por prioris 

normais é representada pela letra “N” e as prioris uniformes pela letra “U”. 

 

Tabela  6.28-   Estimativas Realizadas 

Casos de Validação: Incerteza Experimental de 0.01ºC 

Caso Campo NT 
No. 

Medidas 

No. 

Sensores 

Priori 

0 0 0, , , , , , ,x xL j x xL j x xL jk k k w w w d d d a b− − −  

1 Temperatura 10 120 61 N, N, U -  N, N, U -  N, N, U  - U, U 

2 Transfomado 10 200 241 N, N, U -  N, N, U -  N, N, U  - U, U 

3 Transfomado 10 200 241 U, U, U -  U, U, U -  N, N, U  - U, U 

Casos com Incerteza Experimental de 0.5ºC 

Caso Campo NT 
No. 

Medidas 

No. 

Sensores 

Priori 

0 0 0, , , , , , ,x xL j x xL j x xL jk k k w w w d d d a b− − −  

4 Transfomado 10 200 241 N, N, U -  N, N, U -  N, N, U  - U, U 

5 Transfomado 10 200 241 U, U, U -  U, U, U -  N, N, U  - U, U 

 

A seguir apresenta-se nas tabelas 6.29 a 6.33 os resultados encontrados nas 

estimativas para os casos da tabela 6.28 acima. Os três casos de validação recuperam, como 

esperado, o comportamento dos coeficientes originais. Todavia percebe-se uma melhor 

estimativa dos parâmetros para os casos 2 e 3 que ocorrem no campo transformado. Estes 
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resultados confirmam a colapsação da informação espacial nos campos transformados como 

uma alternativa interessante nos procedimentos de solução de problemas inversos, 

principalmente nos casos em que se tem disponível uma grande quantidade de medidas 

espaciais, como no caso das técnicas de medição por câmera de infravermelho.Para cada um 

dos casos analisados, tem-se nas tabelas de 6.29 a 6.330 as informações sobre os dados de 

entrada das estimativas, como o valor exato dos parâmetros, o intervalos de máximo e mínimo 

de procura para cada parâmetro, assim como os valores iniciais utilizados no procedimento de 

solução inversa. As tabelas 6.29 a 6.33 apresentam em seguida os valores estimados para cada 

caso, assim como os respectivos intervalos com 99% de confiança para cada parâmetro. 

As figuras 6.42.a-e a 6.45.a-e que se seguem apresentam para os cinco casos 

uma comparação entre as funções exatas (curva cyan) e as funções estimadas, reconstruídas a 

partir dos parâmetros estimados por cada caso (curva preta), assim como os seus respectivos 

intervalos de 99% de confiança (curvas azul e vermelha) e em pontilhado os limites adotados 

como máximos e mínimos no procedimento de estimativa destas funções. As figuras 6.46.a-f 

a 6.50.a-f apresentam uma comparação entre as temperaturas experimentais e as temperaturas 

calculadas a partir das estimativas encontradas para cada caso. E logo em seguida, tem-se as 

figuras que ilustram os respectivos resíduos encontrados em cada uma dessas comparações 

(Figs. 6.51 a 6.55), onde pode-se observar, para diferentes posições e diferentes tempos 

residuos menores que 1ºC. Para todos os casos analisados percebe-se uma excelente 

concordância entre as temperaturas estimadas e as temperaturas experimentais resultando nos 

baixos resíduos que são apresentados. 

Comparando os casos 4 e 5 com erro experimental de 0.5C, observa-se que se 

tem  melhores estimativas para o caso do emprego das prioris normais, hipótese essa que 

apresenta-se bastante razoável na maioria das situações reais uma vez que quase sempre se 

tem alguma informação disponível a priori sobre as propriedades do material em questão 

através de algum método de medida diretamente da própria propriedade ou de maneira 

indireta como no caso da concentração de partículas, por exemplo. Todavia, os resultados 

apresentados para o caso 5 para uma priori uniforme demonstram que mesmo para uma 

situação onde pouco ou nada se sabe sobre as propriedades de um material, pode-se ainda 

obter uma estimativa razoável do seu comportamento espacial e dos seus valores numéricos 

com o emprego da metodologia proposta pelo presente trabalho. 
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Tabela 6.29 - CASO    1 

Dados de Entrada das Estimativas 

P Priori Exato Min Max Inicial 

0xk  Normal 9.078 0.218 14.525 9.986 

xLk  Normal 0.545 0.218 14.525 0.5995 

1k  Uniforme -0.6677 -4.462 4.462 -0.7345 

2k  Uniforme -0.1111 -1.1155 1.1155 -0.12212 

3k  Uniforme -0.04091 -1.4873 1.4873 -0.04500 

0xw  Normal 2.701 x10
6
 890560. 4.321x10

6
 2.971 x10

6
 

xL
w  Normal 2.226x10

6
 890560. 4.321x10

6
 2.449 x10

6
 

1
w  Uniforme -2894.7 -1.070 x10

6
 1.070x10

6
 -3184.1 

2
w  Uniforme -34.942 -267502. 267502. -38.436 

3
w  Uniforme -107.57 -356669. 356669. -118.33 

0x
h  Normal 26.620 13.310 53.2406 29.282 

xL
h  Normal 5.7286 2.8643 11.457 6.3015 

1h  Uniforme 0. -3. x10
-12

 3. x10
-12

 0. 

a  Uniforme 721.65 0 1237.1 793.81 

b  Uniforme 0.005 0 0.1 0.0055 

 

Dados de Saída das Estimativas 

P Exato Estimado ICmin-99% ICmax-99% 

0x
k  9.078 10.281 10.240 10.322 

xL
k  0.545 0.592 0.591 0.593 

1k  -0.668 -0.804 -0.807 -0.801 

2k  -0.111 -0.147 -0.149 -0.146 

3k  -0.0409 -0.0494 -0.0508 -0.0479 

0x
w  2.7009 x10

6
 2.872 x10

6
 2.856 x10

6
 2.889 x10

6
 

xL
w  2.2264 x10

6
 2.308 x10

6
 2.292x10

6
 2.323 x10

6
 

1
w  -2894.7 -3025.4 -3055.5 -2995.4 

2
w  -34.942 -38.779 -39.201 -38.357 

3
w  -107.57 -124.94 -125.45 -124.43 

0xh  26.620 26.503 26.491 26.516 

xL
h  5.7286 6.023 5.992 6.053 

1h  0. -1.31 x10-13 -1.77x10-13 -8.51 x10-14 

a  721.65 701.08 698.91 703.25 

b  0.005 0.00510 0.00508 0.00511 
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Tabela 6.30 - CASO    2 

Dados de Entrada das Estimativas 

P Priori Exato Min Max Inicial 

0x
k  Normal 9.078 0.463 10.440 8.616 

xL
k  Normal 0.545 0.463 10.440 0.503 

1k  Uniforme -0.668 -3.111 3.111 -0.726 

2k  Uniforme -0.111 -0.778 0.778 -0.108 

3k  Uniforme -0.0409 -1.037 1.037 -0.0443 

0xw  Normal 2.701 x10
6
 1.892 x10

6
 3.106 x10

6
 2.686 x10

6
 

xL
w  Normal 2.226x10

6
 1.892x10

6
 3.106 x10

6
 2.282 x10

6
 

1
w  Uniforme -2894.7 -378487.0 378487.0 -2810.4 

2
w  Uniforme -34.94 -94621.8 94621.8 -33.04 

3
w  Uniforme -107.57 -126162.0 126162.0 -104.67 

0x
h  Normal 26.62 13.31 53.24 26.60 

xL
h  Normal 5.729 2.864 11.457 6.232 

1h  Uniforme 0. -3. x10
-12

 3. x10
-12

 0. 

a  Uniforme 721.65 0 1237.1 700.89 

b  Uniforme 0.005 0 0.1 0.00521 

 

Dados de Saída das Estimativas 

P Exato Estimado ICmin-99% ICmax-99% 

0x
k  9.0780 9.1639 9.1503 9.1776 

xL
k  0.545 0.5068 0.5058 0.5078 

1k  -0.6677 -0.6663 -0.6680 -0.6646 

2k  -0.1111 -0.1122 -0.1134 -0.1111 

3k  -0.04091 -0.03869 -0.03918 -0.03819 

0x
w  2.7009 x10

6
 2.7199 x10

6
 2.7172 x10

6
 2.7226 x10

6
 

xL
w  2.2264 x10

6
 2.2637 x10

6
 2.2581 x10

6
 2.2693 x10

6
 

1
w  -2894.68 -2706.4 -2746.6 -2666.2 

2
w  -34.942 -33.943 -34.148 -33.739 

3
w  -107.57 -104.30 -104.87 -103.74 

0xh  26.620 26.595 26.588 26.603 

xL
h  5.7286 5.7903 5.7743 5.8063 

1h  0. 6.494 x10-15 -2.392 x10-14 3.691 x10-14 

a  721.65 718.71 717.90 719.52 

b  0.005 0.00501 0.005007 0.005022 
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Tabela 6.31 - CASO    3 

Dados de Entrada das Estimativas 

P Priori Exato Min Max Inicial 

0x
k  Uniforme 9.0780 0.218 14.525 9.9858 

xL
k  Uniforme 0.545 0.218 14.525 0.5995 

1k  Uniforme -0.6677 -4.462 4.462 -0.7345 

2k  Uniforme -0.1111 -1.115 1.115 -0.122 

3k  Uniforme -0.04091 -1.487 1.487 -0.0450 

0xw  Uniforme 2.701 x10
6
 890560. 4.321x10

6
 2.971 x10

6
 

xL
w  Uniforme 2.226x10

6
 890560. 4.321x10

6
 2.449x10

6
 

1
w  Uniforme -2894.68 -1.070 x10

6
 1.070x10

6
 -3184.15 

2
w  Uniforme -34.942 -267502. 267502. -38.436 

3
w  Uniforme -107.57 -356669. 356669. -118.33 

0x
h  Normal 26.620 13.310 53.241 29.282 

xL
h  Normal 5.7286 2.8643 11.457 6.3015 

1h  Uniforme 0. -3. x10
-12

 3. x10
-12

 0. 

a  Uniforme 721.65 0 1 237.1 793.81 

b  Uniforme 0.005 0 0.1 0.0055 

 

Dados de Saída das Estimativas 

P Exato Estimado ICmin-99% ICmax-99% 

0x
k  9.0780 9.1212 9.0536 9.1888 

xL
k  0.545 0.5717 0.5655 0.5779 

1k  -0.6677 -0.6756 -0.6840 -0.6673 

2k  -0.1111 -0.1113 -0.1132 -0.1093 

3k  -0.04091 -0.04078 -0.04118 -0.04038 

0x
w  2.701 x10

6
 2.701x10

6
 2.692 x10

6
 2.710 x10

6
 

xL
w  2.226 x10

6
 2.252 x10

6
 2.244 x10

6
 2.259 x10

6
 

1
w  -2894.68 -3130.3 -3140.6 -3120.1 

2
w  -34.942 -38.947 -39.102 -38.792 

3
w  -107.57 -120.98 -121.47 -120.50 

0xh  26.620 26.615 26.607 26.624 

xL
h  5.7286 5.7642 5.7227 5.8057 

1h  0. -4.3274 x10-14 -6.9097 x10-14 -1.74509 x10-14 

a  721.65 720.12 718.81 721.42 

b  0.005 0.00500 0.00499 0.00501 
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Tabela 6.32 - CASO    4 

Dados de Entrada das Estimativas 

P Priori Exato Min Max Inicial 

0x
k  Normal 9.0780 0.463 10.440 8.6157 

xL
k  Normal 0.545 0.463 10.440 0.5028 

1k  Uniforme -0.6677 -3.111 3.111 -0.7256 

2k  Uniforme -0.1111 -0.778 0.778 -0.1082 

3k  Uniforme -0.04091 -1.037 1.037 -0.04433 

0xw  Normal 2.701x10
6
 1.892 x10

6
 3.106 x10

6
 2.686 x10

6
 

xL
w  Normal 2.226x10

6
 1.892x10

6
 3.106 x10

6
 2.282 x10

6
 

1
w  Uniforme -2894.68 -378487.0 378487.0 -2810.39 

2
w  Uniforme -34.942 -94621.8 94621.8 -33.045 

3
w  Uniforme -107.57 -126162.0 126162.0 -104.67 

0x
h  Normal 26.620 13.310 53.241 26.601 

xL
h  Normal 5.7286 2.8643 11.457 6.2323 

1h  Uniforme 0. -3. x10
-12

 3. x10
-12

 0. 

a  Uniforme 721.65 0 1 237.1 700.89 

b  Uniforme 0.005 0 0.1 0.00521 

 

Dados de Saída das Estimativas 

P Exato Estimado ICmin-99% ICmax-99% 

0x
k  9.0780 9.3645 9.3143 9.4147 

xL
k  0.545 0.5186 0.5165 0.5206 

1k  -0.6677 -0.6742 -0.6783 -0.6701 

2k  -0.1111 -0.1015 -0.1024 -0.1006 

3k  -0.04091 -0.02804 -0.02962 -0.02647 

0x
w  2.701 x10

6
 2.791x10

6
 2.771 x10

6
 2.812 x10

6
 

xL
w  2.226 x10

6
 2.290 x10

6
 2.284 x10

6
 2.296 x10

6
 

1
w  -2894.68 -2789.49 -2823.22 -2755.76 

2
w  -34.942 -31.272 -31.595 -30.950 

3
w  -107.57 -107.78 -111.17 -104.39 

0xh  26.620 26.551 26.540 26.562 

xL
h  5.7286 5.9186 5.8944 5.9429 

1h  0. 1.316 x10-15 -9.167 x10-14 9.4302 x10-14 

a  721.65 710.44 707.54 713.34 

b  0.005 0.00505 0.00503 0.00506 
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Tabela 6.33 - CASO    5   

Dados de Entrada das Estimativas 

P Priori Exato Min Max Inicial 

0xk  Normal 9.0780 0.463 10.440 8.6157 

xL
k  Normal 0.545 0.463 10.440 0.5028 

1k  Uniforme -0.6677 -3.111 3.111 -0.7256 

2k  Uniforme -0.1111 -0.778 0.778 -0.1082 

3k  Uniforme -0.04091 -1.037 1.037 -0.04433 

0x
w  Normal 2.701 x10

6
 1.892 x10

6
 3.106 x10

6
 2.686x10

6
 

xL
w  Normal 2.226x10

6
 1.892x106 3.106 x106 2.282 x106 

1
w  Uniforme -2894.68 -378487.0 378487.0 -2810.39 

2
w  Uniforme -34.942 -94621.8 94621.8 -33.045 

3
w  Uniforme -107.57 -126162.0 126162.0 -104.67 

0x
h  Normal 26.620 13.310 53.241 26.601 

xL
h  Normal 5.7286 2.8643 11.457 6.2323 

1h  Uniforme 0. -3. x10
-12

 3. x10
-12

 0. 

a  Uniforme 721.65 0 1 237.1 700.89 

b  Uniforme 0.005 0 0.1 0.00521 

 

Dados de Saída das Estimativas 

P Exato Estimado ICmin-99% ICmax-99% 

0x
k  9.0780 10.404 10.373 10.434 

xL
k  0.545 0.7424 0.6844 0.8004 

1k  -0.6677 -0.8135 -0.8204 -0.8065 

2k  -0.1111 -0.1197 -0.1239 -0.1155 

3k  -0.04091 -0.03674 -0.03803 -0.03544 

0x
w  2.701x106 3.093 x106 3.066 x106 3.119 x106 

xL
w  2.226 x10

6
 2.258 x10

6
 2.232 x10

6
 2.284 x10

6
 

1w  -2894.68 -2823.6 -2868.9 -2778.3 

2
w  -34.942 -32.303 -33.446 -31.160 

3
w  -107.57 -110.12 -111.94 -108.30 

0x
h  26.620 26.434 26.430 26.439 

xL
h  5.7286 6.2039 6.1981 6.2097 

1h  0. -4.700 x10
-14

 -1.397 x10
-13

 4.574 x10
-14

 

a  721.65 677.37 674.51 680.23 

b  0.005 0.00519 0.00517 0.00520 
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Figura 6.42 - Condutividade Térmica Estimada k(x) – curva preta,  

intervalos de confiança máximos e mínimos (curvas vermelha e azul);  

curva cyan – função exata 
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Figura 6.43 - Capacidade Térmica Estimada – w(x) – curva preta,  

intervalos de confiança máximos e mínimos (curvas vermelha e azul);  

curva cyan – função exata 
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Figura 6.44 - Coef. Transferência de Calor Estimado – h(x) – curva preta,  

intervalos de confiança máximos e mínimos (curvas vermelha e azul);  

curva cyan – função exata 
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Figura 6.45 - Partição do Fluxo de calor no tempo – f(t) – curva preta,  

intervalos de confiança máximos e mínimos (curvas vermelha e azul);  

curva cyan – função exata 
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Figura 6.46 – Comparação entre as Temperatura Experimental (curva cyan) e a  

Temperatura Estimada (curva preta), para três diferentes posições: (a) 0cm; (b) 4cm; (c) 12cm; 

para três diferentes tempos: (d) 120s; (e) 600s; (f) 1200s; 
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Figura 6.47– Comparação entre as Temperatura Experimental (curva cyan)  

e a Temperatura Estimada (curva preta) para três diferentes posições: (a) 0cm; (b) 4cm; (c) 12cm; 

para três diferentes tempos: (d) 120s; (e) 600s; (f) 1200s; 
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Figura 6.48– Comparação entre as Temperatura Experimental (curva cyan)  

e a Temperatura Estimada (curva preta) para três diferentes posições: (a) 0cm; (b) 4cm; (c) 12cm; 

para três diferentes tempos: (d) 120s; (e) 600s; (f) 1200s; 
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CASO    4 

Figura 6.49 – Comparação entre as Temperatura Experimental (curva cyan)  

e a Temperatura Estimada (curva preta) para três diferentes posições: (a) 0cm; (b) 4cm; (c) 12cm; 

para três diferentes tempos: (d) 120s; (e) 600s; (f) 1200s; 
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CASO    5 

Figura 6.50 – Comparação entre as Temperatura Experimental (curva cyan)  

e a Temperatura Estimada (curva preta) para três diferentes posições: (a) 0cm; (b) 4cm; (c) 12cm; 

para três diferentes tempos: (d) 120s; (e) 600s; (f) 1200s; 
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Figura 6.51. CASO    1 

Figura 6.51.a-d – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.51.e-h – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do 

comprimento da placa, para 4 tempos diferentes 
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Figura 6.52. CASO    2 

Figura 6.52.a-d – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.52.e-h – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do 

comprimento da placa, para 4 tempos diferentes 



 188

500 1000 1500 2000
t@sD

-0.02

-0.01

0.01

residuos@ºCD

x= 1.45cm

 
(a) 

500 1000 1500 2000
t@sD

-0.01

0.01

0.02

residuos@ºCD

x= 3.95cm

 
(b) 

500 1000 1500 2000
t@sD

0.01

0.02

0.03

0.04

residuos@ºCD

x= 5.95cm

 
(c) 

500 1000 1500 2000
t@sD

-0.010

-0.005

0.005

0.010

residuos@ºCD

x= 12.cm

 
(d) 

0.02 0.04 0.06 0.08 0.10 0.12
x@mD

-0.02

-0.01

0.01

residuos@ºCD

t = 250.s

 
(e) 

0.02 0.04 0.06 0.08 0.10 0.12
x@mD

-0.01

0.01

0.02

0.03

residuos@ºCD

t = 660.s

 
(f) 

0.02 0.04 0.06 0.08 0.10 0.12
x@mD

0.01

0.02

0.03

residuos@ºCD

t = 1000.s

 
(g) 

0.02 0.04 0.06 0.08 0.10 0.12
x@mD

-0.01

0.01

0.02

0.03

0.04

residuos@ºCD

t = 2000.s

 
(h) 

Figura 6.53. CASO    3 

Figura 6.53.a-d – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.53.e-h – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do 

comprimento da placa, para 4 tempos diferentes 
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Figura 6.54. CASO    4 

Figura 6.54.a-d – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.54.e-h – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do 

comprimento da placa, para 4 tempos diferentes 
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Figura 6.55. CASO    5 

Figura 6.55.a-d – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.55.e-h – Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do 

comprimento da placa, para 4 tempos diferentes 
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6.3. Experimentos com Termografia por Câmera de 

Infravermelho  

 

Os resultados experimentais apresentados nesta seção demonstram a utilização da 

técnica não-intrusiva de medição de temperaturas por termografia de infravermelho, e sua 

utilização na análise de problemas inversos, através da realização de dois experimentos em 

condução de calor, utilizando a bancada e o procedimento experimental apresentados no 

capítulo 5 deste trabalho. 

Os primeiros resultados experimentais aqui relatados têm o objetivo de 

demonstrar a identificação da capacidade térmica e das condições de contorno em um 

experimento de placas em sanduíche com variação desprezível da temperatura nas 

coordenadas espaciais, empregando-se placas de alumínio (alta condutividade térmica) de 

mesmo tamanho que a resistência elétrica. Os resultados experimentais aquisitados pela 

câmera de infravermelho são então tratados e empregados na solução do problema inverso 

correspondente, via inferência Bayesiana, a partir da solução numérica do modelo em 

parâmetros concentrados para o problema direto associado. 

O segundo experimento aborda um problema com variação espacial significativa 

das temperaturas, utilizando-se placas de baquelite (baixa condutividade térmica) de 4x8 cm, 

portanto mais longas que a resistência elétrica empregada. Três experimentos distintos são 

realizados, variando-se a configuração (horizontal ou vertical) e a posição relativa da 

resistência elétrica (aquecimento superior e inferior). Seleciona-se então um dos experimentos 

para permitir a identificação das propriedades termofísicas e condições de contorno 

simultaneamente, novamente via inferência Bayesiana, e desta feita empregando o método de 

transformação integral na solução do problema direto. 

 

 

 

 

 



 192

6.3.1. Estimativa de Capacidade Térmica e Condições de 

Contorno em Placas de Alumínio 

 

Para o experimento com as placas de alumínio, utilizou-se duas placas quadradas 

de espessura de 3mm e de 40 mm de lado. As imagens neste experimento foram feitas com as 

placas na posição vertical, de forma frontal. O aquecimento das placas foi feito com uma 

resistência de 38.18Ω, quadrada e de mesmas dimensões das placas de alumínio, instalada 

entre as duas placas. Para melhorar o contato entre a resistência e as placas utilizou-se uma 

fina camada de pasta térmica. Seis termopares do tipo“K” foram fixados com epoxy nas 

placas, sendo 1 termopar fixado na placa voltada para a câmera e 5 termopares fixados na 

placa de trás. Depois de feita a fixação dos 6 termopares, a placa voltada para a câmera 

recebeu uma pintura em grafite (ε ≈ 0.97) em toda a sua superfície.  

As figuras 6.56.a-b apresentam as placas de alumínio montadas na bancada 

experimental e o posicionamento horizontal da câmera com relação as placas. As figuras 

6.57.c-d fazem a identificação dos termopares neste experimento. As aquisições feitas tanto 

pelo Agilent quanto pela câmera foram efetuadas a cada 10 segundos. A descrição detalhada 

do procedimento experimental foi apresentada no capítulo 5 deste trabalho.  

As figuras 6.57.a-b apresentam as temperaturas medidas pelos 5 termopares da 

placa de trás (sem pintura). Pode-se observar que todos os termopares apresentam 

temperaturas em torno dos 55°C no regime permanente. Nota-se também que as variações de 

temperatura entre os termopares são ligeiramente mais significativas na direção horizontal 

(tp2, tp4 e tp6) que na vertical (tp3, tp5 e tp6). A figura 6.57.c compara as temperaturas 

aquisitadas pelo termopar da placa da frente, tp1 comparado ao da placa de trás, tp3, ambos 

situados na mesma posição só que em placas diferentes. Como esperado, as temperaturas da 

placa de trás (sem pintura ε ≈ 0.10) são mais altas que as temperaturas da placa da frente (com 

pintura de grafite, ε ≈ 0.97). Isso se dá devido à diferença entre as emissividades das duas 

placas, levando à partição assimétrica do fluxo de calor gerado pela resistência elétrica.  
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                                  (a)                                                                              (b)                       

Figura 6.56 – Experimento com as placas de alumínio, com detalhe do  

dispositivo de posicionamento horizontal da câmera. 
 

 

(c) 

 

(d) 

Figura 6.56 – Identificação dos termopares no experimento de placa vertical 
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Figura 6.57.a – Temperaturas nos termopares da 

vertical tp5, tp6 e  tp3 (respectivamente as curvas 

de baixo para cima) - placas de alumínio 

 
Figura 6.57.b – Temperaturas nos termopares da 

horizontal tp2, tp6 e  tp4 (respectivamente as 

curvas de baixo para cima) - placas de alumínio 

 
Figura 6.57.c – Comparação entre as temperaturas do termopar do topo da placa de trás (tp3 – curva 

vermelha) e do topo da placa da frente (tp1 – curva azul) no experimento com as placas de alumínio 

 

A figura 6.58.a apresenta a variação de digital level da placa voltada para a 

câmera. Já a figura 6.58.b mostra a faixa estreita dos valores máximos, mínimos e médios do 

digital level na região do termopar de referência. Os valores médios em uma matriz de 2x2 

pixels são usados na correlação com as temperaturas lidas no termopar. 

As figuras 6.59.a,b apresentam as duas curvas que foram utilizadas na etapa de 

correlação do digital level com a temperatura. A figura 6.59.b representa os valores médios de 

digital level na região próxima ao termopar de referência, tp1. A curva na figura 6.60.a 

representa a variação da temperatura em graus Celsius aquisitada pelo termopar de referência. 

Depois de feita a correlação para esta região do termopar de referência, em matriz de 2x2 

pixels, aplicou-se esta conversão em toda a placa.  
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Figura 6.58.a – Valores máximos, médios e 

mínimos de digital level encontrados na placa 

voltada para a câmera –placas de alumínio 

Figura 6.58.b – Valores máximos, médios e 

mínimos de digital level encontrados na região do 

termopar de referência–placas de alumínio 

 
Figura 6.59.a – Temperaturas aquisitadas pelo 

termopar tp1. 

 
Figura 6.59.b – Digital level médio na região 

próxima ao termopar tp1. 

 

As figuras 6.60.a-e apresentam uma avaliação qualitativa das medidas de 

temperatura aquisitadas pelos termopares da placa de trás tp2, tp3, tp4, tp5 e tp6 em graus 

Celsius com as temperaturas aquisitadas pela câmera, depois de realizada a conversão, para 

posições referentes aos termopares na placa da frente. Pode-se observar, o comportamento 

físico coerente dos resultados encontrados pelos termopares e pela câmera, lembrando que 

neste caso as temperaturas não são esperadas serem iguais, tendo em vista as diferentes 

emissividades em cada face e a conseqüente partição assimétrica do fluxo térmico.  
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Figura 6.60.a – Comparação entre as 

temperaturas em graus Celsius. Curva azul: 

câmera e Curva vermelha: termopar tp2. 

 
Figura 6.60.b – Comparação entre as 

temperaturas em graus Celsius. Curva azul: 

câmera e Curva vermelha: termopar tp3. 

 
Figura 6.60.c – Comparação entre as 

temperaturas em graus Celsius. Curva azul: 

câmera e Curva vermelha: termopar tp4. 

 
Figura 6.60.d – Comparação entre as 

temperaturas em graus Celsius. Curva azul: 

câmera e Curva vermelha: termopar tp5 

 
Figura 6.60.e– Comparação entre as temperaturas em graus 

Celsius. Curva azul: câmera e Curva vermelha: termopar tp6 

 

Observa-se que as temperaturas medidas com a câmera estão consistentemente 

abaixo daquelas aquisitadas pelos termopares, como fisicamente esperado, uma vez que a face 

onde estão instalados os termopares tem uma emissividade menor. Nota-se também que o 

desvio mais significativo ocorre na posição do termopar mais abaixo na placa (tp5). 
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A formulação matemática para a temperatura média na superfície da placa para 

este experimento com as placas de alumínio, após a aproximação por parâmetros 

concentrados, é apresentada nas equações abaixo: 

 

( ) ( )4 4( )
( ) ( ) ( ) , 0m

p z amb m amb m w

dT t
C L h T T t T T t f t q t

dt
ρ εσ= − + − + >  (6.35.a) 

(0)m ambT T=  (6.35.b) 

 

onde a variação temporal do fluxo de calor entre as duas placas é escrita como 

 

( ) (1 Exp[ ])f t c bt= − −
 (6.36) 

 

Pela lei de resfriamento de Newton, e um coeficiente de transferência de calor 

constante, tem-se que o comportamento temporal do fluxo deve ser semelhante ao da 

temperatura. Por isto, assumiu-se a forma funcional exponencial para a variação do fluxo de 

calor entre as duas placas dada pela equação (6.36). Nesta etapa os coeficientes da função f(t) 

foram considerados desconhecidos e foram estimados através da solução do problema inverso 

com os resultados experimentais, onde qw é conhecido e dado pela potência dissipada na 

resistência dividida pela área da face da resistência: 

São apresentados a seguir os resultados das estimativas através do procedimento 

inverso de inferência Bayesina via MCMC, utilizando como dados experimentais as 

temperaturas obtidas pela técnica da termografia por infravermelho para o experimento com as 

placas de alumínio. Para a estimativa em questão os parâmetros são , , , ,Cp h b cρ ε , 

apresentados na formulação matemática para o experimento de alumínio 

Os resultados apresentados a seguir fazem uma analise comparativa entre seis 

diferentes casos de estimativa de parâmetros a partir das temperaturas experimentais 

aquisitadas com a câmera de infravermelho. As tabelas 6.34 e 6.35 resumem os casos 

estudados, os valores iniciais e o tipo de priori utilizados no procedimento de estimativa, 

assim como os limites mínimos e máximos de procura para cada parâmetro.   

Para os quatro primeiros casos, tem-se a analise inversa sendo realizada na 

estimativa de 5 parâmetros, sendo eles a capacidade térmica volumétrica do alumínio, o 
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coeficiente de transferência de calor por convecção, dois parâmetros referentes à função que 

controla a variação do fluxo de calor no tempo, e por fim a emissividade da tinta de grafite 

utilizada na pintura da placa de alumínio, ou seja ( , , , ,Cp h b cρ ε ). Para os dois últimos casos 

analisou-se a influência na estimativa para o caso de adotarmos como conhecido o valor da 

emissividade, com o valor fornecido pelo fabricante da tinta de grafite, e realizou-se a 

estimativa dos quatro parâmetros restantes.  

Em todos os casos utilizou-se de priori não-informativa (Uniforme) na 

estimativa do parâmetro “b”; para os demais parâmetros analisou-se através dos casos, a 

influência na escolha de uma priori Gaussiana centrada nos valores esperados para cada um 

dos parâmetros com um desvio padrão que variou até 20% do valor da sua respectiva média. 

A tabela 6.34 traz a informação da escolha das prioris para cada caso, onde a escolha por 

prioris normais é representada pela letra “N” e por prioris uniformes representada pela letra 

“U”. 

Os valores esperados para cada parâmetro, e para alguns casos utilizados como 

valores iniciais no procedimento de estimativa, são resultantes de: (i) medição pelo método 

Flash (UNIMET/LTTC), no caso da capacidade térmica da placa ( Cpρ ); (ii) da analise de 

correlações para convecção natural em placa plana vertical sujeita a um fluxo de calor 

prescrito, para o caso do coeficiente de transferência de calor ( h ); (iii) da solução analítica da 

equação do calor para o regime permanente, para a constante “ c ” da variação do fluxo; (iv) 

do valor da emissividade fornecida pelo fabricante para a tinta de grafite utilizada na pintura 

na face da placa de alumínio voltada para a câmera ( ε ); e (v) da simples média no intervalo 

de procura para o parâmetro “ b ”, sobre o qual não se tem a princípio informação disponível. 

Neste sentido, os casos 1 a 3 foram construídos de modo a analisar a influência da utilização 

de diferentes valores iniciais no procedimento de estimativa.  
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Tabela 6.34 – Definição dos dados de entrada para a solução inversa.  

 P Inicial Priori 

Caso 1 , , , ,Cp h b cρ ε  espP  N, N, U, N, N  

Caso 2 , , , ,Cp h b cρ ε  maxP  N, N, U, N, N 

Caso 3 , , , ,Cp h b cρ ε  esp max min0.01( )P P P+ −  N, N, U, N, N 

Caso 4 , , , ,Cp h b cρ ε  espP  U, U, U, U, N 

Caso 5 , , ,Cp h b cρ  espP  N, N, U, N 

Caso 6 , , ,Cp h b cρ  espP  U, U, U, U 

 

Tabela 6.35 – Definição dos dados de entrada para a solução do problema inverso.  

P 
Valor Esperado 

espP  

Desvio Padrão 

(caso priori Normal) 

Limite Mínimo 

minP  

Limite Máximo 

maxP  

Cpρ
 

[J/m3°C] 
2.9799x106 349 249.0 2.0802x106 3.8795x106 

h
 

[W/m
2
°C] 

12.322 2.4640 6.1610 24.644 

b  0.05 - 0 0.1 
c  0.5902 0.6040 0 1 
ε  0.97 0.0291 0.94 1 

 

 

Antes de iniciar o procedimento de solução do problema inverso, realizou-se 

uma analise de sensibilidade do problema inverso utilizando um total de 300 medidas 

experimentais. A figura 6.61 apresenta os coeficientes de sensibilidade reduzidos do problema 

de estimativa com relação a cada parâmetro, calculados por um esquema de diferenças 

centradas como apresentado na equação (6.37) abaixo, para uma perturbação no parâmetro de 

410ξ −= . Pode-se então perceber nesta figura uma menor sensibilidade do problema para o 

parâmetro “b” e uma dependência linear entre h  e ε . 

 

1 2 1 2
ij
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Figura 6.61 – Analise de sensibilidade dos parâmetros 

 

 

A tabela 6.36 e as figuras 6.62 a 6.64 apresentam os resultados das estimativas para 

os 6 diferentes casos. Na tabela 6.36  tem-se os valores estimados para cada parâmetro e o seus 

respectivos intervalos com 99% de confiança. Pode-se perceber, pela análise desta tabela, uma boa 

concordância nas estimativas de todos os parâmetros pelos seis casos. 

Nas figuras de 6.62 a 6.64 tem-se a comparação da evolução das cadeias de Markov 

para cada parâmetro entre os casos 1, 2 e 3, casos 1 e 4 e casos 5 e 6, respectivamente. Estas figuras 

mostram a convergência das cadeias entre si, justificando assim as estimativas concordantes 

apresentados na tabela 6.36. Na figura 6.62, por exemplo, mostra-se para todos os parâmetros o 

comportamento convergente das cadeias mesmo para três diferentes valores iniciais. As figura 6.63 e 

6.64, mostram, respectivamente, para o casos de uma estimativa com 5 e 4 parametros, que mesmo 

para o caso da escolha de prioris não-informativas, tem-se ainda assim, bons resultados quando 

comparados às estimativas usando prioris Normais.  

A figura 6.65 vem complementar as análises dos resultados das estimativas para o 

experimento com as placas de alumínio, confirmando as boas estimativas encontradas tendo em vista 

que os resíduos encontrados entre as temperaturas experimentais e as temperaturas calculadas com as 

estimativas resultantes do caso 1,  são menores que 1ºC.  
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Tabela 6.36  – Resultado das estimativas para os 6 diferentes casos.  

P CASO   1 CASO   2 CASO   3 

Cpρ
 

[J/m
3
°C] 

2.423x106 
[2.08x106  ,  2.81x106] 

2.461 x106 
[2.09x106 , 2.83x106] 

2.450x106 
[2.08x106 , 2.865x106] 

h
 

[W/m
2
°C] 

14.341 
[10.89 , 17.79] 

14.680 
[11.49 ,  17.88 ] 

14.383 
[10.79 , 17.98] 

b  
0.03533 

[0.0226 , 0.0481] 
0.03511 

[0.0231  ,  0.0471] 
0.03795 

[0.0315 , 0.0444] 

c  
0.6045 

[0.506 ,  0.703] 
0.6141 

[0.522  ,  0.706] 
0.6063 

[0.502 , 0.711] 

ε  
0.9670 

[0.94  , 1.00] 
0.9659 

[0.94  , 1.00] 
0.9694 

[0.94 , 1.00] 

 

P CASO   4 CASO   5 CASO   6 

Cpρ
 

[J/m
3
°C] 

2.189 x10
6
 

[2.08x10
6 

 , 2.339x10
6
] 

2.477 x10
6
 

[2.115x10
6
 ,  2.839x10

6
] 

2.552 x10
6
 

[2.200x10
6 

 , 2.904x10
6
] 

h
 

[W/m
2
°C] 

12.215 
[10.865 , 13.566] 

14.803  
[11.670  , 17.934] 

15.506 
[12.454 , 18.558] 

b  
0.03596 

[0.0230 , 0.0489] 
0.03519  

[0.02305  ,  0.0474] 
0.03491 

[0.0218 , 0.0480] 

c  
0.5441 

[0.505 , 0.584] 
0.6183  

[0.528  , 0.709] 
0.6386 

[0.5505 , 0.7267] 

ε  
0.9727 

[0.933 , 1.00] 
- - 
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Figura 6.62.a-e – Comparação entre a evolução das cadeias para diferentes valores iniciais: 

Casos 1 (linha preta);  Caso2 (linha vermelha) e Caso 3 (linha azul) 
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Figura 6.63.a-e – Comparação entre a evolução das cadeias para diferentes prioris:  

Casos 1 (linha preta) e caso 4 (linha verde) 
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Figura 6.64.a-d – Comparação entre a evolução das cadeias para diferentes prioris:  

Casos 5 (linha rosa) e Caso 6 (linha azul claro) 
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Figura 6.65 -  Analise dos resíduos das estimativas pelo Caso 1 
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Na etapa de analise da capacidade térmica das placas de alumínio, foram 

extraídas 3 amostras do mesmo material para análise na Unidade de Metrologia Térmica Prof. 

Roberto de Souza, do LTTC, PEM/COPPE/UFRJ. O equipamento utilizado para a 

determinação das propriedades termofísicas das amostras de materiais aqui ensaiados é 

baseado no método Flash, o Netzsch LFA 447/1, disponível na UNIMET do LTTC.  O LFA 

447/1 é um instrumento utilizado para medir difusividade térmica, calor específico e 

condutividade térmica de metais, revestimentos, compósitos, cerâmicas, polímeros, líquidos e 

outros materiais, numa faixa de temperatura de 25 a 200°C. A fonte de energia para gerar o 

aumento de temperatura na amostra é uma lâmpada de Xenônio de alta potência. Ela é 

envolvida por um espelho parabólico (refletor) que direciona o feixe de luz para a amostra.  

O LFA 447/1 usa um detetor de InSb-IR na faixa de comprimento de onda de 

2000 a 5000 nm, resfriado por nitrogênio líquido, que permite uma leitura de temperatura 

rápida e sem contato direto com a amostra. A conexão próxima com o sistema pré-

amplificador permite uma aquisição de dados rápida (500 kHz, 12 Bit) e uma medida de 2000 

pontos por teste. Um forno integrado (aquecedor) mantém a temperatura da amostra estável 

durante a medida. O aquecedor é integrado ao suporte da amostra, que tem uma massa térmica 

baixa, permitindo altas taxas de aquecimento / resfriamento. As medidas de temperatura da 

amostra são feitas no suporte por um temopar. Um chiller Julabo é usado para auxiliar o 

controle de temperatura do forno.  

A lâmpada de Xenônio pode prover uma energia de pulso até 10 J (até 5 

J/cm²), controlada pelo usuário através de um software fornecido com o equipamento, na 

faixa de comprimento de onda de 150 nm a 2000 nm. O software também permite que o 

comprimento do pulso de energia seja ajustado em 0.1, 0.2 ou 0.4 ms. A figura 6.66 mostra 

um esquema do equipamento. A figura 6.67  mostra o equipamento operando na UNIMET 

(Unidade de Metrologia Térmica do LTTC/PEM/COPPE). 
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Figura. 6.66. Netzsch Nanoflash LFA 447/1 

 

 

Figura. 6.67. Netzsch Nanoflash LFA 447/1 operando no UNIMET, LTTC/PEM, COPPE/UFRJ 

 

A seguir, na Tabela 6.37, apresenta-se a consolidação dos resultados 

experimentais para a difusividade térmica, condutividade térmica e calor específico, obtidas 

com o Nanoflash, nas temperaturas selecionadas de 25, 35, 45 e 55 °C, condizentes com a 

faixa de temperatura dos experimentos aqui realizados. Além das médias para cada amostra, a 

cada temperatura, apresenta-se as médias das três amostras para cada temperatura. Apresenta-

se também, na última coluna, os valores de literatura para alumínio puro, a 20 °C, extraídos de 

[Bejan (1993)].  
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Tabela 6.37 – Propriedades termofisicas das amostras de alumínio das placas ensaiadas, em função da 

temperatura, obtidas com o Nanoflash Netzsch LFA 447/1 e comparadas com valores da literatura a 20 C 

para aluminio puro [Bejan (1993)]. 

Propriedade 
Amostras 

Médias 

Bejan(1993) 

alum. Puro 

(20 ºC) 1 2 3 

α [mm2/s] 

25 °C 

84.450 

(0.727)* 

83.594 

(0.151)* 

83.163 

(1.009)* 
83.736 84.18 

α [mm2/s] 

35 °C 

84.822 

(0.812) 

83.753 

(0.530) 

82.406 

(0.843) 
83.660 - 

α [mm2/s] 

45 °C 

84.322 

(0.302) 

82.881 

(0.224) 

82.431 

(0.510) 
83.211 - 

α [mm2/s] 

55 °C 

83.837 

(0.253) 

83.037 

(0.704) 

83.118 

(0.207) 
83.327 - 

k [W/mC] 

25 °C 

185.85 

(1.60) 

192.78 

(0.361) 

205.80 

(2.50) 
194.81 204. 

k [W/mC] 

35 °C 

199.51 

(2.29) 

205.63 

(1.43) 

208.35 

(2.13) 
204.50 - 

k [W/mC] 

45 °C 

231.83 

(2.03) 

229.36 

(0.612) 

229.67 

(1.38) 
230.29 - 

k [W/mC] 

55 °C 

239.79 

(0.715) 

229.32 

(1.94) 

219.60 

(0.546) 
229.57 - 

Cp [J/gC] 

25 °C 

0.816 

(0.010) 

0.855 

(0.013) 

0.918 

(0.030) 
0.863 0.896 

Cp [J/gC] 

35 °C 

0.876 

(0.030) 

0.910 

(0.016) 

0.937 

(0.002) 
0.908 - 

Cp [J/gC] 

45 °C 

1.026 

(0.005) 

1.026 

(0.028) 

1.033 

(0.012) 
1.028 - 

Cp [J/gC] 

55 °C 

1.061 

(0.008) 

1.024 

(0.012) 

0.979 

(0.014) 
1.021 - 

(*) desvio padrão das medidas  
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Os resultados acima são então diretamente comparados aos valores estimados 

da capacidade térmica (ρCp) pela presente análise, destacando-se os casos 1 e 6 que 

representam os dois casos extremos analisados. Para o caso 1, todos os parâmetros possuem 

informação a priori na forma de distribuições normais, enquanto no caso 6 todos os 

parâmetros são estimados sem nenhuma informação restritiva (distribuições uniformes). 

Destaca-se também o valor médio de todas as estimativas (casos 1 a 6), e observa-se que 

todos os três resultados encontram-se em excelente concordância com as medidas do 

Nanoflash e os valores da literatura, como mostrado na Tabela 6.38.  

 

Tabela 6.38 – Capacidades térmicas do alumínio estimadas, comparadas com as obtidas pelo Nanoflash 

Netzsch LFA 447/1 e com valores da literatura a 20 °C para alumínio puro [Bejan (1993)]. 

 
NanoFlash 

(25 – 55 ºC) 

Bejan(1993) 

@ 20 °C 
Caso 1 Caso 6 

Média 

Casos 1 a 6 

ρCp 

[J/m
3
°C] 

2.573 x106 2.425 x106 2.423x106 2.552x106 2.425x106 

 

 

6.3.2. Estimativa Simultânea de Propriedades Termofísicas e 

Condições de Contorno com Placas de Baquelite 

 

Nos resultados experimentais apresentados nesta subseção aborda-se um 

problema com variação espacial significativa das temperaturas, utilizando-se placas de 

baquelite (baixa condutividade térmica) de espessura 1.58mm e de dimensões 40mm de 

largura por 80mm de comprimento. No aquecimento das placas foi empregado uma resistência 

elétrica de 38.18Ω, quadrada e de dimensões 40mm de largura por 40mm de comprimento, 

instalada entre as duas placas, ligada a uma fonte de corrente contínua com voltagem 

aquisitada automaticamente. Para melhorar o contato entre a resistência e as placas utilizou-se 

uma fina camada de pasta térmica. Três experimentos distintos foram realizados, variando-se a 

configuração (horizontal ou vertical) e a posição relativa da resistência elétrica (aquecimento 

superior e inferior). Para ilustrar o emprego da metodologia de solução de problema inverso 

aqui proposta, em uma sitação com resultados experimentais reais, escolheu-se uma das 
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configurações experimentais acima citadas, para tratamento dos seus dados visando a 

estimativa simultânea das propriedades termofísicas e demais parâmetros desconhecidos no 

problema físico. Para tal, em função do excelente comportamento observado na seção 6.2.3, 

empregou-se a metodologia de estimativa a partir do campo transformado, e permitindo-se a 

principio variações espacias nos coeficientes a determinar, mesmo sabendo-se tratar de um 

meio homogêneo. Serão apresentados a seguir os resultados experimentais encontrados para os 

três experimentos envolvendo as placas de baquelite. As figuras 6.68 abaixo apresentam de 

forma esquemática o modelo físico referente a cada configuração experimental, placa vertical 

com aquecimento superior, placa vertical com aquecimento inferior e placa horizontal.  

 

 

 

 

 

 

 

 

 

 
Figura 6.68.a– Modelo físico da configuração de placa vertical com aquecimento superior 

 

 

 

 

 

 

 

 

 

 

 

Figura 6.68.b – Modelo físico da configuração de placa vertical com aquecimento inferior 
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Figura 6.68.c – Modelo físico da configuração de placa horizontal 

 

A formulação matemática foi adotada de forma a ser geral para as três 

configurações, variando apenas os valores de q1 e q2, h1 e h2, de modo a ser representativa da 

situação física em questão. 
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o outro termopar fixado simetricamente na placa de trás (Fig. 5.5.a). Nas três configurações 

experimentais a distância entre a placa e a câmera foi de cerca de 250mm e a voltagem 

especificada na fonte ligada à resistência foi de 8V. Todavia, vale lembrar, que a voltagem foi 

aquisitada automaticamente durante todo o experimento pelo sistema de aquisição de dados 

Agilent, simultaneamente à aquisição das temperaturas pelos termopares. 

Depois de feita a fixação dos termopares, as duas placas receberam uma pintura 

em grafite (ε ≈ 0.97) em suas superfícies externas. Na figura 6.69.a-c tem-se a comparação 

entre o comportamento temporal das temperaturas aquisitadas pelos dois termopares, sendo 

em azul as temperaturas referentes ao termopar fixado no lado da câmera e em vermelho o 

termopar fixado na placa de trás, para os três experimentos, placa na vertical com aquecimento 

superior (figura 6.69.a), placa na vertical com aquecimento inferior (figura 6.69.b) e placa na 

horizontal (figura 6.69.c).  

Como esperado, pode-se observar a boa concordância entre as temperaturas 

apresentadas pelos termopares nas configurações verticais tanto para o aquecimento superior 

quanto para o aquecimento inferior. Para a placa horizontal, a concordância entre as 

temperaturas indicadas pelos dois termopares pode ser explicada pelas pequenas diferenças do 

coeficiente de transferência de calor para a placa superior e inferior nesta diferença de 

temperaturas entre a placa e o ambiente externo. 

Para cada configuração experimental realizou-se um total de três experimentos de 

modo a verificar as suas repetibilidades. As figuras 6.70.a-c apresentam as comparações das 

temperaturas aquisitadas pelo termopar voltado para a câmera nos três experimentos para cada 

uma das três configurações, onde percebe-se uma excelente concordância entre as repetições 

de cada experimento. 
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Figura 6.69.a – Comparação dos termopares nas duas placas: Experimento de placa na vertical com 

aquecimento superior 

0 500 1000 1500 2000 2500 3000
t@segD

25

30

35

40

45

50
T@°CD

 

Figura 6.69.b. – Comparação dos termopares nas duas placas: Experimento de placa na vertical com 

aquecimento inferior 
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Figura 6.69.c. – Comparação dos termopares nas duas placas: Experimento de placa na horizontal  
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Figura 6.70.a – Repetibilidade experimental: Experimento de placa na vertical com aquecimento superior 
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Figura 6.70.b. – Repetibilidade experimental: Experimento de placa na vertical com aquecimento inferior 
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Figura 6.70.c. – Repetibilidade experimental: Experimento de placa na horizontal  

 



 214

As figuras 6.71.a-b, 6.72.a-b e 6.73.a-b apresentam as duas curvas que foram 

utilizadas na etapa de conversão do digital level para temperatura, para cada uma das 

configurações experimentais. A forma em que se dá a correlação entre estas duas grandezas foi 

detalhadamente apresentada no capítulo anterior. 

A figura 6.71.b, 6.72.b e 6.73.b representam os valores médios de digital level na 

região próxima ao termopar de referência, voltado para a câmera. As curvas na figura 6.71.a, 

6.72.a e 6.73.a representam as variações da temperatura em graus Celsius aquisitada pelo 

termopar de referência. Depois de feita a correlação para esta região do termopar de 

referência, em matriz de 3x3 pixels, aplica-se esta conversão em toda a placa.  
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(b) 

Figura 6.71 – Correlação de digital level e temperatura: Experimento placa na vertical aquecimento 

superior 
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Figura 6.72 – Correlação de digital level  e temperatura: Experimento placa na vertical aquecimento 

inferior 
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Figura 6.73 – Correlação de digital leve e temperatura: Experimento placa na horizontal 

 

 

As figuras 6.74 mostram a posição deslocada, evitando-se capturar a imagem do 

fio do termopar de referência, e as regiões retangulares demarcadas onde foram computados os 

valores médios das temperaturas para cada altura ao longo de todo o comprimento da placa. 

As regiões demarcadas onde se operam as médias na direção transversal, só se fizeram 

necessárias em um lado da placa, uma vez que os perfis se apresentaram razoavelmente 

simétricos ao longo da largura da placa nas três configurações experimentais. O número de 

posições para cada experimento refere-se ao número de sensores. Para o experimento da placa 

na posição vertical com aquecimento superior (figura 6.74.a) obteve-se 65 sensores, para o 

experimento da placa vertical com aquecimento inferior (figura 6.74.b) obteve-se 60 sensores, 

e por fim,  para o experimento horizontal (figura 6.74.c), obteve-se 65 sensores. Essas 

diferenças no número de sensores são devidas a pequenas diferenças entre as distâncias da 

placa à lente da câmera, após o reposicionamento para cada experimento. 
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(a) (b) (c) 

Figura 6.74 – Posições ao longo do comprimento da placa para  

exportação das temperaturas experimentais  
 

As figuras 6.75.a-c, 6.76.a-c e 6.77.a-c, apresentam as temperaturas aquisitadas 

pela câmera, depois de realizada a conversão, para diferentes posições na placa da frente. A 

linha vertical presente nas figuras 6.75.a, 6.76.a e 6.77.a, indica a posição de término da 

resistência. 

As figuras 6.75.a, 6.76.a e 6.77.a apresentam a variação espacial da temperatura 

ao longo do comprimento da placa, onde o início do eixo das abscissas, nestes gráficos, são 

referentes às posições na parte superior da placa.  

Pela analise das figuras 6.75.b, 6.76.b e 6.77.b pode-se observar o 

comportamento simétrico ao longo da largura da placa, de modo que a variação espacial da 

temperatura pode ser considerada unidimensional, ou seja, como sendo essencialmente na 

direção do comprimento da placa.  

As figuras 6.75.c, 6.76.c e 6.77.c apresentam o comportamento temporal da 

temperatura nos três experimentos, de modo que se pode observar por estas três figuras que o 

tempo final considerado nestes experimentos, em torno de 1hora, foi suficientemente grande 

para que as temperaturas fossem consideradas em regime permanente. 
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Figura 6.75.a – Temperatura ao longo do comprimento da placa para diferentes tempos: 

Placa Vertical com Aquecimento Superior 
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Figura 6.75.b. – Temperatura ao longo da largura da placa para cinco diferentes tempos: 

Placa Vertical com Aquecimento Superior 
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Figura 6.75.c. – Temperatura ao longo dos tempos para diferentes posições: 
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ao longo do comprimento da placa - Placa Vertical com Aquecimento Superior 
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Figura 6.76.a – Temperatura ao longo do comprimento da placa para diferentes tempos: 

Placa Vertical com Aquecimento Inferior 
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Figura 6.76.b. – Temperatura ao longo da largura da placa para cinco diferentes tempos: 

Placa Vertical com Aquecimento Inferior 
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Figura 6.76.c. – Temperatura ao longo dos tempos para diferentes posições  

ao longo do comprimento da placa - Placa Vertical com Aquecimento Inferior 
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Figura 6.77.a – Temperatura ao longo do comprimento da placa para diferentes tempos: 

Placa Horizontal 
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Figura 6.77.b. – Temperatura ao longo da largura da placa para cinco diferentes tempos 

Placa Horizontal 
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Figura 6.77.c. – Temperatura ao longo dos tempos para diferentes posições  

ao longo do comprimento da placa - Placa Horizontal 
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Antes de iniciar o procedimento de solução inversa, analisou-se o determinante 

da matriz de informação JJT , para o caso de se variar o número de termos na expansão da 

temperatura envolvida na estimativa para um número fixo de parâmetros e uma freqüência 

fixa de medidas no tempo, uma vez que o procedimento de estimativa proposto é baseado no 

campo transformado. Os resultados são apresentados nas figuras 6.78.a-c e tabelas 6.39.a-c, 

para as três configurações experimentais, respectivamente, isto é, posição vertical com 

aquecimento superior, posição vertical com aquecimento inferior e para a placa na posição 

horizontal. Lembra-se que, como se trata de estimativas no campo transformado, o número 

total de dados experimentais é dado pelo produto entre o número de termos na expansão da 

temperatura e o número de medidas no tempo. Logo, nestas análises de sensibilidade utilizou-

se no procedimento de integração espacial (inerente ao processo de transformação integral dos 

dados experimentais) toda a informação espacial disponível, respectivamente 65, 60 e 65 

sensores, em cada configuração experimental. Em seguida, comparou-se o comportamento do 

determinante entre as configurações experimentais no caso de se fixar 10 termos na expansão 

da temperatura (figura 6.79).  

As figuras 6.78.a-c mostram que para as três configurações experimentais tem–se 

um pequeno aumento do valor do determinante com o aumento do número de termos na série 

de 10 para 15 termos. Pela figura 6.79, pode-se observar que o comportamento do 

determinante para as três configurações experimentais é praticamente coincidente (curva 

vermelha: placa vertical com aquecimento superior; curva verde: placa vertical com 

aquecimento inferior; curva azul: aquecimento horizontal) para 10 termos na expansão da 

temperatura,  não indicando assim uma diferença de sensibilidade do problema com relação ao 

posicionamento da placa e/ou da resistência 
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Figura 6.78.a – Placa Vertical Aquecimento Superior: 

Analise do determinante da matriz de informação com 10 termos na expansão da temperatura (curva 

vermelha) e com 15 termos (curva preta) 

 

 

 

Tabela 6.39.a – Analise do determinante da matriz de informação com 10 e 15 termos na expansão da 

temperatura, Placa Vertical Aquecimento Superior 

Placa Vertical Aquecimento Superior 

NP =10 

No. Termos na Expansão 
da Temperatura 

Determinante 

Nmedidas=50 Nmedidas=100 Nmedidas=200 

10    
15    
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Figura 6.78.b – Placa Vertical Aquecimento Inferior: 

Analise do determinante da matriz de informação com 10 termos na expansão da temperatura (curva 

vermelha) e com 15 termos (curva preta). 

 

 

 

 

 

 

Tabela 6.39.b – Analise do determinante da matriz de informação com 10 e 15 termos na expansão da 

temperatura, Placa Vertical Aquecimento Inferior 

Placa Vertical Aquecimento Inferior 

NP=10 

No. Termos na Expansão 

da Temperatura 

Determinante 

Nmedidas=50 Nmedidas=100 Nmedidas=200 

10    
15    
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Figura 6.78.c – Placa com Aquecimento Horizontal: 

Analise do determinante da matriz de informação com 10 termos na expansão da temperatura (curva 

vermelha) e com 15 termos (curva preta). 

 

Tabela 6.39.c – Analise do determinante da matriz de informação com 10 e 15 termos na expansão da 

temperatura, Placa com Aquecimento Horizontal 

Placa com Aquecimento Horizontal 

NP =10 

No. Termos na Expansão 

da Temperatura 

Determinante 

Nmedidas=50 Nmedidas=100 Nmedidas=200 

10    
15    

 

 

Figura 6.79 – Análise do determinante da matriz de informação com 10 termos na expansão da 

temperatura para as três configurações experimentais:  Placa vertical com aquecimento superior 

(curva vermelha); Placa vertical com aquecimento inferior (curva verde); Placa horizontal (curva 

azul); 
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A figura 6.80 apresenta o comportamento do determinante da matriz de 

informação para 4 situações diferentes, estimando 10 parâmetros 

( 0 1 0 1 0 1 2 3, , , , , , , , ,x x x xLk k w w d d d d d b ), 12 parâmetros (acrescentando ,xL xLk w ), 14 parâmetros 

( 0 1 2 3 0 1 2 3 0 1 2 3, , , , , , , , , , , , ,x x x xLk k k k w w w w d d d d d b ) e estimando 16 parâmetros (acrescentando 

,xL xLk w ). Pode-se observar que acrescentar termos na expansão das propriedades leva a um 

aumento do número de parâmetros e à diminuição da sensibilidade do problema (curva 

vermelha e curva verde). Todavia, ao se acrescentar os parâmetros dos contornos mantendo-se 

o número de termos na expansão das propriedades fixo, tem-se um significativo aumento do 

determinante (curva preta e curva vermelha), uma vez que seus valores são bem maiores do 

que os valores esperados para os termos da expansão. 

 

Figura 6.80  – Análise do determinante da matriz de informação com 10 termos na expansão da 

temperatura para a placa vertical com aquecimento superior;  

Curva vermelha – NP = 10 ( 0 1 0 1 0 1 2 3, , , , , , , , ,x x x xLk k w w d d d d d b ); 

Curva preta – NP = 12 ( 0 1 0 1 0 1 2 3, , , , , , , , , , ,x xL x xL x xLk k k w w w d d d d d b ); 

Curva verde – NP = 14 ( 0 1 2 3 0 1 2 3 0 1 2 3, , , , , , , , , , , , ,x x x xLk k k k w w w w d d d d d b ); 

Curva azul – NP = 16 ( 0 1 2 3 0 1 2 3 0 1 2 3, , , , , , , , , , , , , , ,x xL x xL x xLk k k k k w w w w w d d d d d b ); 
 

 

Em seguida são apresentados os resultados da identificação simultânea no campo 

transformado das propriedades termofísicas e condições de contorno. São utilizadas as 

temperaturas aquisitadas pela câmera para o experimento com as placas na configuração 

vertical e com o aquecimento na parte superior da placa, empregando o método de 

transformação integral na solução direta e a abordagem de inferência Bayesiana via método de 
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MCMC na solução do problema inverso, oferecendo portanto o emprego simultâneo das 

metodologias teórico-experimentais aqui avançadas. A tabela 6.40 abaixo apresenta os valores 

iniciais e os limites máximos e mínimos considerados na procura dos parâmetros. A escolha 

dos valores iniciais foi baseada nos valores das medidas de propriedades termofísicas feitas na 

UNIMET/LTTC com o método FLASH para as propriedades e em valores de correlações de 

convecção natural para os coeficientes de transferência de calor de placa plana vertical com 

fluxo prescrito. Todavia, tais valores são tidos como valores de referência para as distribuições 

a priori. Os valores iniciais não são necessariamente os valores esperados como solução das 

estimativas, uma vez que observou-se que o campo de temperatura quando calculado com esse 

valores não representa de forma precisa os perfis de temperatura experimentais, Figs. 6.81. A 

figura 6.81 apresenta uma comparação entre as temperaturas calculadas com os valores iniciais 

apresentados na tabela 6.40 (curva preta), as temperaturas experimentais aquisitadas pela 

câmera (curva cyan) e a temperatura ambiente (curva azul), ao longo do comprimento da placa 

para diferentes tempos.  

 

Tabela 6.40 - Valores iniciais, minimos e máximos para cada parâmetro nas estimativas 

P Inicial  Min  Max 

0x
k  0.2789 0.2 0.4 

xL
k  0.2789 0.2 0.4 

1k  1x10
-6

 1x10
-14

 1x10
-7

 

2k  1x10
-6

 1x10
-14

 1x10
-7

 

3k  1x10-6 1x10-14 1x10-7 

0x
w  1.768x10

6
 1.44 x10

6
 2.55 x10

6
 

xLw  1.768x10
6
 1.44 x10

6
 2.55 x10

6
 

1
w  1x10

-6
 1x10

-14
 1x10

-7
 

2
w  1x10

-6
 1x10

-14
 1x10

-7
 

3
w  1x10-6 1x10-14 1x10-7 

0x
h  16.518 8.259 41.294 

xL
h  5.902 0. 11.804 

1h  1x10
-6

 -10.515 10.515 

2h  1x10-6 -2.6289 2.6289 

3h  1x10
-6

 -3.5052 3.5052 

b  0.001 0 0.1 



 226

 

(a) 

 

(b) 

 

(c) 

Figura 6.81 – Comparação entre as temperaturas experimentais (curva cyan) e as temperaturas 

calculadas com os valores iniciais da Tabela 6.40 (curva preta), para diferentes tempos experimentais: 

 (a) t=0s; (b) t=580s; (c)2900s; 
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A tabela 6.41 apresenta os parâmetros e o tipo de priori envolvidos na estimativa 

deste experimento. O caso 1, leva em consideração a informação a priori de que se trata de um 

experimento com um material homogêneo de modo que o filtro utilizado para este primeiro 

caso foi uma constante. Deste modo, tem-se que apenas kx0 ou kxL e wx0 ou wxL são necessários 

na estimativa. Para ambos os casos utilizou-se de prioris normais centradas nas medições de 

propriedade feitas no LTTC com 5% de desvio padrão para kx0 e/ou kxL e wx0 e/ou wxL e priori 

normal centrada em correlação de convecção natural [Bejan (1993)] de placa plana vertical 

com fluxo prescrito para o coeficiente de transferência de calor, para hx0 e hxL. Para os demais 

parâmetros ( 1 1 1 2 3, , , , ,k w h h h b ) considerou-se prioris não informativas. 

Para o caso 2, o filtro considerado foi uma reta de modo que sem tem no vetor de 

parâmetros a serem estimados dois parâmetros a mais do que no caso 1, permitindo-se assim 

identificar variações espaciais das propriedades. Para este segundo caso espera-se estimar 

valores de kxL e wxL iguais ou muito próximos aos de kx0 wx0, respectivamente, uma vez que se 

trata de um experimento de material homogêneo e de espessura uniforme. 

 

Tabela 6.41 – Definição dos dados de entrada para a solução do problema inverso.  

Caso P Priori 

1 
NP = 10  

( 0 1 0 1 0 1 2 3, , , , , , , , ,x x x xLk k w w h h h h h b ); 
N, U, N, U, N, N, U, U, U, U 

2 
NP = 12  

( 0 1 0 1 0 1 2 3, , , , , , , , , , ,x xL x xL x xLk k k w w w h h h h h b ); 
N, N, U, N, N, U, N, N, U, U, U, U 

 

 

A figura 6.82 apresenta a incerteza padrão da temperatura experimental ao 

longo do comprimento da placa, onde percebe-se claramente uma incerteza praticamente 

constante para a parte aquecida próxima de 0.4ºC e uma maior incerteza para a região não 

aquecida, chegando a valores maiores que 0.6ºC.  
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Figura 6.82 –Incerteza padrão da temperatura experimental ao longo do comprimento da placa para o 

experimento com placa vertical e aquecimento superior 

 

A figura 6.83 ilustra a distribuição dos campos transformados da temperatura 

experimental ao longo do tempo para cada ordem. Percebe-se por estas figuras a importância 

mais significativa dos primeiros quatro campos transformados da expansão.  
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Figura 6.83 –Distribuição de temperatura transformada ao longo do tempo para as diferentes ordens da 

série experimento com placa vertical e aquecimento superior 
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A tabela 6.42  apresenta os valores das temperaturas transformadas médias para 

o regime permanente, os desvios padrão das temperaturas experimentais transformadas e os 

desvios percentuais com relação às respectivas temperaturas experimentais transformadas 

médias. Tais desvios foram calculados como sendo os desvios médios das temperaturas para 

as ultimas 50 medidas no tempo (entre 2410s e 2910s) para cada campo transformado, já em 

regime permanente. A figura 6.84 apresenta o desvio padrão da temperatura experimental 

transformada para cada campo transformado. onde percebe-se graficamente o decaimento do 

seu valor com o aumento do número de termos na série  

 

Tabela 6.42. – Analise das incertezas da temperatura experimental transformada  

Ordem i exp,iT  iσ  iσ   % 

1 -4001.95 290.99 7.27 

2 7091.07 133.74 1.89 

3 13873. 209.00 1.51 

4 -4724.33 100.02 2.12 

5 -2410.02 51.515 2.14 

6 -436.347 35.404 8.11 

7 -629.758 33.108 5.26 

8 -218.287 34.948 16.01 

9 311.161 30.442 9.78 

10 -198.154 21.501 10.85 
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Figura 6.84 –Desvio padrão da temperatura experimental transformada para cada campo 

transformado, para o experimento com placa vertical e aquecimento superior 

 



 230

A tabela 6.43 e as figuras 6.85 a 6.89 apresentam os resultados das estimativas 

para o caso 1. Na tabela 6.43  tem-se os valores estimados para cada parâmetro e os seus 

respectivos intervalos com 99% de confiança. Pode-se perceber, pela analise desta tabela 6.43, 

uma boa concordância nas estimativas das propriedades com os valores iniciais referente às 

medidas com o método Flash. 

As figuras 6.85 a 6.88 apresentam, em preto, a curva reconstruída com os 

parâmetros estimados através da técnica de transformação integral (curva preta), enquanto as 

curvas azul e vermelha representam os intervalos com 99% de confiança,  inferior e superior, a 

curva cyan  representa a função construída com os parâmetros iniciais e as linhas pontilhadas 

dizem respeito aos intervalos máximos e mínimos de procura dos coeficientes. 

A figura 6.87  mostra que na região não aquecida, o coeficiente de 

transferência de calor estimado é praticamente nulo, uma vez que pelas analises dos perfis de 

temperatura experimentais tem-se a parcela final da placa praticamente à temperatura ambiente 

durante boa parte do processo transiente. 

A falta de aderência ainda apresentada nas figuras 6.89, entre as temperaturas 

calculadas com os parâmetros estimados e as temperaturas experimentais na região de 

temperaturas mais baixas e próximas à temperatura ambiente, pode ser resultado da não-

linearidade do coeficiente de transferência de calor por convecção natural nessa região, não 

retratada pelo presente modelo de coeficientes variáveis apenas espacialmente. 

A figura 6.90, apresenta os resíduos entre a temperatura experimental e a 

temperatura calculada com os parâmetros estimados, onde percebe-se que os resíduos 

resultantes ainda são relativamente altos principalmente na parte não aquecida da placa, 

chegando a valores próximos a 6 ºC na região mais extrema para o caso 1. 

A Tabela 6.44 apresenta as estimativas encontradas para o caso 2. Para este caso 

foram incluídas as estimativas dos valores das propriedades k(x) e w(x) em x=Lx, uma vez que 

a análise de sensibilidade apresentada anteriormente indicou uma maior sensibilidade da 

solução do problema inverso no caso de se incluir estes parâmetros nas estimativas. Sendo 

assim, para este caso utilizou-se um filtro linear de modo que os parâmetros kx0 e kxL presentes 

no filtro fossem estimados juntamente com os demais parâmetros. Para o caso anterior, havia-

se assumido um filtro constante uma vez que este experimento trata de uma amostra de um 

material a princípio homogêneo.  
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Os resultados apresentados para o caso 2 através da Tabela 6.44 e das figuras 

6.91 a 6.96 mostram a boa concordância nas estimativas de  kx0 e kxL , wx0 e wxL como esperado, 

confirmando se tratar de uma amostra de material homogêneo. Todavia, também para este 

segundo caso tem-se ainda uma falta de aderência entre as temperaturas calculadas com os 

parâmetros estimados e as temperaturas experimentais na região não-aquecida, de modo que os 

resíduos também para este caso continuam atingindo valores maiores que 5ºC nesta região da 

placa, como no caso 1. 

 

Tabela 6.43 - Estimativas e intervalos de confiança para o CASO    1   

Dados de Saída das Estimativas 
P Inicial Estimado ICmin-99% ICmax-99% 

0x
k  0.2789 0.2823 0.2812 0.2834 

1k  1x10
-6

 -5.840 x10
-12

 -7.878 x10
-11

 6.710 x10
-11

 

0x
w  1.7683 x10

6
 1.761x10

6
 1.759 x10

6
 1.763 x10

6
 

1w  1x10
-6

 -1.945 x10
-10

 -2.576 x10
-10

 -1.315 x10
-10

 

0x
h  16.518 23.067 23.037 23.097 

xL
h  5.9020 0.0005205 -0.001048 0.002089 

1h  1x10-6 0.01002 0.00549 0.0145 

2h
 

1x10
-6

 -0.0340 -0.0388 -0.0292 

3h
 

1x10
-6

 -0.1316 -0.1356 -0.1276 

b  0.01 0.00878 0.00870 0.00886 
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Figura 6.85 - Condutividade térmica estimada k(x) 
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Figura 6.86 - Capacidade térmica estimada – w(x) 
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Figura 6.87 - Coef. transferência de calor estimado – h(x) 
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Figura 6.88 - Variação do fluxo de calor no tempo – f(t) 
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CASO    1 

Figura 6.89 – Comparação entre as temperatura experimental (curva cyan)  

e a temperatura estimada (curva preta) para três diferentes posições: (a) 1.15cm; (b) 4cm; (c) 7.68cm; 

para três diferentes tempos: (d) 580s; (e) 990s; (f) 2900s; 



 234

 

500 1000 1500 2000 2500
t@sD

-1

1

2

3

4

5
residuos@ºCD

x = 0.91875cm

 
(a) 

500 1000 1500 2000 2500
t@sD

-1

1

2

3

4

residuos@ºCD

x = 2 .4625cm

 
(b) 

500 1000 1500 2000 2500
t@sD

-0.5

0.5

1.0

1.5

2.0

residuos@ºCD

x = 3.76875cm

 
(c) 

500 1000 1500 2000 2500
t@sD

-6

-5

-4

-3

-2

-1

1

residuos@ºCD

x = 7 .6875cm

 
(d) 

0.02 0.04 0.06
x@mD

-1

1

2

3

4

5
residuos @ºCD

t = 350.001s

 
(e) 

0.02 0.04 0.06
x@mD

1

2

3

residuos @ºCD

t = 960.005s

 
(f) 

0.02 0.04 0.06
x@mD

-0.5

0.5

1.0

1.5

2.0

2.5

residuos@ºCD

t = 1440.01s

 
(g) 

0.02 0.04 0.06
x@mD

-6

-5

-4

-3

-2

-1

1

residuos @ºCD

t = 2900.01s

 
(h) 

Figura 6.90. CASO    1 

Figura 6.90a-d – Residuos entre as temperaturas estimadas e as experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.90.e-h – Residuos entre as temperaturas estimadas e as experimentais ao longo do comprimento 

da placa, para 4 tempos diferentes 
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Tabela 6.44 - Estimativas e intervalos de confiança para o CASO    2   

Dados de Saída das Estimativas 

P Inicial Estimado ICmin-99% ICmax-99% 

0x
k  0.2789 0.2808 0.2804 0.2813 

xL
k  0.2789 0.2807 0.2802 0.2813 

1k  0.0005088 -3.680 x10
-10

 -4.201 x10
-10

 -3.158 x10
-10

 

0x
w  1.7683 x10

6
 1.7595 x10

6
 1.7571 x10

6
 1.7619 x10

6
 

xLw  1.7683 x10
6
 1.7741 x10

6
 1.7722 x10

6
 1.7760 x10

6
 

1
w  0.000509 -3.593 x10

-11
 -9.238 x10

-11
 2.051 x10

-11
 

0x
h  16.518 23.044 23.012 23.077 

xL
h  5.902 0.000552 -0.000856 0.00196 

1h  8.039 x10
-7

 0.0101 0.00510 0.0151 

2h
 

8.039 x10
-7

 -0.0290 -0.0336 -0.02448 

3h
 

8.039 x10-7 -0.136 -0.141 -0.131 

b
 

0.01 0.00881 0.00868 0.00894 
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Figura 6.91 - Condutividade térmica estimada k(x) 
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Figura 6.92 - Capacidade térmica estimada – w(x) 
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Figura 6.93 - Coef. transferência de calor estimado – h(x) 
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Figura 6.94 - Variação do fluxo de calor no tempo – f(t) 
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CASO    2 

Figura 6.95 – Comparação entre as temperatura experimental (curva cyan)  

e a temperatura estimada (curva preta) para três diferentes posições: (a) 1.15cm; (b) 4cm; (c) 7.68cm; 

para três diferentes tempos: (d) 580s; (e) 990s; (f) 2900s; 
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Figura 6.96. CASO    2 

Figura 6.96.a-d – Residuos entre as temperaturas estimadas e as experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.96.e-h – Residuos entre as temperaturas estimadas e as experimentais ao longo  

do comprimento da placa, para 4 tempos diferentes 
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Percebe-se pela análise das figuras 6.90 e 6.96, que em ambos os casos, 1 e 2, os 

resíduos apresentam um pico bem no inicio do transiente para os primeiros centímetros da 

placa, mas é na parte não aquecida que ele apresenta os desvios mais significativos, 

principalmente para tempos grandes. Como uma tentativa de se reduzir os resíduos para esta 

região não aquecida considerou-se um terceiro caso onde estimativas foram realizadas com um 

número reduzido de medidas no tempo (150 medidas das 291 medidas disponíveis), 

privilegiando-se a informação ao longo do período de fato transiente e assim reduzindo-se a 

importância da informação sobre o comportamento não-linear dos coeficientes de transferência 

de calor na região não-aquecida. 

A tabela 6.45 apresenta os parametros considerados neste terceiro caso assim 

como as prioris adotadas para cada um. 

 

Tabela 6.45 – Definição dos dados de entrada para a solução do problema inverso.  

Caso P Priori 

3 
NP = 12  

( 0 1 0 1 0 1 2 3, , , , , , , , , , ,x xL x xL x xLk k k w w w h h h h h b ); 
N, N, U, N, N, U, N, N, U, U, U, U 

 

A tabela 6.46 e as figuras 6.97 a 6.102 apresentam os resultados das estimativas 

para este terceiro caso. 

Para este caso pode-se observar, através das figuras 6.101.a-f, uma melhor 

aderência entre as temperaturas calculadas com os parâmetros estimados e as temperaturas 

experimentais de modo que os resíduos também diminuiram, quando comparados aos resíduos 

encontrados para os casos 1 e 2, como apresentado nas figuras 6.102.a-h, atingindo valores 

máximos de 4ºC na parcela não aquecida da placa. 
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Tabela 6.46 - Estimativas e intervalos de confiança para o CASO    3   

Dados de Saída das Estimativas 

P Inicial Estimado ICmin-99% ICmax-99% 

0x
k  0.2789 0.2856 0.2833 0.2880 

xL
k  0.2789 0.2889 0.2837 0.2941 

1k  0.0005088 -1.260 x10
-10

 -3.722 x10
-10

 1.203 x10
-10

 

0x
w  1.7683 x10

6
 1.7487 x10

6
 1.7373 x10

6
 1.7601 x10

6
 

xL
w  1.7683 x10

6
 1.7570 x10

6
 1.752 x10

6
 1.7620 x10

6
 

1
w  0.000509 4.928 x10-10 3.856 x10-10 5.999 x10-10 

0x
h  16.518 23.902 23.847 23.958 

xLh  5.902 0.00135 -0.00210 0.00480 

1h  8.039 x10
-7

 0.0372 0.0284 0.0461 

2h
 

8.039 x10-7 -0.00211 -0.00863 0.00441 

3h
 

8.0398 x10
-7

 -0.231 -0.236 -0.227 

b
 

0.01 0.0103 0.0102 0.0104 
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Figura 6.97 - Condutividade térmica estimada k(x) 
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Figura 6.98 - Capacidade térmica estimada – w(x) 
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Figura 6.99 - Coef. transferência de calor estimado – h(x) 
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Figura 6.100 - Variação do fluxo de calor no tempo – f(t) 
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Figura 6.101 – Comparação entre as temperatura experimental (curva cyan)  

e a temperatura estimada (curva preta) para três diferentes posições: (a) 1.15cm; (b) 4cm; (c) 7.68cm; 

para três diferentes tempos: (d) 580s; (e) 990s; (f) 2900s; 
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Figura 6.102. CASO    3 

Figura 6.102a-d – Residuos entre as temperaturas estimadas e as experimentais ao longo do tempo,  

para 4 posições diferentes 

Figura 6.102e-h – Residuos entre as temperaturas estimadas e as experimentais ao  

longo do comprimento da placa, para 4 tempos diferentes 
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A seguir, na Tabela 6.47, apresenta-se a consolidação dos resultados 

experimentais para a difusividade térmica, condutividade térmica e calor específico, obtidas 

com o equipamento Nanoflash da UNIMET/LTTC, nas temperaturas selecionadas de 25, 30, 

35, 40, 45 e 50°C, condizentes com a faixa de temperatura dos experimentos aqui realizados. 

Apresenta-se também, na última coluna, os valores da condutividade térmica do baquelite 

variando com a temperatura segundo Dashora et.al. (1992), em boa concordância com aqueles 

calculados a partir das medidas de difusividade térmica e calor específico do Nanoflash, para 

uma massa específica medida de ρ=1392 kg/m
3
. Vale observar a excelente concordância com 

os valores aqui estimados, a partir do caso 3, com valor médio de 0.288 W/mC.  

 

Tabela 6.47– Análise das propriedades termofisicas das amostras de baquelite das placas ensaiadas; 

Propriedade Amostras 1 Amostras 2 Médias Dashora et.al. (1992) 

α[mm2/s] 25°C 0.164 (0.001)* 0.168 (0.001)* 0.166 - 

α[mm2/s] 30°C 0.163 (0.002)* 0.161 (0.008)* 0.162 - 

α[mm2/s] 35°C 0.160 (0.001)* 0.157 (0.014)* 0.159 - 

α[mm2/s] 40°C 0.156 (0.001)* 0.156 (0.013)* 0.156 - 

α[mm
2
/s] 45°C 0.154 (0.000)* 0.163 (0.007)* 0.159 - 

α[mm
2
/s] 50°C 0.150 (0.001)* 0.155 (0.001)* 0.153 - 

k [W/mC] 25°C 0.282 0.274 0.278 0.295 

k [W/mC] 30°C 0.243 0.292 0.268 0.296 

k [W/mC] 35°C 0.264 0.278 0.271 0.298 

k [W/mC] 40°C 0.266 0.274 0.270 0.299 

k [W/mC] 45°C 0.291 0.278 0.284 0.300 

k [W/mC] 50°C 0.289 0.278 0.283 0.301 

Cp [J/gC] 25°C 1.236 1.200 1.218 - 

Cp [J/gC] 30°C 1.073 1.287 1.180 - 

Cp [J/gC] 35ºC 1.187 1.248 1.218 - 

Cp [J/gC] 40°C 1.226 1.260 1.243 - 

Cp [J/gC] 45°C 1.359 1.294 1.327 - 

Cp [J/gC] 50°C 1.383 1.331 1.357 - 

(*) desvio padrão das medidas  
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Capítulo 7  

 

7. Conclusões e Sugestões 

 

No presente trabalho, foram estabelecidas as bases fundamentais e construídas 

as ferramentas para a análise teórico-experimental da condução de calor em meios 

heterogêneos. Especificamente, o presente trabalho apresentou o uso combinado da 

transformação integral, da inferência Bayesiana e da técnica experimental de medição de 

temperatura por termografia de infravermelho em problemas inversos de estimativa 

simultânea de propriedades termofísicas e condições de contorno em problemas 

unidimensionais. O problema direto foi abordado de forma analítica através do Método de 

Transformação Integral Clássica (C.I.T.T.), enquanto que o problema de autovalor 

relacionado foi resolvido via Técnica da Transformada Integral Generalizada (G.I.T.T.). Os 

coeficientes variáveis na formulação do problema direto são eles próprios expandidos em 

autofunções, o que permite a obtenção totalmente analítica da matrix de coeficientes na 

transformação integral. Na solução do problema inverso adotou-se abordagem de inferência 

Bayesiana empregando o Método de Monte Carlo via Cadeia de Marckov (MCMC), 

através do uso do algoritmo de Metropolis-Hastings como procedimento de amostragem. 

Para a solução do problema inverso as funções espaciais a estimar foram também 

expandidas em termos de autofunções, o que representou uma relevante contribuição do 

presente trabalho, uma vez que os comportamentos funcionais representativos das 

propridades termofísicas variáveis foram recuperados com um número bastante reduzido de 

parametros, em comparação com técnicas mais usuais de parametrização. Todas as 

implementações computacionais empregada neste trabalho foram construídas na plataforma 

de computação simbólica Mathematica, o que reduziu bastante o esforço de manipulação 

algébrica e derivação das etapas analíticas. 
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Os resultados obtidos no presente trabalho revelaram que ambas as abordagens 

de estimativa, na temperatura e no campo transformado, são robustas com relação aos erros 

de medidas e capazes de prover resultados mesmo para distribuições a priori pouco 

informativas. A analise inversa baseada no campo transformado mostrou-se particularmente 

útil e apropriada na redução de dados, em situações onde se tem um grande número de 

medidas espaciais disponível, como no caso de experimentos envolvendo a termografia por 

infravermelho. Esta idéia aqui avançada se destaca como uma das principais contribuições 

do presente estudo, tendo em vista o ganho significativo em robustez e custo computacional 

obtido na solução do problema inverso de estimativa simultânea das propriedades 

termofísicas, em relação à estimativa tradicional a partir de medidas e simulações do campo 

de temperatura, como destacado na seção 6.2.3. 

Não obstante, a própria realização desses estudos gerou novas idéias e 

possibilidades de refinamento dos desenvolvimentos, mesmo para as situações 

unidimensionais aqui tratadas. Assim, como proposta para trabalhos futuros, tem-se a 

modificação do problema físico proposto de forma a estender o presente estudo a situações 

multidimensionais e/ou não-lineares.  

Na extensão do método de solução direta para situações multidimensionais, 

que seria requerido no tratamento combinado acima proposto, deve-se lembrar que a 

solução formal geral já foi nesta fase apresentada. Entretanto alguns novos aspectos 

computacionais são propostos como extensão, relacionados ao reordenamento de termos 

nas expansões das autofunções, tanto para a representação do problema original, quanto 

para a representação dos coeficientes variáveis. Neste caso, técnicas de aceleração de 

convergência de seqüências não-lineares podem ter um papel relevante para a representação 

dos coeficientes com um número reduzido de parâmetros, reduzindo então o esforço de 

identificação finalmente pretendido.  

Novas perspectivas foram também abertas na extensão da presente 

metodologia de análise de problemas inversos para outras caracterizações em meios 

heterogêneos, envolvendo nanocompósitos e "functionally graded materials", incluindo 

estimativas de propriedades variáveis também na profundidade do material a partir de 

medidas de temperatura na superfície apenas. Esse é um grande desafio que passa 

possivelmente pela combinação de metodologias, mas que em vista dos resultados aqui 
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obtidos sugere a expansão em autofunções das propriedades desconhecidas abaixo da 

fronteira onde se tomam as medidas. Por fim, tais objetivos só serão factiveis a partir de um 

equipamento termográfico mais preciso e amigável, para adequação da qualidade das 

medidas à robustez e precisão dos métodos de solução dos problems diretos e inversos aqui 

desenvolvidos. 
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