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“A morte ndo é nada.

Apenas passei ao outro mundo.

Eu sou eu. Tu és tu.

O que fomos um para o outro ainda o somos.

Da-me o nome que sempre me deste.

Fala-me como sempre me falaste,

ndo mudes o tom a um triste ou solene.

Continua rindo com aquilo que nos fazia rir juntos.

Reza, sorri, pensa em mim, reza comigo.

Que meu nome se pronuncie em casa como sempre se
pronunciou, sem nenhuma énfase, sem rosto de sombra.
A vida continua significando o que significou, continua
sendo o que era.

O corddo da unido ndo se quebrou.
Porque eu estaria fora de teus pensamentos,
apenas porque estou fora de tua vista?

Nao estou longe,

somente estou do outro lado do caminho.

Ja veras, tudo esta bem.

Redescubrirdas o meu coracdo,

e nele redescobrirds a ternura mais pura.

Seca tuas lagrimas e, se me amas, ndao chores mais.”

Oragdo de Santo Agostinho

Aos nosso filhos,
Bianca, Victor e Clara.
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Resumo da Tese apresentada a COPPE/UFRJ como parte dos requisitos necessarios
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PROBLEMAS INVERSOS DE CONDUCAO DE CALOR EM MEIOS
HETEROGENEOS: ANALISE TEORICO-EXPERIMENTAL VIA
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Orientadores: Helcio Rangel Barreto Orlande
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Este trabalho apresenta uma analise tedrico-experimental de problemas
de conducao de calor em meios heterogéneos, visando a construgao de ferramentas para
identificacdo de propriedades termofisicas e condi¢des de contorno. Meios heterogéneos
envolvem variagdes espaciais de propriedades termofisicas em diferentes formas
funcionais, dependendo do tipo da heterogeneidade. O método de transformagdo
integral classico foi empregado na solucdo analitica do problema direto, desenvolvendo-
se uma solu¢do hibrida numérico-analitica para o problema auxiliar de autovalores
através da Técnica da Transformada Integral Generalizada (GITT). Utilizou-se
inferéncia Bayesiana na estimativa das propriedades espacialmente variaveis e das
condi¢des de contorno, empregando o método de Monte Carlo via Cadeia de Markov
(MCMC) com o algoritmo de Metropolis-Hastings. As propriedades variaveis foram
expressas como expansdes em autofungdes, o que permitiu a estimativa de um nimero
significativamente reduzido de pardmetros. Outro avango do presente estudo foi a
solugdo do problema inverso no campo transformado, a partir da transformacao integral
dos dados experimentais de temperatura, assim colapsando os dados experimentais nas
variaveis espaciais em alguns poucos campos transformados. Adotou-se a termografia
por camera de infravermelho como técnica ndo-intrusiva para medidas de temperatura
em experimentos de placas em sanduiche de materiais conhecidos, total ou parcialmente

aquecidas, para demonstracao das técnicas de solucdao desenvolvidas.
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INVERSE HEAT CONDUCTION PROBLEMS IN HETEROGENEOUS MEDIA:
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This work presents a theoretical-experimental analysis of heat conduction
problems in heterogeneous media, aimed at constructing tools for the identification of
thermophysical properties and boundary conditions. Heterogeneous media involve
spatial variations of thermophysical properties in different functional forms, depending
on the type of heterogeneity. The classical integral transform method was employed in
the analytical solution of the direct problem, and a hybrid numerical-analytical solution
was developed for the auxiliary eigenvalue problem through the Generalized Integral
Transform Technique (GITT). Bayesian inference was utilized in the estimation of the
spatially variable properties and boundary conditions, by employing the Markov Chain
Monte Carlo (MCMC) method with the Metropolis-Hastings algorithm. The variable
properties were expressed as eigenfunction expansions, which permitted the estimation
of a significantly reduced number of parameters. Another advancement of the present
study was the solution of the inverse problem in the transformed field, from the integral
transformation of the experimental temperature data, thus collapsing the experimental
measurements in the space variables into a few transformed fields. Infrared camera
thermography was adopted as a non-intrusive technique for temperature measurements
in experiments of sandwiched plates of known materials, totally or partially heated, in

order to demonstrate the developed solution techniques.
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CASO1: Comparacdo entre a temperatura experimental
(curva cyan) e a temperatura estimada (curva preta),
para trés diferentes posi¢des: (a) Ocm; (b) 4cm; (c)
12cm, para trés diferentes tempos: (d) 120s; (e) 600s; (f)
1200s;

CASO2: Comparagdo entre a temperatura experimental
(curva cyan) e a temperatura estimada (curva preta) para
trés diferentes posi¢des: (a) Ocm; (b) 4cm; (¢) 12cm,

para trés diferentes tempos: (d) 120s; (e) 600s; (f)
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Figura 6.48—

Figura 6.49 —

Figura 6.50 —

Figura 6.51.a-d —

Figura 6.51.e-h —

Figura 6.52.a-d —

Figura 6.52.e-h —

Figura 6.53.a-d —

Figura 6.53.e-h —

Figura 6.54.a-d —

1200s;

CASO3: Comparagao entre a temperatura experimental
(curva cyan) e a temperatura estimada (curva preta) para
trés diferentes posi¢des: (a) Ocm; (b) 4cm; (¢) 12cm,
para trés diferentes tempos: (d) 120s; (e) 600s; (f)
1200s;

CASO4: Comparacdo entre a temperatura experimental
(curva cyan) e a temperatura estimada (curva preta) para
trés diferentes posigdes: (a) Ocm; (b) 4cm; (c) 12cm,para
trés diferentes tempos: (d) 120s; (e) 600s; (f) 1200s;
CASOS5: Comparagdo entre a temperatura experimental
(curva cyan) e a temperatura estimada (curva preta) para
trés diferentes posigdes: (a) Ocm; (b) 4cm; (c) 12cm,para
trés diferentes tempos: (d) 120s; (e) 600s; (f) 1200s;
CASOL1: Residuos entre as temperaturas estimadas e as
experimentais ao longo do tempo, para 4 posicdes
diferentes

CASOL1: Residuos entre as temperaturas estimadas ¢ as
experimentais ao longo do comprimento da placa, para 4
tempos diferentes

CASO?2: Residuos entre as temperaturas estimadas ¢ as
experimentais ao longo do tempo, para 4 posicoes
diferentes

CASOQO?2: Residuos entre as temperaturas estimadas e as
experimentais ao longo do comprimento da placa, para 4
tempos diferentes

CASO3: Residuos entre as temperaturas estimadas ¢ as
experimentais ao longo do tempo, para 4 posicoes
diferentes

CASO3:Residuos entre as temperaturas estimadas e as
experimentais ao longo do comprimento da placa, para 4
tempos diferentes

CASO4: Residuos entre as temperaturas estimadas e as
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Figura 6.54.e-h —

Figura 6.55.a-d —

Figura 6.55.e-h —

Figura 6.56 a-b —

Figura 6.56.c-d -

Figura 6.57.a —

Figura 6.57.b —

Figura 6.57.c —

Figura 6.58.a —

Figura 6.58.b —

Figura 6.59.a —
Figura 6.59.b —

experimentais ao longo do tempo, para 4 posicdes
diferentes

CASO4: Residuos entre as temperaturas estimadas e as
experimentais ao longo do comprimento da placa, para 4
tempos diferentes

CASOS: Residuos entre as temperaturas estimadas ¢ as
experimentais ao longo do tempo, para 4 posicoes
diferentes

CASOS: Residuos entre as temperaturas estimadas ¢ as
experimentais ao longo do comprimento da placa, para 4
tempos diferentes

Experimento com as placas de aluminio, com detalhe do
dispositivo de posicionamento horizontal da camera.
Identificagdo dos termopares no experimento de placa
vertical

Temperaturas nos termopares da vertical tp5, tp6 e tp3
(respectivamente as curvas de baixo para cima) — placas
de aluminio

Temperaturas nos termopares da horizontal 2, tp6 e
tp4 (respectivamente as curvas de baixo para cima) —
placas de aluminio

Comparacdo entre as temperaturas do termopar do topo
da placa de tras (tp3 — curva vermelha) e do topo da
placa da frente (p/ — curva azul) no experimento com
as placas de aluminio

Valores maximos, médios ¢ minimos de digital level
encontrados na placa voltada para a camera —placas de
aluminio

Valores maximos, médios e minimos de digital level
encontrados na regido do termopar de referéncia—placas
de aluminio

Temperaturas aquisitadas pelo termopar tp 1.

Digital level médio na regido proxima ao termopar #p1.
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Figura 6.60.a —

Figura 6.60.b —

Figura 6.60.c —

Figura 6.60.d —

Figura 6.60.e—

Figura 6.61 —

Figura 6.62.a-¢ —

Figura 6.63.a-¢ —

Figura 6.64.a-d —

Figura 6.65 -
Figura. 6.66.
Figura. 6.67.
Figura 6.68.a—
Figura 6.68.b —
Figura 6.68.c —

Figura 6.69.a —

Figura 6.69.b. —

Comparacdo entre as temperaturas em graus Celsius.
Curva azul: camera e Curva vermelha: termopar #p2.
Comparacdo entre as temperaturas em graus Celsius.
Curva azul: cAmera e Curva vermelha: termopar #p3.
Comparacdo entre as temperaturas em graus Celsius.
Curva azul: camera e Curva vermelha: termopar #p4.
Comparacdo entre as temperaturas em graus Celsius.
Curva azul: camera e Curva vermelha: termopar #p5
Comparacdo entre as temperaturas em graus Celsius.
Curva azul: camera e Curva vermelha: termopar /p6
Analise de sensibilidade dos parametros

Comparacdo entre a evolucdo das cadeias para
diferentes valores iniciais: Casos 1 (linha preta); Caso2
(linha vermelha) e Caso 3 (linha azul)

Comparacdo entre a evolucdo das cadeias para
diferentes prioris:

Casos 1 (linha preta) e caso 4 (linha verde)

Comparacao entre a evolugdo das cadeias para
diferentes prioris:

Casos 5 (linha rosa) e Caso 6 (linha azul claro)

Analise dos residuos das estimativas pelo Caso 1
Netzsch Nanoflash LFA 447/1

Netzsch Nanoflash LFA 447/1 operando no UNIMET,
LTTC/PEM, COPPE/UFRJ

Modelo fisico da configuracdo de placa vertical com
aquecimento superior

Modelo fisico da configuracdo de placa vertical com
aquecimento inferior

Modelo fisico da configuracao de placa horizontal
Comparacdo dos termopares nas duas placas:
Experimento de placa na vertical com aquecimento
superior

Comparacdo dos termopares nas duas placas:
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Figura 6.69.c. —

Figura 6.70.a —

Figura 6.70.b. —

Figura 6.70.c. —

Figura 6.71 —

Figura 6.72 —

Figura 6.73 —

Figura 6.74 —

Figura 6.75.a —

Figura 6.75.b. —

Figura 6.75.c. —

Figura 6.76.a —

Figura 6.76.b. —

Experimento de placa na vertical com aquecimento
inferior

Comparacdo dos termopares nas duas placas:
Experimento de placa na horizontal

Repetibilidade experimental: Experimento de placa na
vertical com aquecimento superior

Repetibilidade experimental: Experimento de placa na
vertical com aquecimento inferior

Repetibilidade experimental: Experimento de placa na
horizontal

Correlagdo de digital leve e temperatura: Experimento
placa na vertical aquecimento superior

Correlagdo de digital leve e temperatura: Experimento
placa na vertical aquecimento inferior

Correlagdo de digital leve e temperatura: Experimento
placa na horizontal

Posigdes ao longo do comprimento da placa para
exportagdo das temperaturas experimentais

Temperatura ao longo do comprimento da placa para
diferentes tempos — Placa Vertical com Aquecimento
Superior

Temperatura ao longo da largura da placa para cinco
diferentes tempos — Placa Vertical com Aquecimento
Superior

Temperatura ao longo dos tempos para diferentes
posicdes: ao longo do comprimento da placa — Placa
Vertical com Aquecimento Superior

Temperatura ao longo do comprimento da placa para
diferentes tempos — Placa Vertical com Aquecimento
Inferior

Temperatura ao longo da largura da placa para cinco
diferentes tempos — Placa Vertical com Aquecimento

Inferior
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Figura 6.76.c. —

Figura 6.77.a —

Figura 6.77.b. —

Figura 6.77.c. —

Figura 6.78.a —

Figura 6.78.b —

Figura 6.78.c —

Figura 6.79 —

Figura 6.80 —

Temperatura ao longo dos tempos para diferentes
posicdes ao longo do comprimento da placa — Placa
Vertical com Aquecimento Inferior

Temperatura ao longo do comprimento da placa para
diferentes tempos — Placa Horizontal

Temperatura ao longo da largura da placa para cinco
diferentes tempos - Placa Horizontal

Temperatura ao longo dos tempos para diferentes
posicdes

ao longo do comprimento da placa — Placa Horizontal
Placa Vertical Aquecimento Superior:

Analise do determinante da matriz de informa¢dao com
10 termos na expansdo da temperatura (curva vermelha)
e com 15 termos (curva preta), para as trés
configuragdes experimentais

Placa Vertical Aquecimento Inferior:

Analise do determinante da matriz de informagdo com
10 termos na expansdo da temperatura (curva vermelha)
e com 15 termos (curva preta), para as trés configuragdes
experimentais

Placa com Aquecimento Horizontal:

Analise do determinante da matriz de informagdo com
10 termos na expansdo da temperatura (curva vermelha)
e com 15 termos (curva preta), para as trés configuragdes
experimentais

Analise do determinante da matriz de informagdo com
10 termos na expansdo da temperatura para as trés
configuragdes experimentais: Placa vertical com
aquecimento superior (curva vermelha); Placa vertical
com aquecimento inferior (curva verde); Placa horizontal
(curva azul);

Analise do determinante da matriz de informag¢ao com

10 termos na expansao da temperatura para a placa
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Figura 6.81 —

Figura 6.82 -

Figura 6.83 -

Figura 6.84 -

Figura 6.85 -
Figura 6.86 —
Figura 6.87 —
Figura 6.88 —
Figura 6.89.a-f -

vertical com aquecimento superior;

Curva vermelha — Np =10
(kxO’/;hWx03w1=dx0=de=67136723J33b );

Curva preta — Np =12
(kxO’ka’/;thO’WxL’wlﬂde’dbebJZ:J%b );

Curva verde — Np= 14

(koo ky kg by, Weg, Wy, Wy, Ws,d g, dyy o dy,dy,dy,b ),

Curva azul - Np=16
(kxoaka:El:/?zalgawa:WxLawls"T’zaw&dxoadxuglagzad_}ab );

Comparacdo entre as temperaturas experimentais (curva
cyan) e as temperaturas calculados com os valores
iniciais da Tabela 6.40 (curva preta), para diferentes
tempos experimentais:

(a) t=0s; (b) t=580s; (¢)2900s;

Incerteza padrdo da temperatura experimental ao longo
do comprimento da placa para o Experimento com placa
Vertical e aquecimento Superior

Distribuicdo de temperatura transformada ao longo do
tempo para as diferentes ordens da série Experimento
com placa Vertical e aquecimento Superior

Incerteza padrdo da temperatura  experimental
transformada para cada campo transformado, para o
Experimento com placa Vertical e aquecimento Superior
CASO1: Condutividade Térmica Estimada k(x)

CASO1: Capacidade Térmica Estimada — w(x)

CASOL1: Coef. Transferéncia de Calor Estimado — A(x)
CASO1: Variacao do Fluxo de calor no tempo — f{?)
CASO1: Comparagao entre as  Temperatura
Experimental (curva cyan) e a Temperatura Estimada
(curva preta) para trés diferentes posicoes: (a) 1.15cm;
(b) 4cm; (c) 7.68cm e para trés diferentes tempos: (d)
580s; (e) 990s; (f) 2900s;
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228
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Figura 6.90.a-d -

Figura 6.90.e-h -

Figura 6.91 -
Figura 6.92 —
Figura 6.93 -
Figura 6.94 -
Figura 6.95.a-f —

Figura 6.96.a-d -

Figura 6.96.e-h -

Figura 6.97 -
Figura 6.98 —
Figura 6.99 -
Figura 6.100 -
Figura 6.101.a-f —

Figura 6.102.a-d -

CASO1: Residuos entre as Temperaturas Estimadas e as
Experimentais ao longo do tempo, para 4 posicoes
diferentes

CASOL1: Residuos entre as Temperaturas Estimadas e as
Experimentais ao longo do comprimento da placa, para
4 tempos diferentes

CASOQO?2: Condutividade Térmica Estimada k(x)

CASO?2: Capacidade Térmica Estimada — w(x)

CASO?2: Coef. Transferéncia de Calor Estimado — A(x)
CASO2: Variagao do Fluxo de calor no tempo — f{?)
CASO2: Comparagdo entre as  Temperatura
Experimental (curva cyan) e a Temperatura Estimada
(curva preta) para trés diferentes posi¢des: (a) 1.15cm;
(b) 4cm; (¢) 7.68cm e para trés diferentes tempos: (d)
580s; (e) 990s; () 2900s;

CASO?2: Residuos entre as Temperaturas Estimadas e as
Experimentais ao longo do tempo, para 4 posicoes
diferentes

CASO?2: Residuos entre as Temperaturas Estimadas e as
Experimentais ao longo do comprimento da placa, para
4 tempos diferentes

CASO3: Condutividade Térmica Estimada k(x)

CASO3: Capacidade Térmica Estimada — w(x)

CASO3: Coef. Transferéncia de Calor Estimado — A(x)
CASO3: Variacao do Fluxo de calor no tempo — f{?)
CASO3: Comparagao entre as  Temperatura
Experimental (curva cyan) e a Temperatura Estimada
(curva preta) para trés diferentes posigoes: (a) 1.15cm;
(b) 4cm; (c) 7.68cm e para trés diferentes tempos: (d)
580s; (e) 990s; (f) 2900s;

CASO3: Residuos entre as Temperaturas Estimadas e as
Experimentais ao longo do tempo, para 4 posicoes

diferentes
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Figura 6.102.e-h -  CASO3: Residuos entre as Temperaturas Estimadas e as 243
Experimentais ao longo do comprimento da placa, para

4 tempos diferentes
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Lista de Tabelas

Tabela 5.1 —
Tabela 6.1.a —

Tabela 6.1.b —

Tabela 6.2.a —

Tabela 6.2.b —

Tabela 6.3 —

Tabela 6.4.a —

Tabela 6.4.b —

Tabela 6.5 —.

Tabela 6.6.a —

Tabela 6.6.b —

Tabela 6.7 —

Tabela 6.8 —

Especificagdes técnicas da cdmera ThermoVision A10
Convergéncia dos dez primeiros autovalores para o caso
do FGM (p=1)

Convergéncia dos dez primeiros autovalores para o caso
do FGM (=3)

Convergéncia dos autovalores para o caso de duas

camadas com regido de transi¢ao ( »=100)

Convergéncia dos autovalores para o caso de

duas camadas com regido de transi¢ao ( ¥ =500)

Convergéncia da temperatura para o caso de duas

camadas com regido de transi¢ao, para ( ¥y =1000)

Influéncia da ordem da expansdo dos coeficientes na
convergéncia dos autovalores para o exemplo de duas
camadas com y=20.

Influencia da ordem da expansdo dos coeficientes na
convergéncia dos autovalores para o exemplo de duas
camadas com y=200.

Convergéncia dos dez primeiros autovalores para o
exemplo de propriedades randomicas com G=1 ¢ M=60.
Influéncia da ordem na expansdo dos coeficientes na
convergéncia dos autovalores para o caso de
propriedades randomicas com G=0.2 e N=130.
Influéncia da ordem na expansdo do coeficiente na
convergéncia dos autovalores para o caso de
propriedades randomicas com G=0.8 e N=130.

Valores utilizados na gera¢do dos dados experimentais
simulados, Kumlutas et.al.(2003)

Valores exatos, iniciais, passo de procura ¢ limites
maximos € minimos para o problema inverso de

estimativa de condutividade térmica.
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76
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80

82
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89
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96

108



Tabela 6.9 —

Tabela 6.10 —

Tabela 6.11 —

Tabela 6.12 —

Tabela 6.13 —
Tabela 6.14 —

Tabela 6.15.a—

Tabela 6.15.b —

Tabela 6.15.c —

Tabela 6.16 —

Tabela 6.17 —

Tabela 6.18.a —

Tabela 6.18.b —

Tabela 6.18.c —

Tabela 6.19.a —

Tabela 6.19.b —
Tabela 6.20 —

Parametros estimados para os cinco casos analisados
(Caso 1: priori Uniforme; Caso 2: priori Normal Lewis-
Nielsen ¢/ 40% desvio padrdo; Caso 3: priori Normal
Lewis-Nielsen ¢/ 80% desvio padrdo; Caso 4: priori
Normal Maxwell ¢/ 40% desvio padrao; Caso 5: priori
Normal Maxwell ¢/ 80% desvio padrao)

Valores usados na geracdo dos dados experimentais
simulados

Valores exatos, iniciais, passo de procura e limites dos
intervalos usados na solu¢do inversa.

Definicdo dos dados de entrada para a solucao do
problema inverso.

Parametros estimados para os 5 casos analisado.
Valores usados na geracdo dos dados experimentais
simulados

Analise da convergéncia da expansdo da temperatura
para t=360s

Analise da convergéncia da expansdo da temperatura
para t=1200s

Analise da convergéncia da expansdo da temperatura
para t=3600s

Funcdes e parametros a serem estimados

Filtros utilizados nas expansoes das fungdes

Andlise quantitativa da convergéncia da expansdo da
Condutividade Térmica k(x);

Andlise quantitativa da convergéncia da expansdo da
Capacidade Térmica w (x);

Andlise quantitativa da convergéncia da expansdo de
d(x);

Numero de sensores e freqiiéncia de medidas no tempo
Numero de Dados Experimentais

Numero de parametros avaliados na analise de

sensibilidade do problema
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119

126

139

130
143

145

146
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150
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151
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Tabela 6.21.a —

Tabela 6.21.b —

Tabela 6.22 —

Tabela 6.23.a —

Tabela 6.23.b —

Tabela 6.24 —

Tabela 6.25.
Tabela 6.26. —

Tabela 6.27.

Tabela 6.28-
Tabela 6.29-
Tabela 6.30-
Tabela 6.31-
Tabela 6.32-
Tabela 6.33-
Tabela 6.34 —
Tabela 6.35 —

Tabela 6.36 —
Tabela 6.37 —

Tabela 6.38 —

Analise quantitativa do determinante da matriz de
informacao

Analise quantitativa do determinante da matriz de
informacao

Analise do Erro Relativo na Integragdo Numérica dos
Dados Experimentais

Andlise do namero de dados experimentais na
estimativa no campo de temperaturas

Analise do numero de dados experimentais na
estimativa no campo transformado

Analise quantitativa do determinante da matriz de
informac¢ao no campo transformado

Geragao dos dados experimentais simulados

Analise da Temperatura Experimental Transformada
para o incerteza experimental 0.01°C

Analise da Temperatura Experimental Transformada
para o incerteza experimental 0.5°C

Estimativas Realizadas

Dados de Entrada e de Saida das Estimativas — CASO1
Dados de Entrada e de Saida das Estimativas — CASO2
Dados de Entrada e de Saida das Estimativas — CASO3
Dados de Entrada e de Saida das Estimativas — CASO4
Dados de Entrada e de Saida das Estimativas — CASOS5
Defini¢ao dos dados de entrada para a solugdo inversa
Definicdo dos dados de entrada para a solugdo do
problema inverso

Resultado das estimativas para os 6 diferentes casos.
Propriedades termofisicas das amostras de aluminio das
placas ensaiadas, em funcao da temperatura, obtidas
com o Nanoflash Netzsch LFA 447/1 e comparadas com
valores da literatura a 20 C para aluminio puro [Bejan
(1993)].

Capacidades térmicas do aluminio estimadas,
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Tabela 6.39.a —

Tabela 6.39.b —

Tabela 6.39.c —

Tabela 6.40 -

Tabela 6.41 —

Tabela 6.42 -

Tabela 6.43 -

Tabela 6.44 -

Tabela 6.45 -

Tabela 6.46 -
Tabela 6.47 -

comparadas com as obtidas pelo Nanoflash Netzsch
LFA 447/1 e com valores da literatura a 20 °C para
aluminio puro [Bejan (1993)

Analise do determinante da matriz de informagdo com
10 e 15 termos na expansdo da temperatura, para as trés
configuragdes experimentais

Analise do determinante da matriz de informagdo com
10 e 15 termos na expansdo da temperatura, para as trés
configuragdes experimentais

Analise do determinante da matriz de informacdo com
10 e 15 termos na expansdo da temperatura, para as trés
configuragdes experimentais

Valores iniciais, minimos € maximos para cada
parametro nas estimativas

Definicdo dos dados de entrada para a solugdo do
problema inverso.

Analise das incertezas da Temperatura Experimental
Transformada

Estimativas e intervalos de confianga para o CASO 1
Estimativas e intervalos de confianca para o CASO 2
Defini¢ao dos dados de entrada para a solu¢do do
problema inverso.

Estimativas e intervalos de confianga para o CASO 3
Analise das propriedades termofisicas das amostras de

baquelite das placas ensaiadas;
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Lista de Simbolos

Cl(x) Condigao inicial

Cpa Calor especifico das particulas dispersas na matriz polimérica
Com Calor especifico da matriz polimérica

DL Nivel digital, “Digital Level”

d(x) Coeficiente do operador de dissipagdo linear

di(x) Filtro para o coef. do operador de dissipagao linear

) Variacao temporal do fluxo de calor

G Ganho na amplitude da variagdo randomica

h(x) Coeficiente de transferéncia de calor

he Coeficiente de transferéncia de calor por convec¢do natural
her Coefienciente de transferéncia de calor efetivo

h, Coeficiente de transferéncia de calor por radiagdo

k(x) Coeficiente do operador difusivo ou condutividade térmica
ka Condutividade térmica das particulas dispersas na matriz polimérica
ki(x) Filtro para condutividade térmica

ki, Condutividade térmica da matriz polimérica

L Comprimento adimensional

L, Comprimento do dominio na diregao “x”

L, Comprimento do dominio na dire¢ao “y”

L, Comprimento do dominio na dire¢do “z”

Ny Ordem de truncamento da expansao do coef. do operador de

dissipagao linear

Nar Numero de parametros a serem estimados na funcdo filtro dy (x)

N; Ordem de truncamento da expansdo do problema de autovalor

Nk Ordem de truncamento da expansdo do coef. do operador difusivo
Nir Numero de parametros a serem estimados na fungao filtro & (x)

Np Numero de pardmetros a ser estimados

N; Numeros de medidas no tempo

NT Ordem de truncamento da expansao da temperatura

Ny Ordem de truncamento da expansao do coef. do operador transiente
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NwF

Norma

P(x,f)

qw(X,t)
{dint

)
T(x,1)
w(x)

wi(x)

XCONT

Y
Letras Gregas
a

o, Pk

B

= > N

¢ (x)
Pd

Numero de parametros a serem estimados na funcdo filtro wy (x)
Numero de medidas espaciais (sensores)

Integral de normalizagdo
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Capitulo 1

1. Introducio

1.1. Motivac¢ao e Objetivos

A analise de problemas difusivos em meios heterogéneos aparece em
diferentes contextos da fisica e da engenharia. No contexto de condugdo de calor em
solidos heterogéneos, identificam-se algumas diferentes situagdes que geralmente referem-
se a esta terminologia, incluindo compositos com micro-estrutura nao uniforme,
compositos de multiplas camadas, sélidos com inclusdes, materiais porosos nao-
homogéneos, superficies soldadas ou coladas, etc. O resultado da heterogeneidade pode ser
expresso através da variagdo espacial das propriedades termofisicas concernentes, seja de
forma ordenada ou de forma randomica. Recentemente, renovou-se o interesse na analise
de conducao de calor em meios heterogéneos sob a luz dos recentes desenvolvimentos na
fabricagdo de novos materiais que tém suas propriedades mudadas de uma forma pré-
projetada como os FGM (functionally graded materials) e os nano-compositos, quando as
propriedades do material sdo estabelecidas a priori de modo a atenderem uma determinada
aplicacao térmica, ou mesmo mais de uma funcdo fisica, em muitos casos associadas a
condigdes de operagdo e ambientais extremas.

Problemas de condugdo de calor em meios heterogéneos envolvem variagdes
espaciais das propriedades termofisicas em diferentes formas, dependendo do tipo de
heterogeneidade envolvida, como variacdes em larga escala (FGM), variagdes abruptas em
compositos laminados, € em variagdes randomicas devido a flutuagdes locais de
concentragao em sistemas dispersos. Em todas essas situagdes uma representagdo acurada
do processo de transferéncia de calor requer uma solu¢do local detalhada do

comportamento da temperatura, geralmente associada a solugdes numéricas discretas com



malhas suficientemente refinadas e com esfor¢o computacional significativo, e/ou
abordagens semi-analiticas para formas funcionais especificas ou simplificadas.

No que concerne a solugdo direta de problemas de condugdo de calor em
meios heterogéneos, o procedimento de transformagdo integral empregado neste trabalho
advem da aplicagdo da Técnica de Transformagao Integral Classica [Mikhailov & Ozisik
(1984)]. A aplicagdo deste método resulta em um sistema transformado linear e
desacoplado, passivel de solug@o analitica. Por outro lado, o problema auxiliar de autovalor
requerido por essa solugdo exata demanda a utilizagdo da Técnica da Transformada Integral
Generalizada [Cotta (1993)], que ja tem sido aplicada a solugdo de problemas de autovalor
em casos de coeficientes varidveis e dominios irregulares. Uma outra possibilidade aqui
explorada ¢ expressar os proprios coeficientes varidveis como expansoes em autofungdes.
Este procedimento pode ser particularmente vantajoso para a avaliacao totalmente analitica
dos coeficientes do sistema algébrico no campo transformado. Sendo assim, todas as
manipulagdes podem ser expressas em termos de autofungdes, permitindo em geral a
integragdo analitica das mesmas, ¢ sua pronta derivagdo em ambiente de computagdo
simbdlica.

Para o tratamento e simulagdo de problemas de difusio em meios
heterogéneos nao ¢, entretanto, suficiente desenvolver um técnica de solugdo do problema
direto que capte essas diferentes formas de variagdo espacial dos coeficientes na
formulacdo. Como os materiais caracteristicos dessas aplicacdes apresentam infinitas
possibilidades de concepgdo, fabricacdo e mesmo auto-estruturacdo, a caracterizacdo de
suas propriedades fisicas locais deve ser feita praticamente caso a caso, na auséncia de um
caminho universal para identificacdo de morfologia e propriedades. Nesse sentido, faz-se
essencial o desenvolvimento simultineo de uma metodologia para identificacdo das
propriedades fisicas com suas variagdes espaciais, via solugdo do problema inverso
correspondente, para realimentar a solugdo do problema direto na desejada simulagdao do
fendmeno fisico correspondente.

Dentre as varias técnicas de solucdo de problemas inversos disponiveis, uma
abordagem bastante comum esta relacionada a minimizagdo de uma funcdo objetivo que

geralmente envolve a diferenca quadratica entre os valores medidos e estimados, como por



exemplo o funcional de minimos quadrados, assim como algumas variantes do mesmo, que
incluem termos de regularizacao.

A despeito do fato da minimizagdo do funcional de minimos quadrados ser
indiscriminadamente utilizada, ela s coincide com as estimativas de maxima
verossimilhanga se forem validas as hipoteses estatisticas de: erros de medidas aditivos,
nao-correlacionados, com distribui¢do normal, média zero e desvio padrao constante, e que
somente as variaveis medidas que aparecem na fun¢@o objetivo contem erro € ndo se tem
informacgdo a priori dos parametros e das suas incertezas. Embora muito popular e util em
muitas situagdes, a minimiza¢ao do funcional de minimos quadrados ¢ um estimador dito
frequentista. Em contraposi¢do, o presente trabalho propde a utilizagdo de uma abordagem
dita Bayesiana na estimativa dos parametros. Um estimador Bayesiano estd basicamente
relacionado com a analise estatistica de uma densidade de probabilidade a posteriori, que €
a probabilidade condicional dos parametros dadas as medidas, enquanto que a
verossimilhanga ¢ a probabilidade condicional das medidas dados os parametros.

Supondo que os parametros e as medidas sdo independentes, com distribui¢ao
Gaussiana, médias e matrizes de covaridncia conhecidas, € que os erros de medidas sao
aditivos, uma expressdo em forma fechada pode ser derivada para a densidade de
probabilidade a posteriori. Nesse caso, o estimador que maximiza esta densidade de
probabilidade a posteriori pode ser expresso na forma de um problema de minimizagao
envolvendo a fung¢ao objetivo Maximum a Posteriori.

Por outro lado, se diferentes densidades de probabilidade a priori sao
assumidas para os parametros e/ou a distribuicdo a posteriori torna-se nao diferenciavel,
consequentemente ndo permitindo tratamento analitico, deve-se empregar métodos
numéricos de amostragem da distribuicdo a posteriori, como por exemplo, o Método de
Monte Carlo via Cadeia de Markov (MCMC), e assim a inferéncia sobre a probabilidade a
posteriori € obtida através das amostras desta distribuicao de interesse.

Este trabalho ilustra a utilizacdo da inferéncia Bayesiana na estimativa de
coeficientes variaveis espacialmente em problemas de condugdo de calor em meios
heterogéneos, empregando o método de Monte Carlo via Cadeia de Markov (MCMC). Este
procedimento de amostragem da distribuicao a posteriori em geral € a tarefa computacional

mais custosa na solu¢do de um problema inverso via inferéncia Bayesiana, uma vez que o
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problema direto ¢ calculado a cada estado da Cadeia de Markov. Neste contexto a
utilizacao de uma solugdo direta rapida, precisa e de facil implementacdo computacional, €
de extrema relevancia. Sendo assim, a abordagem via transformacao integral anteriormente
discutida mostra-se bastante interessante e oportuna uma vez que todas as etapas no método
sdo feitas analiticamente uma unica vez, via computagdo simbolica, € a Unica tarefa
numérica repetitiva consiste na solu¢do de um problema de autovalor matricial.

Na combinac¢do dessas metodologias de solugdo dos problemas direto e
inverso foram aqui introduzidos dois aspectos bastante originais. Em primeiro lugar, como
discutido anteriormente, as propriedades varidaveis foram expressas como expansdes em
autofungdes na solucdo do problema direto, o que permitiu a estimativa de um namero
significativamente reduzido de parametros na solu¢ao do problema inverso, em comparagao
com outras formas mais comuns de parametrizacdo. Outro avanco do presente estudo foi a
proposi¢do da solugdo do problema inverso no campo transformado, a partir da
transformacao integral dos dados experimentais de temperatura, assim colapsando os dados
experimentais nas variaveis espaciais em alguns poucos campos transformados. Assim, a
estimativa no campo transformado oferece uma alternativa ao procedimento usual de
estimativa no campo de temperaturas, de forma particularmente atraente para situagdes
experimentais em que se tem um grande niimero de medidas espaciais.

Com o objetivo de estimar propriedades espacialmente varidveis em meios
heterogéneos o emprego de uma técnica experimental que permita maximizar a quantidade
de informagdo presente nas medidas ¢ de fundamental importancia. Além disso, como a
morfologia do meio influencia diretamente o comportamento espacial das propriedades,
torna-se critico ndo perturbar a estrutura em analise com a introdugao de um grande nimero
de sensores individuais intrusivos, como no caso de termopares ou outros sensores de
contato. Neste sentido a técnica nao-intrusiva de termografia por camera de infravermelho
permite a aquisicdo de um grande volume de medidas, tanto no tempo quanto
espacialmente, abrindo assim novas perspectivas para a identificagdo local e precisa de
propriedades termofisicas e condi¢des de contorno em meios heterogéneos.

O presente trabalho entdo almeja avangar simultaneamente nessas trés frentes,
desenvolvendo solugdes inovadoras para os problemas direto, inverso e experimental, e

com auxilio de computacdo simbolica, desenvolver ferramentas de andlise para



identificagdo de propriedades e condi¢des de contorno em problemas de condugdo de calor

em meios heterogéneos.

1.2. Organizacao do Trabalho

No capitulo 2 ¢ apresentada uma revisao da literatura disponivel referente aos
temas abordados, focando principalmente nos métodos de solucao direta de problemas de
transferéncia de calor em meios heterogéneos, nas técnicas de solucdo de problemas
inversos em conducao de calor e, mais especificamente, solu¢des via inferéncia Bayesiana
e, por fim, na utilizacdo de termografia por infravermelho para andlise de problemas
inversos.

No capitulo 3 sdo apresentados os fundamentos tedéricos que embasam a
Técnica de Transformagao Integral empregada na solugdo do problema direto de conducao
de calor com coeficientes variaveis.

No capitulo 4 sdao apresentados os fundamentos tedricos para a solucdo de
problemas inversos sob a visdo freqilientista, ¢ de forma mais detalhada sob a abordagem
Bayesiana aqui empregada.

O capitulo 5 apresenta a sintese do aparato experimental aqui proposto para
medidas de temperatura em problemas de condugdo de calor, detalhando o procedimento
experimental a partir da técnica de termografia por camera de infravermelho.

No capitulo 6 sdo apresentados os resultados obtidos para problemas diretos e
inversos a partir das formulacdes apresentadas nos capitulos 3 e 4, bem como os resultados
experimentais encontrados e as validagdes necessarias.

No capitulo 7 sdo apresentadas conclusdes e propostas para trabalhos futuros
na técnica de solu¢ao do problema direto, na técnica de estimativa dos coeficientes e na

identificagdo experimental de propriedades termofisicas via termografia por infravermelho.



Capitulo 2

2. Revisdo Bibliografica

A seguir apresenta-se a revisao de literatura que norteou o presente trabalho,
em seus mais diferentes aspectos, quais sejam: meios heterogéneos, o método de
transformacao integral, a solu¢do de problemas inversos de condug¢ao de calor, aplicacdo de
inferéncia Bayesiana em transferéncia de calor e o uso de termografia por camera de

infravermelho na identificagdo de propriedades termofisicas.

2.1. Meios Heterogéneos: Problema Direto e Modelo Fisico

A revisdo da literatura referente aos estudos de condugdo de calor em meios
heterogéneos se concentrou na andlise de contribui¢des anteriores que adotaram modelos
teodricos macroscopicos para as propriedades termofisicas efetivas, bem como na
identificagdo experimental desses parametros. Alguns poucos trabalhos foram também
citados que percorreram o caminho de reconstruir o comportamento macroscopico a partir
da analise computacional da transferéncia de calor na micro-escala.

Lin (1992) relata um estudo numérico em condugdo de calor unidimensional
em meios heterogéneos para o caso de propriedades variando randomicamente na
coordenada espacial e determina a adequagdo do modelo para caso o de se empregar uma
propriedade efetiva constante.

Qiulin et al. (1999) relatam, para o caso de um material FGM (functionally

graded materials), um estudo comparativo entre a utilizagdo de uma condutividade térmica



equivalente e da utilizagdo da condutividade térmica efetiva como sendo uma funcao da
composi¢do dos materiais compositos.

Tavman & Akinci (2000) apresentam modelos e determinagdes experimentais
para as condutividades térmicas transversais de sistemas dispersos de duas fases, na forma
de compositos poliméricos de polietileno de alta densidade e fibra de vidro.

Fudym et al. (2002) propdem a extensdo do método semi-analitico de
quadrupolos térmicos na solugdo de problemas de difusdo de calor em meios heterogéneos.
A aplicagdo deste método ¢ apresentada na solugdo de um problema de duas camadas com
variagdo unidimensional das propriedades termofisicas.

Sutradhar ef al. (2002) propdem a utilizagdo do método de fungdes de Green
na solu¢do numérica do problema de difusdo de calor tridimensional transiente em
materiais FGM (functionally graded materials).

Putnam et al. (2003) apresentam um estudo experimental da condutividade
térmica de compdsitos de nano-particulas de aluminio em uma matriz polimérica baseado
no método 3m e comparam com resultados tedricos de propriedade efetiva.

Danes et al. (2003) apresentam modelos para a condutividade térmica de
meios heterogeneos, representados por matrizes poliméricas com particulas metalicas,
discutindo o desvio crescente dos modelos quando as concentragdes de particulas metalicas
assumem valores mais elevados.

Fudym et al. (2004) estudam a difusdo de calor em materiais estratificados
onde as camadas sdo paralelas a dire¢do principal do fluxo de calor. Na solucdo deste
problema foi empregada a técnica semi-analitica de quadrupolos térmicos desenvolvida em
trabalhos anteriores.

Sutradhar e Paulino (2004) apresentam a aplicacdo do método de elemento de
contorno usando transformada de Laplace e a aproximacdao de Galerkin na solugdo do
problema de condugdo de calor transiente em materiais FGM (functionally graded
materials).

O trabalho de Zhang et.al. (2005) propde um modelo baseado em mistura
randomica para o calculo da condutividade térmica efetiva de materiais compositos e
investiga a influéncia da fracdo volumétrica das particulas e a razdo da condutividade

térmica da particula e da matriz na previsao desta propriedade.



Prasher (2006) apresenta uma perspectiva histérica do desenvolvimento de
materiais de interface térmica (TIMs) e discute as vantagens e desvantagens da aplicacao de
nanoparticulas e nanotubos de carbono nestes materiais. Algumas dire¢des para o futuro
desta area sdo apresentadas segundo a visdao do autor.

Jiang e Souza (2007) demonstram a utilizacdo de uma nova variante do
método numérico sem-malha na predicdo da condutividade térmica efetiva de materiais
envolvendo configuragdo microscopica complexa de multicomponentes.

Dai et al. (2007) obtem solugdes numéricas para condugdo de calor em
FGM's, empregando o método das linhas e diferentes modelos para a variagdo espacial das
propriedades termofisicas.

Ganapathysubramanian e Zabaras (2008) apresentam uma estratégia
estocastica alternativa de escalonamento que incorpora os efeitos das variagdes da
condutividade térmica da micro-escala na analise térmica de fendmenos na macro-escala.

Matt e Cruz (2008) apresentam um esquema numeérico baseado em elementos
finitos com discretizagdo isoparamétrica de segunda ordem da célula unitaria do problema
de conducdo de calor, para calcular a condutividade térmica macroscopica efetiva de
compositos com microestruturas gerais tridimensionais e resisténcia térmica de contato.

Evans et.al. (2008) apresentam um modelo de homogeneizagdo em trés niveis

para predizer a condutividade térmica efetiva de nanofluidos e nano-compdsitos.

2.2. Transformacao Integral para Conducao de Calor em Meios

Heterogéneos

A solugdo analitica de problemas de difusdo foi analisada e compilada em
Mikhailov e Ozisik (1984), onde sete diferentes classes de formulagdes em difusdo de calor
€ massa sao sistematicamente resolvidos pela Técnica da Transformada Integral Classica
(CITT). As solugdes formais obtidas sdo aplicaveis a um amplo niimero de problemas em
transferéncia de calor e massa, parcialmente ilustrados no referido trabalho, incluindo
alguns exemplos de difusdo em meios heterogéneos. Mais tarde, a abordagem cléssica

ganhou uma implementacdo hibrida numérico-analitica e ficou conhecida como Técnica da



Transformada Integral Generalizada (GITT) [Cotta (1990), Cotta (1993), Cotta (1994),
Cotta & Mikhailov (1997), Cotta (1998), Santos et al. (2001), Cotta et al. (2005), Cotta &
Mikhailov (2006)], oferecendo maior flexibilidade no tratamento de problemas antes tidos
como nao-transformaveis, incluindo, entre outros, a andlise de problemas nao-lineares de
difusdo e conveccdo-difusao.

A solugdo do problema de autovalor associado a solu¢do analitica por
transformacao integral ¢ a principal tarefa computacional deste procedimento, quando se
deseja oferecer valores numéricos acurados para os respectivos autovalores e autofuncdes
normalizadas que compdem a expansao inerente ao método de transformagao integral. Em
algumas situagdes, dependendo da especificacdo da forma funcional dos coeficientes, pode-
se encontrar uma solugdo explicita para as autofun¢des em termos de fungdes especiais bem
documentadas em livros textos, e mais recentemente, disponiveis em pacotes de
computacao simbolica [Wolfram (2005)]. Por outro lado, para formulagdes mais gerais do
problema de autovalor, algumas abordagens computacionais foram desenvolvidas
oferecendo uma aproximacao numérica dos autovalores e das autofung¢des, como o método
de Runge-Kutta com transformacdo de Pruffer [Bailey et al. (1978), Bailey et al. (1991)], o
método de contagem de sinal [Mikhailov & Vulchanov (1983), Cotta & Nogueira (1988)] e
a propria GITT [Mikhailov & Cotta (1994), Oliveira et al. (1995), Sphaier & Cotta (2000)].

Ja inseridos no contexto do presente estudo, o método de transformacgdo
integral foi empregado na andlise de problemas de condugdo de calor em meios
heterogéneos, incluindo variagcdes de ordens de grandeza, variagdes abruptas e variacdes
randomicas das propriedades termofisicas [Naveira et al. (2008a), Naveira et al. (2008b),
Naveira-Cotta et al. (2009), e Cotta et al. (2009a)]. Os problemas de autovalor com
coeficientes espacialmente varidveis foram entdo resolvidos com a Técnica de
Transformada Integral Generalizada (GIIT), e os proprios coeficientes variaveis foram
expandidos em autofungdes, de forma a permitir uma avalicdo totalmente analitica do
sistema transformado para determinagao dos autovalores e autofungdes correspondentes.

Recentemente, Cotta et al. (2009b) e Sphaier et al. (2009), unificaram os
conhecimentos disponiveis na utilizacdo da Técnica da Transformada Integral Generalizada
(GITT) em um ambiente de desenvolvimento construido na plataforma de computacao

simbolica Mathematica v7.0 [Wolfram (2008)], que gerou o codigo denominado UNIT



("UNified Integral Transforms") para solucdo automadtica de problemas difusivos e

convectivo-difusivos por transformagao integral.

2.3. Problemas Inversos em Conducao de Calor

A literatura sobre problemas inversos em conducao de calor ¢ muito vasta
[Beck & Arnold(1977), Alifanov (1994), Ozisik & Orlande (2000)], e portanto focamos
aqui apenas em trabalhos que tratam de estimativas de propriedades termofisicas com
variagdes espaciais, ¢ forneceram subsidios para o estudo aqui apresentado.

Flach e Ozisik (1989) aplicam o método de Levenberg-Marquardt na
estimativa simultdnea da condutividade e da capacidade térmicas varidveis
unidimensionalmente. As propriedades térmicas desconhecidas foram representadas por B-
splines em cada trecho e o problema inverso foi baseado nas estimativas de um numero
discreto de parametros. Na solugdo do problema direto os autores fizeram uso da solugado
analitica pela técnica da transformacao integral.

Huang e Ozisik (1990) apresentam uma metodologia de integracdo direta para
determinar estimativas iniciais suficientemente acuradas para o processo de estimativa de
parametros. Os autores aplicaram o método de diferencas finitas na solugdo do problema
direto e o método de Levenberg-Marquardt para a estimativa simultanea dos coeficientes de
uma representagdo linear unidimensional da variacdo da condutividade e da capacidade
térmicas.

Lesnic et al. (1999) investigam a identificacdo da variagdo unidimensional da
condutividade térmica supondo esta constante em trechos e a localizagdo da
descontinuidade desconhecida. Na solu¢do do problema direto os autores adotaram o
método de elementos de contorno e utilizaram uma rotina da biblioteca cientifica NAG na
minimizacao do funcional de minimos quadrados.

O trabalho de Divo et al. (2000) utiliza Algoritmo Genético na minimizacao
do funcional de minimos quadrados para estimar a variacdo espacial da condutividade
térmica de materiais heterogéneos. Na solugdo do problema direto os autores utilizam o

método de elementos de contorno.
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Rodrigues et al. (2004) adotam a abordagem de estimativa de fungdo baseada
no método do gradiente conjugado para estimar simultaneamente o coeficiente de difusdo e
o termo fonte, ambos variaveis espacialmente, em um problema unidimensional de difusao
de calor.

Remy e Degiovanni (2005) propoem um apararto experimental para medi¢ao
de difusividade e condutividade térmica de liquidos, empregando o método de quadrupolos
térmicos na solugdo direta/inversa de problemas de conducao de calor.

Colago et al. (2006a) apresentam um revisdo dos métodos de solucdo de
problemas inversos ¢ de problemas de otimizagdo de uma uUnica funcdo objetivo. Sao
discutidas as vantagens e desvantagens das técnicas estocasticas e deterministicas de
minimizacdo e ¢ introduzido um método hibrido. Por fim, os autores apresentam algumas
aplicagdes destes métodos em problemas de transferéncia de calor.

Colaco et al. (2006b) empregaram uma versdo do método de solugdes
fundamentais (MFS) para estimar, usando apenas medidas ndo intrusivas, o termo fonte
variavel espacialmente em um problema multidimensional de conducao de calor linear.

Huttunen et al. (2006) propdoem um método para estimar condutividade
térmica e coeficiente de perfusdo em tecidos heterogéneos usando aquecimento induzido
por ultra-som e imagens térmicas por MRI. Os pardmetros desconhecidos foram assumidos
variaveis espacialmente e constantes em trechos. Neste trabalho, as estimativas foram
baseadas no método de Gauss-Newton para a minimizagao da funcdo objetivo de Maximum
a Posteriori.

Huang e Huang (2007) apresentam a estimativa simultanea da variacdo
espacial unidimensional da condutividade e da capacidade térmica sob a forma de
estimativa de fun¢do adotando a abordagem de nuvens de pontos. Na solugdo inversa os
autores utilizaram o método de Levenberg-Marquardt na minimizacdo do funcional de
minimos quadrados.

Sousa et al. (2008) propdem o uso do método de fungdes de Green e o
conceito de sistema dindmico recursivo como base para o procedimento de solugdo inversa

de problemas de conducdo de calor multidimensional.
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2.4. Problemas Inversos via Inferéncia Bayesiana

Esta secdo resume a literatura empregada nos estudos de Inferéncia Bayesiana
para analise de problemas inversos, relevantes a aplica¢do pretendida em condugao de calor
em meios heterogéneos, incluindo livros-texto que serviram de base ao entendimento desta
metodologia, e artigos técnicos mais direcionados a aplicagdo aqui tratada.

Migon e Gamerman (1999) em seu livro-testo desenvolveram uma anélise
detalhada da utilizacdo da abordagem cléassica e Bayesiana no processo de estimativa,
apresentando importantes resultados e comentando os aspectos positivos e negativos de
cada abordagem.

Leonard e Hsu (1999) oferecem uma introducdo aos conceitos de inferéncia,
descrevendo e desenvolvendo teoremas e procedimentos que compreendem importantes
fundamentos para a abordagem Bayesiana.

Kaipio e Somersalo (2004) dedicam seu livro ao estudo de problemas inversos
em que a analise estatistica dos erros gerados pela propria modelagem ¢ enfatizada. Este
material ¢ também muito importante para a conexdo entre a Inferéncia Bayesiana e a
solugdo de problemas inversos em aplicagdes na engenharia.

Wang e Zabaras (2004) introduzem a utilizacdo da abordagem Bayesiana, do
método de amostragem de Monte Carlo via Cadeia de Markov e da utilizacdo da
distribui¢do a priori como regularizadora da solug¢do inversa em problemas de transferéncia
de calor.

Wang e Zabaras (2005) apresentam um estudo da aplicagdo da abordagem
Bayesiana na estimativa dos coeficientes da expansao do fluxo de calor e do termo fonte,
variaveis no tempo e no espaco, em termos de uma funcio de base. Os autores discutem a
utilizacdo de modelos hierarquicos para descrever automaticamente os parametros de
regularizagdo utilizados na distribuicdo a priori de Campos Markovianos Aleatorios
(MRFs).

Gamerman & Lopes (2006) em seu livro-texto abordam os conceitos
fundamentais da teoria de Probabilidade ¢ Inferéncia assim como nog¢des de simulagao,

inferéncia Bayesiana e cadeias de Markov. Varios exemplos de inferéncia Bayesiana com
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énfase em modelos dindmicos e modelos hierarquicos sdo apresentados e discutidos sobre o
ponto de vista de implementagdes, convergéncia e limitagdes dos algoritmos envolvidos.

Zabaras (2006) apresenta uma ampla revisdo de problemas inversos em
transferéncia de calor, com énfase na utilizacdo de métodos estocasticos ¢ um
aprofundamento no uso da inferéncia Bayesiana. Sdo apresentados exemplos da solugao
inversa de problemas lineares de condugao de calor a uma e duas dimensdes espaciais, mais
especificamente na identificagdo do fluxo de calor nos contornos.

Mota et al. (2007) utilizam a abordagem Bayesiana para estimar
simultaneamente os coeficientes de uma aproximacdo exponencial da dependéncia da
condutividade térmica e da capacidade térmica com a temperatura e a variacao
unidimensional do fluxo de calor sob a forma de nuvem de pontos. A solugdo do problema
inverso foi baseada na utilizagdo do método de Gauss-Newton na minimizagdo da funcao
objetivo de Maximum a Posteriori.

Mota et al. (2007) comparam os métodos de Gauss de minimizacao da funcao
objetivo de Maximum a Posteriori ¢ o de Monte Carlo por cadeia de Markov via algoritmo
de Metropolis-Hastings, na estimativa simultanea dos coeficientes de uma aproximagao
exponencial da dependéncia da condutividade térmica e da capacidade térmica com a
temperatura e a variacdo unidimensional do fluxo de calor sob a forma de nuvem de pontos.

Kolemainen et al. (2007) utilizam a abordagem Bayesiana para estimar a
variagdo espacial da condutividade e a capacidade térmica em um problema inverso de
tomografia térmica. Os autores utilizam informagdo a priori de Campos Aleatorios
Markovianos (MRF’s) para os coeficientes de uma aproximacao constante em trechos para
propriedades desconhecidas, e algoritmo de Newton na solugdo do problema de otimizagao
de Maximum a Posteriori.

Orlande et al. (2008) propdem a interpolacao da fun¢do de verossimelhanga
em termos de fungdes de base radial na solucdo de problemas de estimativa de parametros
via inferéncia Bayesiana, utilizando o algoritmo de Metropolis-Hastings do método de
Monte Carlo via Cadeia de Markov.

Parthasarathy e Balaji (2008) tratam de um problema de estimativa de
parametros, condutividade térmica e coeficiente de transferéncia de calor, utilizando o

algoritmo de Metropolis-Hastings. Os autores investigam o efeito da escolha da distribui¢do
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a priori na performance da solugcdo inversa para diferentes niveis de ruidos nos dados
experimentais.

Ja no contexto do presente trabalho, Cotta et al. (2009b) e Cotta et al. (2009c¢),
apresentam o uso combinado do método de transformagdo integral e da inferéncia
bayesiana, na solu¢do de problemas inversos em transferéncia de calor, incluindo a anélise

de problemas de condugdo em meios heterogéneos e convecgao de calor em microcanais.

2.5. Termografia em Problemas Inversos

Nesta se¢do faz-se uma sintese dos trabalhos revisados para implementagao da
técnica de termografia por camera de infravermelho como coadjuvante na solucdo de
problemas inversos em condugao de calor, como aqui pretendido.

Krapez et al. (2004) apresentam uma técnica de medida da difusividade
térmica de placas ndo-homogéneas utilizando o método Flash e termografia por
infravermelho. Uma mascara em forma de malha é empregada para promover uma
irradiagao nao-uniforme da amostra a partir da fonte térmica (flash) e dessa forma a razao
sinal-ruido ¢ magnificada.

Plana et al. (2005) apresentam um estudo sobre a identificacdo simultanea de
propriedades termofisicas em problemas de conducdo de calor de meios ortotrdpicos
utilizando medidas termograficas.

O trabalho de Fudym (2006) faz uma revisao de desenvolvimentos recentes no
processamento de imagens infravermelhas dedicados ao mapeamento de propriedades
termofisicas em transferéncia de calor. Também mostra como o formalismo do método de
quadrupolos térmicos pode ser utilizado conjuntamente com o processamento de imagens
térmicas na caracteriza¢cdo de meios heterogéneos.

Astarita et al. (2006) também apresentam uma revisdo do emprego da
termografia por infravermelho como método dptico em transferéncia de calor e mecéanica
dos fluidos. A énfase dessa revisdo esta na medi¢do de fluxos de calor convectivos, bem

como na investigagdo de campos de escoamento sobre superficies complexas.
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Fudym et al. (2007) tratam da estimativa da variagdo bidimensional da
condutividade térmica utilizando um método auto-regressivo, a partir da analise de imagens
transientes de infravermelho bidimensionais de um experimento de difusdo de calor
tridimensional.

Magnani e Silva (2007) apresentam um estudo de caso onde a termografia por
infravermelho ¢ utilizada na estimativa de valores constantes da condutividade e da
capacidade térmica de um material, via minimizac¢ao do funcional de minimos quadrados.

Zmywaczyk et al. (2007) tratam da estimativa simultanea da capacidade e da
condutividade térmica nas dire¢des radial e axial de uma amostra cilindirica, empregando o
método de Levenberg-Marquardt. Dois aquecedores de filme fino foram empregados
simultaneamente, em superficies radiais e axiais. Uma camera termografica foi empregada
nas medidas de temperatura, que revelou uma certa heterogeneidade no aquecimento
provido pelos aquecedores, o que exigiu a caracterizacdo dos aquecedores antes da solucao
do problema inverso.

Fan et al. (2008) apresentam a utilizagdo do método de volumes finitos em
conjunto com um método de corre¢cdo unidimensional (MODCM) para estimar a
distribui¢do multidimensional da condutividade térmica na camada intermediaria de um
sanduiche de placas, baseado em medidas termograficas de temperatura.

O trabalho de Bozzoli et al. (2008) utiliza imagens de termografia por
infravermelho para determinar o coeficiente de transferéncia de calor local em um
problema de conveccdo forgada sobre uma placa metélica na presenca de vapor d’agua
condensando na sua superficie.

Rainieri et al. (2008) apresentam uma analise experimental e um
procedimento computacional visando a caracterizacdo de uma camera de infravermelho
microbolométrica. O objetivo € avaliar o equipamento para aplicagdo em problemas de
estimativa de parametros de condug¢do de calor, estabelecendo os niveis locais de ruido nas
imagens térmicas.

Legaie et al. (2008) apresentam um modelo analitico que leva a um problema
inverso bem posto de identificagdo de parametros, baseado em transformagao integral. Para

demonstrar esse procedimento, um aparato experimental ¢ construido para identificacdo de
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propriedades de um sistema composto por uma camada de tinta negra e um filme amorfo de
carbono, empregando termografia infravermelha com o método fototérmico.

Fieberg & Kneer (2008) propdem o emprego da termografia por
infravermelho na determinag¢do de resisténcia térmica de contato em condi¢des de altas
temperaturas e pressoes, a partir das medidas transientes de temperatura. O fluxo de calor
no contato entre duas placas semi-infinitas ¢ obtido pela solu¢do do problema inverso
correspondente, e com auxilio do salto de temperaturas medido, pode-se estabelecer a
resisténcia térmica no contato.

Bamford et al. (2009) analisam diferentes compositos de SiC e a partir de
experimentos transientes baseados em termografia de infravermelho, conseguem estimar
simultaneamente as difusividades térmicas transversais e planares deste material

anisotropico.
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Capitulo 3

3. Problema Direto

Nas duas ultimas décadas, o método classico da transformada integral
[Mikhailov & Ozisik (1984)] foi progressivamente generalizado sob um enfoque hibrido
numérico-analitico [Cotta (1990), Cotta (1993), Cotta (1994), Cotta & Mikhailov (1997),
Cotta (1998), Santos et al. (2001), Cotta & Orlande (2003), Cotta et.al. (2005), Cotta &
Mikhailov (2006)]. Essa Técnica da Transformada Integral Generalizada (GITT) oferece
precisdo controlada e implementacdo computacional eficiente para uma grande variedade
de problemas nao-transforméveis, incluindo as formulagdes ndo-lineares mais usuais em
aplicagdes em mecanica dos fluidos e transferéncia de calor. Além de ser ele proprio um
método computacional alternativo, essa técnica hibrida ¢ particularmente adequada para
propositos de benchmark (validagdo). Em face da possibilidade de controle automatico do
erro, o método retém as mesmas caracteristicas de uma solugdo puramente analitica. Além
do controle e estimativa de erro bem simples, outro aspecto notavel desse método ¢ a
extensdo direta para situagdes multidimensionais, com apenas um moderado aumento do
esforco computacional. Outra vez, a natureza hibrida ¢ responsavel por esse
comportamento, uma vez que a parte analitica do procedimento de solugdo ¢ empregada
sobre todas menos uma variavel independente, ¢ a tarefa numérica é sempre reduzida a
integracdo de um sistema diferencial ordinario nessa unica variavel independente restante.
Mais recentemente, entretanto, tendo em vista os desenvolvimentos também importantes no
controle automatico de erro em solugdes numéricas de equacdes diferenciais parciais, em
particular para formulagdes unidimensionais, a GITT foi empregada em combinagdo com
algoritmos bem testados para equacdes parabodlicas e parabdlico-hiperbdlicas [Cotta et al.

(2001), Naveira et al. (2009a)]. Essa possibilidade abriu novas perspectivas na fusdo de
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idéias numéricas e analiticas, ¢ em explorar o poder e flexibilidade de sub-rotinas
progressivamente mais confiaveis para equacdes diferenciais parciais, disponiveis tanto
comercialmente quanto em dominio publico.

O presente capitulo revisa os conceitos da Técnica da Transformada Integral
Generalizada (GITT) como um exemplo de método hibrido em aplicagdes de difusdo e
convecgao-difusdo. A GITT soma-se as ferramentas de simulacdo disponiveis, seja como
instrumento em tarefas de covalidacdo, seja como técnica alternativa para usuarios mais
orientados para o tratamento analitico. Primeiramente ilustra-se a aplicagdo do método na
transformacdo completa de um problema geral de convecgao-difusdo, até que um sistema
diferencial ordindrio seja obtido para os potenciais transformados. A seguir, a estratégia
mais recentemente introduzida de transformagao integral parcial ¢ derivada fornecendo um
sistema acoplado de equacdes diferenciais parciais unidimensionais a ser numericamente
integrado. Diferentes aspectos na implementagdo computacional de cada procedimento sao
criticamente discutidos. Esta apresentacdo mais geral da metodologia aqui empregada visa
a percepcao de futuras extensdes do trabalho aqui proposto no tratamento de problemas
difusivos ou convectivo-difusivos em meios heterogéneos, incluindo efeitos nao-lineares
nas propriedades. Finalmente apresenta-se a aplicacao especifica da transformacao integral
classica para a solugdo analitica do presente problema de condugdo de calor transiente
linear, bem como o emprego da transformada integral generalizada para resolver o

problema de autovalor associado.

3.1. Método de Transformacio Integral

Como ilustragdao de procedimento formal de transformacdo integral, considera-se um
problema de convecgdo-difusdo transiente de n potenciais acoplados (por exemplo,
velocidades, temperaturas e concentragdes). Esses potenciais sao definidos na regido V com
superficie de contorno S e incluindo efeitos ndo-lineares colapsados nos termos-fonte e

convectivos como segue:
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oT, (x,t
w, () T D TYVT () + LT, (x,6) = P, (x4, T,),
2 3.1
xeV, >0, k/l(=12,..n
com condigdes iniciais e de contorno dadas, respectivamente por
Tk (x,O) = fk (X), xeV (32)
o
{ak (x)+ B, (x)K, (x)a—}ﬂ(x,t) =4 (x,t,T,), xe8, >0 3.3)
n
onde o operador da equagdo € escrito como
L, =-VK,(x)V+d,(x) (3.4)

e n representa o vetor normal a superficie S.

Sem os termos convectivos e para termos fonte lineares, isto €, u(x,t, 7,) =0, P=P(x,?),

e ¢ = ¢(x,1), esse exemplo se torna um problema linear de difusdo de classe I de acordo com
a classificacdo em [Mikhailov & Ozisik (1984)]. Solugdes analiticas exatas foram obtidas
nessa situacdo pela técnica de transformagao integral classica. No caso mais geral, este
problema seria a priori ndo-transforméavel, e as idéias na técnica da transformada integral
generalizada [Cotta (1990), Cotta (1993), Cotta (1994), Cotta & Mikhailov (1997), Cotta
(1998), Santos et.al. (2001), Cotta & Orlande (2003), Cotta et.al. (2005), Cotta & Mikhailov
(2006)] podem ser utilizadas para desenvolver solugdes hibridas numérico-analiticas para
essa classe de problemas. A solucdo formal do problema nao-linear proposto requer a
consideracdo de expansdes em autofungdes para os potenciais associados. A situacdo linear
acima comentada, que admite solucao exata pela técnica de transformacao integral classica,
naturalmente leva aos problemas de autovalor a serem preferidos na analise da situacao nao-
linear. Estes surgem da aplicagdo direta de separagdo de varidveis a versdao linear
homogénea e puramente difusiva do problema acima. Assim, o conjunto de problemas

auxiliares recomendados ¢ dado por:
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Ly (x) = gow, (X, (x),  xeV (3.5)

com condig¢des de contorno
o
{ak (x)+ B (X)K, (x) E}%(X) =0, xeS (3.6)

onde os autovalores, ,,, € autofungdes relacionadas, y,,(x), sdo assumidos conhecidos na

forma de expressdes analiticas exatas ou da aplicacdo de métodos computacionais para
problemas do tipo Sturm-Liouville [Cotta (1993), Cotta & Mikhailov (1997)]. O problema
indicado pelas Egs. (3.5) e (3.6) permite, através da propriedade de ortogonalidade das

autofungdes, a definicdo do seguinte par de transformagao integral:

7_}”. )= L w, (). (x)T, (x,t)dv , transformada 37

T, (x,t)= Z W (x)Y_",w. ®), inversa (3.8)
i=l

onde os nucleos simétricos ¥, (x) e as integrais de normalizacdo sdo dados

respectivamente por

~ W (x)
(x)=—"™"——
Vi) Norma, (3-9)
Norma,, = J.Vwk(x)(//,fi(x)dv (3.10)

A transformacdo integral de (3.1) é conseguida através da aplicagdo do operador

I ¥, (x)___dv que fornece, apos alguma manipulagdo algébrica e emprego das condigdes

de contorno (3.3) e (3.6):
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di,(t = _ _ .
+> a4, (LT () =8,(t.T), =12, >0, k(=12,.,n (3.11)

Jj=1

As condig¢des iniciais, Egs.(3.2), sdo também transformadas através do operador

J. w, (X)¥,.(x)dv para obter-se

1,00 = fi = | w, (00, (x) f, (x)av (3.12)
onde,

g, (t,1)= L W, (X)B (x,1, T, )dv+

~ 3.13
+IK<x>{wk,( ) E(x,t)w} ds e
on
a,; (t,T)) = 6, + a,; (t,T,) (3.14)
0, for i#j
5”_{1, for i=j (.15)
a1y (t,T) = [ 7, (O, ,T,)5 7, (x)Jdv (3.16)

As egs. (3.11) a (3.16) formam um sistema infinito de equagdes diferenciais ordinarias

ndo-lineares acopladas para os potenciais transformados, 7, ;. Para fins computacionais, o

sistema (3.11) a (3.16) ¢ truncado na N-ésima linha e coluna, com N tomado
suficientemente grande para a convergéncia até a precisao requerida. Os aspectos formais da
convergéncia para a solu¢ao do sistema infinito com o aumento da ordem de truncamento N
foram investigados anteriormente [Cotta (1993)]. O problema de valor inicial ndo-linear
definido pelas egs. (3.11) a (3.16) ¢ passivel de pertencer a uma classe de sistemas

diferenciais ordinarios rigidos, especialmente para valores crescentes de N. Entretanto,
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varios integradores numéricos especiais foram desenvolvidos nas ultimas décadas para essa
classe de sistemas [Cotta (1993), Cotta (1994), Cotta & Mikhailov (1997)]. Uma vez que os
potenciais transformados tenham sido computados pela solugdo numérica do sistema (3.11)
a (3.16), a formula de inversao eq.(3.8) ¢ empregada para reconstruir os potenciais originais

T, (x,t), em forma explicita.

Uma estratégia de solucdo hibrida alternativa a transformacao integral completa acima
descrita ¢ de particular interesse no tratamento de problemas de conveccao-difusio
transiente com uma direcdo convectiva preferencial. Nesses casos, a transformagao integral
parcial em todas, menos uma, coordenada espacial, pode oferecer uma combinagdo
interessante de vantagens relativas entre a técnica de expansao em autofungdes ¢ o método
numérico selecionado para tratar o sistema acoplado de equagdes diferenciais parciais
unidimensionais que resulta do procedimento de transformag¢do. Como ilustracdo do
procedimento de transformacdo integral parcial, novamente um problema de convecgao-
difusdo transiente para n potenciais acoplados (velocidades, temperaturas, concentragdes,
etc) ¢ considerado, mas desta feita separando a dire¢do preferencial que ndo sofrerd a
transformacao integral. Assim, o vetor posi¢do inclui ndo apenas as coordenadas espaciais
que serdo eliminadas via transformacao integral, aqui representadas pelo vetor x*, como
também a variavel especial a ser retida no sistema parcialmente transformado, z. O termo
fonte P; inclui todas as outras contribui¢des ndo mostradas explicitamente na formulagao
abaixo, como os termos convectivos nas dire¢des eliminadas, como também a difusdo na
dire¢do z e as componentes nao-lineares e dependentes do tempo nos termos convectivos,

nao mostrados aqui explicitamente para maior clareza:

OT,(x*z1)

oT, (x*,z,t R
w, (X*) () SLN2D | op (e 2y =P (x* 20 T),
ot oz (3.17)
z,<z<z,x*eV* t>0, k({=12..n
com condigdes iniciais e de contorno dadas, respectivamente, por
T,(x*z20)=f,(x%z2), z,<z<z,x¥*el* (3.18)
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|:ak(x*)+ﬂk(x*)Kk(x*)é,ﬁn:|Tk(x*>Zat)=¢k(x*>zat:T()a x*eS*, t>0 (319)

onde o operador da equagdo ¢ dado por

L, =-VK (x*)V +d, (x*) (3.20)

e n representa a normal a superficie S* no sentido saindo do meio. As condi¢des de

contorno introduzidas pela variavel z sdo dadas como
B T (x*,z,t) = ¢ (x*,z,t,T,), :z =z,l=01,x*eS* t>0 (3.21)

onde o operador da condigdo de contorno pode incluir diferentes combinagdes de condigdes
de primeiro a terceiro tipo nas posicdes z;, [ =0,1.
Logo, o problema auxiliar alternativo ¢ agora definido na regido V'*, com contorno S*,

formado pelas coordenadas espaciais a serem eliminadas:
Ly (x*) = o u(x*)y, (x*),  x*el* (3.22)

com condig¢des de contorno
o
{ak(x*) + ﬁk(x*)Kk(x*)a:|l//ki(x*) =0, x*eS* (3.23)
n

onde os autovalores, u,, € autofungdes correspondentes, ,,(x*), sdo assumidos

conhecidos. Tem-se aqui uma escolha a ser feita referente a fungdo peso no problema de

autovalor, podendo-se adotar o coeficiente do termo transiente da (3.17), w, (x*), ou como
mostrado abaixo o coeficiente do termo convectivo, u(x*).

Os seguintes pares de transformagao integral sdo agora definidos:
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T, (z,0) = Ivy(x*)tﬁki(x*)ﬂ (x* zt)dv,  transformada

(3.24)
T(x%2,0=Y 7, (x)T,,1), inversa (3:25)
i=1
onde os nucleos simétricos 7,;(x*) sdo dados por
_ Y (x*)
(x*)=

Vule = (3.26)
Normay, = [ u(x*)y; (x*)dv (3.27)

A transformacdo integral da Eq. (3.17) ¢ obtida pela aplicacio do operador

I W, (x*)__dv fornecendo, ap6s usar as condigdes de contorno Egs. (3.19) e (3.23)

oI, (z,t) 0T, (z,1) - _
: +—= =—w T (z,0)+g,(ztT),
at 82 /’lz k,z(Z ) gkz(Z 1) (328)

i=1,2,..., 0, k,/=1,2,...,n

Zakij (z,t,T))
/=

As condigoes iniciais da Eq. (3.18) sdo também transformadas através do operador

I u(x*)W, (x*)dv para fornecer

T,,(2,0) = ()= | u(x*)7,, (x*) £, (x* 2)dv (3.29)
onde,

(56T = | 7, (x))P (x%,2,8,T,)dv+

%* =y 3.30
J'S* Kk(x*){wki(x*)w_n(x*az,t)%} ds ( )
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= j WX, ()7, (xF)dv (3.31)
com as condigdes de contorno em z transformadas

jv* u(X*)W, (x*) B T, (x*,z,t)dv = ;k,l,i (z,6,T,),
» 1=01, x*eS* t>0

(3.32)

7= 7
onde

P (20 T) = [ w7, (x9)p, , (x*,2,0,T,)dv,

z=1z, 1=01 x*eS§* 0

(3.33)

As egs. (3.28) a (3.33) formam um sistema infinito de equagdes diferenciais parciais

ndo-lineares acopladas para os potenciais transformados, 7,,. Para fins de computagao, o

sistema (3.28) a (3.33) ¢ também truncado na N-ésima linha ¢ coluna, com N
suficientemente grande para a precisdo requerida. Alguns integradores numéricos
automaticos para essa classe de sistemas diferenciais parciais unidimensionais encontram-se
disponiveis, como aqueles baseados no Método das Linhas (IMSL, Mathematica, etc.). Uma
vez que os potenciais transformados tenham sido computados pela solugdo numérica do
sistema (3.28) a (3.33), a formula de inversao eq. (3.25) ¢ empregada para reconstruir os

potenciais originais 7, (x*,z,¢), em forma explicita ao longo das varidveis x*.
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3.2. Soluciao Formal para o Problema de Condu¢ao de Calor em

Meios Heterogéneos

As solucdes formais apresentadas acima para formulagdes nao-lineares em
conveccao-difusdo sdo importantes para se vislumbrar as possibilidades de extensdo desta
metodologia no tratamento de problemas diferenciais parciais em meios heterogéneos. Ja
nesta se¢do, ilustra-se o procedimento de transformacgdo integral particularizado para a
situagdo de um problema difusivo linear com coeficientes dependentes apenas da posigao.
Neste caso o procedimento acima se reduz a aplicacdo da Técnica de Transformagao
Integral Classica [Mikhailov & Ozisik (1984)] e portanto resultando em um sistema
transformado linear e desacoplado, passivel de solucdo analitica. Por outro lado, o
problema auxiliar de autovalores requerido por essa solucdo exata, demanda a utilizagdo da
Técnica da Transformada Integral Generalizada [Cotta (1993)], como abaixo ilustrado.

Considerou-se uma formulagdo suficientemente geral para o problema linear

transiente de difusdo para o potencial T(x,7), dependente da posi¢do x e do tempo ¢,

definido na regido ¥ com contorno na superficie S. A formulacdo aqui considerada inclui o
termo transiente, o operador difusivo, o termo de dissipacdo linear e o termo fonte,

[Mikhailov & Ozisik (1984), Cotta (1993)], como mostrado nas equagdes (3.34) a (3.36)

abaixo. Os coeficientes w(x),k(x) e d(x) sdo responsaveis pela informagao relacionada a

heterogeneidade do meio. A equacao de difusdo e as condigdes iniciais € de contorno sao

dadas por:
oT (x,1)
w(x)a— =V.k(xX)VT(x,t)—d(x)T(x,t) + P(x,t), x€V,t >0 (3.34)
t
T'(x,0)=f(x), xeV (3.35)
oT (x,1)

a(x)T(x,t)+ f(x)k(x) =¢(x,t), xeS (3.36)

n

A solugdo exata para o problema (3.34) a (3.36) pode ser obtida através da
Técnica da Transformada Classica — C.L.T.T. [Mikhailov & Ozisik (1984)] e dada por:
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T(x,0)=2.7, (x)(ﬁe-ﬂf g jo g(e™ ("”dt’) (3.37)

onde os autovalores e autofungdes w,(x), sdo obtidos a partir do problema de autovalor

associado que contem a informacao sobre a heterogeneidade do meio, na forma:
Vk(X)Vy;(x)+ (,uizw(x) - d(x)) y;(x)=0,xeV (3.38)

com condig¢des de contorno

=0, xe S (339)

ow.
(X (%) + BOOKX) ‘[;’(X)

n

As demais quantidades que aparecem na solugdo exata (3.37) sdo computadas

depois de resolvido o problema (3.38) a (3.39), através de :

Norma; = IW(X)l//iZ (x)dv integral de normalizac¢ao (3.40)
V
w.(x)= ) , autofun¢ao normalizada (3.41)
’ Norma” '
JT,- = J.w(x)l/z.(x) f(x)dv, condigdo inicial transformada (3.42)
14
~ ow.(x
wi(x)—k(x)‘g}f)
g.()=| Px0y . (x)dv+ , d.
g.(t) ! (x, )y, (x)dv ! d(x,0)[ 01 A0 lds , termo fonte transformado  (3.43)

Para uma aplicacdo geral de uso automatico, desejou-se desenvolver uma
abordagem computacional flexivel de modo a permitir lidar com problemas de autovalor

com coeficientes variaveis arbitrariamente, como o problema apresentado pelas equagdes
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(3.38) e (3.39). Sendo assim, a Técnica da Transformada Integral Generalizada (G.I.T.T.) ¢
aqui empregada na solugdo do problema de Sturm-Liouville, equagdes (3.38) e (3.39),
através da proposi¢ao de um problema de autovalor auxiliar mais simples, e expandindo as
autofungdes desconhecidas em termos da base escolhida. Além disso, os coeficientes
variaveis da equacao sdo eles mesmo expandidos em termos de autofungdes conhecidas, de
modo a permitir uma implementacdo completamente analitica da matriz dos coeficientes no
sistema transformado. A solugdo do problema (3.38) e (3.39) ¢ entdo proposta como uma
expansao em autofun¢des, em termos de um problema de autovalor auxiliar simplificado,

dado como:
Vi ()VQ, (x)+ (ﬂnzw*(x) - d*(x)) Q (x)=0, xeV (3.44)

com condic¢ao de contorno dada por:

0Q, (x)

n

a (x0)Q,(x)+f (0k (x) =0, xeS (3.45)

Os coeficientes w'(X),k (x) e d (x), sdo formas simplificadas dos coeficientes da equagio
original, escolhidos de modo a permitir solugdo analitica do problema auxiliar. A solucao
do problema (3.44) e (3.45) deve ser conhecida em termos da autofuncdo “Q (x)” e dos
autovalores afins “ 2 ”, oferecendo uma base, ele mesmo, para a expansdo do problema de

autovalor original, equacdes (3.38) e (3.39). Além disso, ¢ permitido que os tipos das
condicdes de contorno do problema original e do problema auxiliar possam ser diferentes,
no caso para uma maior simplificacdo da autofun¢do auxiliar, caso desejado, modificando

os coeficientes da condi¢do de contorno, “a’(x) e “ £ (x)”.

Uma vez encontradas analiticamente as autofungdes auxiliares “Q (x)” e

computados os autovalores auxiliares “4, 7, a expansdo da autofunc¢do original ¢ entdo

proposta como:
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v.(x)= Z f!n X)W, inversa (3.46)
n=1

l/7,~,,, _ J‘w*(x)l//i(x)ﬁn(x)dv, transformada (3.47)
4

A transformacao integral ¢ entdo efetuada operando a equagdo (3.38) com o

operador j Q (x)__ dv e em seguida empregando a 2* Formula de Green de modo a levar
14

em conta as diferencas nas condi¢cdes de contornos dos dois problemas de autovalor,

resultando:

; 0Q,(x) & Oy(x)
',[ ‘//i(X)(V.k(X)VQn(X))dV-i-_! k(x)(wi(x)T_Qn(X) én ds +

(3.48)
[ 0,00(sfwi0-d0))y;0dv =0
4

Combinando as condigdes de contorno (3.39) e (3.45) , a integral de superficie

acima pode ser reescrita como:

S
| k(x)[w,-(x> a%"(x) -0 (x)M]ds -

n
% n on

! Ok® S 0K (%)

ok (%) 66 3.49
— [h[ £OK 00k )01 2,09 (3-49)
% a (X) a(x) on on

. (X)(ﬂ (K (atx) 1][{//1_ ® 6Qn(x)j s
'S LX)Ek(X)a (x) on

= k(x)[ i =) ](wi(mﬁn(x))ds

e a equacao (3.48) pode ser reescrita por exemplo na forma:
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p ok (x)a(x)]( w aﬂn(x)] s

() VAV, (X)) dv + | k( )(1— -
lw’ 0(vaes ) ! U pmokme v on

(3.50)
+f Q,,(X)(u,-2 w(x) - d(X))l//i(x)dv =0
V

Substituindo a formula da inversa chega-se ao seguinte problema algébrico

de autovalores:

7, ([ 2, (07 AV, (x)v + [ k(1 - PR a0, & 0 0200,
’ ' POk’ (x) on G351)

Q, ()P w(x) - d(x)Q,, (X)dv) = 0

Yt'—; ﬁF48

que em forma matricial ¢ concisamente dado por:

(A= "By =0 (3.52)

onde,
(3.53)

V={W,.}
(3.54)

B={B,}, B,,=[wxQ,®Q,xad

n,m

A={4,}, 4, = jém(x)(v.k(x)vﬁn(x))dw

~ (3.55)
Ik( )( ﬂ x)k (X)“(X)](Qm(x)%] dS—Id(x)ﬁn(X)Qm(X)dv
n V

BXk(X)a (x)

Além disso, levando em consideracdo as informacdes da formulac¢do do

problema auxiliar, os elementos da matriz A podem ser reescritos como:
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j ( K0~k (%)) VD, (x))dv+

B (x)a(x) a0, (x)
X Q 3.56
+£[k() v (x>k()]£ W)= = J (3.56)

—[(¢)-d" )2, (0%, (®)dv+ 475, ,

14

O problema algébrico (3.52) pode ser numericamente solucionado provendo
resultados para os autovalores x° e autovetores W a partir desta andlise de problema de

autovalor matricial [Wolfram (2005)] que, em seguida combinado com a foérmula da

inversa, eq. (3.46), prové a autofungao original desejada.

3.3. Expansiao das Propriedades Termofisicas

E relevante no presente contexto ressaltar a possibilidade de expressar os
proprios coeficientes varidveis como uma expansdo em autofungdes, em geral ndo
expandido na mesma base auxiliar. Este procedimento pode ser particularmente vantajoso
para avaliacdo analitica das matrizes A e B do sistema algébrico (3.52). Sendo assim todas
as respectivas integrais podem ser expressas em termos de autofungdes e, em geral,
permitindo a integracdo analitica das mesmas. Por exemplo, o coeficiente w(x) pode ser
expandido em termos de autofungdes juntamente com a aplicagdo de uma solugdo filtro,

wy(x), de modo a acelerar a convergéncia, na forma dada por:

w(x) =w,(x)+ il:k x)w,, inversa (3.57)
W, = jV WE[W(x)—w, (I, (X)dx,  transformada (3.58)

onde W(x) ¢ a fungdo peso da autofungdo normalizada escolhida T',(x). A autofungdo do

coeficiente pode ser escolhida empregando-se a mesma equagao do problema de autovalor
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auxiliar, mas modificando as condi¢des de contorno para 1° tipo, enquanto a funcao filtro
deve ser uma funcdo analitica simples que satisfaca os valores dos contornos para os
coeficientes originais e eventualmente incorpore alguma informagdo adicional disponivel.
Entdo, uma vez obtidos os coeficientes transformados através da equagdo (3.58), pode-se
chegar aos coeficientes variaveis originais recorrendo a formula de inversao dada pela eq.
(3.57). Através deste procedimento, a tarefa de estimagdo de funcdo apresentada na secao
seguinte passa a ser uma tarefa de estimativa de parametros onde os pardmetros sao os
coeficientes da expansdo e os dois valores dos contornos utilizados na fun¢do filtro. Os
outros dois coeficientes sdo igualmente expandidos, se necessario, em termos de
autofungdes, aqui assumidas como sendo iguais apenas por uma questdo de simplicidade,

dados por:

ke(x) =k, (x)+ gfk (X)k,,  inversa (3.59)
k= [ W)~k (OIF, (x)dx,  transformada (3.60)
d(x)=d, (x)+ gfk(x)gk, inversa (3.61)
d; = [ WOld()~d, (OIT,()dx,  transformada (3.62)

Sendo assim as matrizes A e B podem ser reescritas em termos dos

coeficientes expandidos. Para os elementos da matriz B, tem-se:
B,, = j w, (00, (), (X)dv+ Y. wkjfk (x)Q, (), (X)dv (3.63)
Vv k=1 %4

e para os elementos da matriz A tem-se :
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4,, = [Q,)(7.(k, @ -+ ©0) v, (x))dv+
+i(j )(VE,(0vQ, (x))dvjk +

 (0a) o, (x)
l[ ﬂ(xa(x)k()]L S ]d‘” (3.64)
+Z(JF (x)(g (10 2% (")j s]kk

_j (df(x)_d*(x))fzn(x)ﬁm(x)dv-i(jf XQ,(x)Q, (x)dv]d +2265,

=1\ p

E a norma ¢ entdo computada como:

Norma, = Z Z Vm U w, (0)Q, (x)Q,, (X)dv + Z( j x)Q,(x)Q,, (x)dv] W, ] (3.65)

n=1 m=1

3.4. Aplicacoes

As aplicagdes consideradas para ilustrar a metodologia de solucao direta aqui
proposta envolvem a analise de trés situacdes bem distintas. Primeiro ¢ considerado um
exemplo onde os coeficientes variaveis sofrem mudangas de algumas ordens de grandeza
no dominio espacial. O exemplo mais comumente encontrado na literatura esta relacionado
a materiais conhecidos como FGM (Functionally Graded Materials) [Sutradhar et al.,
(2002)]. O segundo exemplo de aplicacdo esta relacionado a variacao abrupta das
propriedades termofisicas, tipicamente na ligagdo entre duas camadas de diferentes
materiais com regido de transicao [Fudym et al., (2008)], e o terceiro exemplo estd
associado a materiais com propriedades variando randomicamente no meio, como em
materiais compositos formados por dispersao de fases [Lin (1992)].

Para o exemplo do FGM, a equagdo de conservacdo de energia em forma

adimensional, ¢ as condi¢des, inicial e de contorno, adotadas foram:
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oT(x,t) 0O 0T (x,t)
—=—k ,0<x<1l, t>0 3.66
w(x) Py ax[ O, . O0<x (3.66)
T(x,0)=f(x), 0<x<l (3.67)
T(0,6)=0 (3.68)
T(,t)=0, ¢t>0 (3.69)

onde as propriedades termofisicas variaveis em x assumem a seguinte forma exponencial

[Sutradhar et.al. (2002)]:

k
k(x) =ke™”, wx) =wee™™, oy ==t = const. (3.70)
Wo

Em particular, esta escolha de forma funcional leva a formulacdo de um
problema com solugdo exata via Técnica da Transformada Integral Classica, aqui
empregada como resultado de referéncia na analise da solugdo para este caso de variagao do
coeficiente. Deste modo, depois de manipular os coeficientes na equagao (3.66), encontra-

S€:

1 oT(x,1) _ O’T(x,1) 128 oT (x,t) 0<

x<1, t>0 3.71
a, Ot ox’” ox 371

Além disso, pode-se fazer uma transformacdo de variavel dependente para

recuperar a forma usual da equagao de calor:
T(x,t) = u(x,t)e Pl (3.72)

Entdo, o problema de condugdo de calor reescrito com suas condig¢des inicial e

de contorno, torna-se:
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1 ou(x,1) _ O’u(x,t)
- 2

, 0 1, t>0 ,
o o PERER (3.73)
u(x,0)= £ (x) = f(x)e”, 0<x<1 (3.74)
u(0,6)=0 (3.75)
u(l,r)=0, t>0 (376)

Esta primeira aplicagdo foi resolvida para diferentes valores do pardmetro S,

com condi¢do inicial dada por:

l_eZﬂ(l—x)
SO = (3.77)

que corresponde a solugdo permanente para o caso de temperatura prescrita 7(0,¢)=1 e
7(1,£)=0.

A formulacdo adotada para os outros dois casos, ¢ dada por [Fudym et al
(2008)]:

0T (x,t) _ 0 0T (x,t)

w(x k ,0<x<l1, t>0 3.78
(x) Py ax[ (x) o ] (3.78)
T(x,0)=f(x), 0<x<l (3.79)

oT (x,t) 0
x| (3.80)
oT (x,1) 0. 150 (3.81)

ox | ’

Nesta etapa de demonstragdo da solugdo do problema direto a condigdo inicial
foi arbitrariamente escolhida como f{x)=1-x". A varia¢io espacial para o coeficiente com

mudanca abrupta é governada pelo parametro y da seguinte forma:

k(x) =k +(k,—k)I(x) (3.82)
w(x) = w,+(w, —w,)d(x) (3.83)
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1

V)

(3.84)

onde x. indica a posi¢ao central da regido de transigao.

Os coeficientes gerados randomicamente foram obtidos baseados no exemplo
do trabalho de [Lin (1992)], primeiramente gerando as posi¢des igualmente espacadas ao
longo do meio e entdo produzindo randomicamente, no intervalo [0,1], os valores das
propriedades em cada posi¢do. Os valores gerados sdo linearmente interpolados gerando
fungdes continuas, g; (x) e 2> (x), e entdo normalizadas pela sua média. Através da definicao
de um fator de escala G de 0% a 100%, permite-se a andlise de diferentes amplitudes de
variacdo das propriedades. Por exemplo, para G=1 obtém-se uma fun¢do com padrao
aleatério na sua forma plena e, ja para G=0, recupera-se a situacdo de propriedade
termofisica constante (valor médio efetivo). A forma funcional para este caso de variacao

espacial randomica ¢ entdo dada por:

k(x) =k, [l+(@—le}
g (3.85)
w(x)=w, {1+[g2—(x)—l] G} (3.86)
g

O problema de autovalor a ser resolvido ¢ entdo dado por:

Lo o (=0, 0<x<l (3.87)
dx dx
dl//i (x) —0
d |, (3.88)
dy,| (3.89)
dx |

Assim, para demonstrar o potencial de aplicabilidade da presente abordagem,
considerou-se a forma mais simples dentre as varias possibilidades para o problema auxiliar

a ser considerado, baseando a escolha em coeficientes iguais a k*(x)=1, w*(x)=1, e d*(x)=0,
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e mantendo as mesmas condi¢des de contorno daquelas dadas pelas equagdes (3.88) e

(3.89) resultando na seguinte solugao para o problema de autovalor:

Q.(x)=2cos(hx), e  Qx)=],

(3.90)
com A, =nmn, n=0,1,2..

O problema algébrico resultante (eq. (3.52)) ¢ entdo numericamente resolvido
fornecendo resultados para os autovalores e os autovetores, fazendo uso do software

Mathematica [Wolfram (2005)] na sua versao 5.2.
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Capitulo 4

4. Problema Inverso

Problemas inversos de transferéncia de calor fazem uso de medidas de
temperatura e/ou fluxo de calor, para a estimativa de parametros/funcdes desconhecidos na
analise de problemas fisicos nesta area de estudo. Problemas inversos de conducao de calor
sao normalmente associados a estimativas do fluxo de calor a que o corpo ¢ submetido e/ou
das propriedades termofisicas do material, a partir de medidas de temperatura tomadas em
seu interior e/ou em sua superficie. Portanto, enquanto no problema direto cléassico de
condugdo de calor a causa (fluxo de calor/propriedade termofisica) ¢ dada e o efeito
(temperatura no corpo) ¢ determinado, o problema inverso envolve a estimativa da causa a
partir do conhecimento do efeito. O uso de problemas inversos faz parte de um novo
paradigma de pesquisa, onde as simulagdes computacional e experimental ndo sdo
realizadas isoladamente, mas sim de forma interativa, a fim de que o méximo de
informacao sobre o problema fisico em questio seja obtido com as duas analises.

Problemas inversos sdo matematicamente classificados como mal-postos,
enquanto os problemas diretos sdo bem-postos [Beck & Arnold(1977), Alifanov (1994),
Ozisik & Orlande (2000)]. Para um problema envolvendo uma equagdo diferencial ser
considerado bem-posto, sua solu¢do deve existir, ser Uinica e ser estavel com relacdo aos
dados de entrada. De um modo geral a solugdo do problema inverso existe e tal fato ¢
justificado através da existéncia do fenomeno fisico do qual o problema aparece. No
entanto, sO existe demonstragdo matematica da unicidade da solugdo do problema inverso

para alguns casos especiais e geralmente este critério nao ¢ satisfeito. Além disso, a solugao

38



do problema inverso ¢ normalmente instavel, o que significa que pequenas oscilagdes nos
dados de entrada (por exemplo, temperaturas contendo erros experimentais) causam
grandes oscilagdes na solucdo final [Beck & Arnold(1977), Alifanov (1994), Ozisik &
Orlande (2000)]. Por um longo periodo pensou-se que, se as condi¢des para o problema ser
bem-posto fossem violadas, o problema nao teria solugdo ou ndo teria importancia pratica.
Com o desenvolvimento do procedimento de regularizacdo de Tikhonov, da técnica de
regularizagdo iterativa de Alifanov e da técnica de especificacdo de funcdo de Beck, que o
interesse na solugdo de problemas inversos foi revitalizado.

Um procedimento de solugdo para um problema inverso geralmente requer sua
reformulag¢do em termos de um problema aproximado bem-posto, que utiliza algum tipo de
técnica de regularizagdo (estabilizacdo). Em muitos métodos, a solugdo ¢ obtida em termos
de minimos-quadrados. No procedimento de regularizacdo de Tikhonov, por exemplo, a
norma de minimos-quadrados ¢ modificada pela adi¢do de termos que reduzem as
oscilagdes causadas pelo carater mal-posto do problema. Na técnica de regularizagao
iterativa, o critério de parada para o procedimento iterativo ¢ escolhido de modo que a
solugdo seja estavel com relag@o aos erros nos dados de entrada do problema. Na técnica de
especificacdo de fungdo, a norma de minimos quadrados envolve medidas tomadas no
tempo em questdo, assim como em tempos futuros, a fim de se obter solucdes estaveis.

Problemas inversos podem ser resolvidos como estimativa de parametros ou
estimativa de fungdo. Se alguma informacao ¢ disponivel a respeito da forma funcional da
variavel desconhecida, o problema inverso pode ser reduzido a estimativa de alguns
parametros. Por outro lado, se nenhuma informacao ¢ disponivel a priori a respeito da
forma funcional da variavel desconhecida, o problema inverso € resolvido com técnicas de
estimativa de fun¢do em um espago de dimensdo infinita. Técnicas para a solugdo de
problemas inversos como estimativa de parametros e estimativa de funcdo, sdo

apresentadas nas segdes seguintes.
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4.1. Estimativa de Parametros

Em problemas de estimativa de parametros, considera-se que exista alguma
informagdo a respeito da forma funcional da fun¢do desconhecida. Supde-se aqui, como

exemplo, que o problema inverso de interesse ¢ relativo a estimativa de uma funcdo f(x),

que pode representar, por exemplo, o comportamento espacial de uma propriedade
termofisica varidavel no meio, como condutividade térmica e capacidade térmica

volumétrica, e que f(x), possa ser escrita na seguinte forma geral linear:

Npar

f(x)= ZP,-C,-(x) 4.1

onde P; , j=1,..,N,u , sd30 os parametros desconhecidos e Ci(x) sdo fungdes de base

conhecidas. Portanto, o problema inverso de estimativa da fun¢do f(x) ¢ reduzido a

estimativa de um nimero finito de pardmetros P;, onde o numero de pardmetros, N, €
suposto conhecido. Uma simplificacdo natural desse problema de estimativa de parametros
seria por exemplo, a identificagdo de propriedades termofisicas constantes.

Problemas de estimativa de parametros sdo, de um modo geral, resolvidos
através da minimizacdo de uma funcdo objetivo. Supde-se validas as seguintes hipoteses
[Ozisik & Orlande (2000)]: os erros das varidveis medidas sdo aditivos, ndo-
correlacionados, com distribuicdo normal, média zero e desvio-padrao constante; somente
as variaveis medidas que aparecem na fungdo objetivo contém erros; e nao existe
informacao a priori a respeito do valor e da incerteza dos parametros. Neste caso, a norma
de minimos-quadrados torna-se uma fungdo objetivo que resulta em pardmetros com

variancia minima. A norma de minimos-quadrados pode ser escrita como:

S(P)=[Y-T(P)]' [Y -T(P)] (4.2)

onde P ¢ o vetor de parametros desconhecidos e
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Y-1)T V-7 TpTs....¥, T ) (4.3)

O vetor [Y;—T;(P)] contém a diferenca entre as variaveis medidas e estimadas para cada um

dos M sensores no tempo ¢, i = 1, ..., I, isto &,
G-T)=(Yn~Ti1 Yo Tipwu¥isy ~Tipg) - parai=l,.... (44)

Apesar de ser bastante util e permitir a solugdo de uma série de problemas
praticos, a utilizacdo da fun¢do de minimos quadrados pode ser considerada limitada, uma
vez que admite implicitamente que todas as varidveis analisadas pertencem a um mesmo
conjunto amostral, ou seja, sio medidas de uma mesma varidvel, obtidas com a mesma
precisdo em qualquer condigdo experimental. Nem uma coisa nem outra sdo
necessariamente verdadeiras, sendo importante observar que nem todo instrumento fornece
um erro de medida aproximadamente constante em toda a faixa de utilizagcdo. Sendo assim
uma maneira alternativa e bastante comum de se formular a fungdo objetivo, de modo a
contemplar a variancia dos erros experimentais ¢ a chamada fun¢do de minimos-quadrados
ponderados. Neste caso, o fator de ponderagdo ¢ o inverso da variancia do erro de medida.
Um dos grandes méritos da fun¢do de minimos-quadrados ponderados € permitir a extensao
natural da funcao objetivo para distintas condi¢des de experimentagdo de acordo com a
estrutura da matriz de covariancia. Cabe aqui observar, que a fun¢do minimimos-quadrados
ponderados reduz-se a funcdo de minimos-quadrados quando os erros nas medidas sdao
considerados Gaussianos, ndo correlacionados e com desvio padrdo constante. A funcdo-

objetivo de minimos-quadrados ponderados ¢ definida como:
S(P)=[Y-T(P)]" W[Y-T(P)] (4.5)

onde, W ¢ o inverso da matriz de covaridncia das medidas. A minimizacdo da funcao
objetivo (4.5) resulta em estimativas de maxima verossimilhanga, supondo que os erros sdo,

nao-correlacionados, com distribui¢do normal, média zero e desvio-padrdo constante, a
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matriz W torna-se uma matriz diagonal com elementos dados pelo inverso das covariancias
dos erros [Ozisik e Orlande (2000)].

Todavia, considerando-se que existe informagdo a priori para os parametros
na forma de uma distribuicdo Gaussiana e que Y e P sdo independentes, pode-se utilizar a
funcdo objetivo de maximum a posteriori no procedimento de minimizagao [Ozisik &

Orlande (2000)]. Esta fungao-objetivo ¢ definida como:

S(P)=[Y-T(®P)]"W[Y-T(P)]+(un-P)'V'(un-P) (4.6)

onde P ¢ um vetor randomico com média p e matriz de covariancia conhecida V. Portanto,
a média p e a matriz de covaridncia V introduzem no procedimento de minimizacao
informacao a priori a respeito do vetor de parametros P a ser estimado. Esta informagao
pode estar disponivel a partir de resultados obtidos anteriormente com o mesmo aparato
experimental, ou a partir de dados da literatura.

Na solu¢ao de problemas de estimativa de parametros onde se faz necessario a
utilizagdo de procedimentos numéricos de minimizagao, o papel do método de otimizagao ¢
encontrar estes parametros desconhecidos. Basicamente, este tipo de problema de
otimizacdo ¢ resolvido num espaco de dimensdo finita, que ¢ igual ao numero de
parametros desconhecidos Npar

Todavia, esta tarefa pode ser muito dificil. Pode haver uma quantidade muito
grande de dados experimentais, os modelos podem ter comportamentos complexos, a
funcdo objetivo pode ter multiplos minimos locais, 0s parametros podem ser
correlacionados, o numero de parametros pode ser elevado, etc. Devido a estas
dificuldades, foi proposta na literatura uma infinidade de métodos diferentes de otimizagao,
cada qual com suas particularidades, e a eficiéncia desses métodos pode variar muito de
problema para problema. Assim, ndo existe um unico método de otimizacao que seja capaz
de resolver todos os problemas de estimagdo. Alguns métodos sdo muito eficientes em
certos problemas, mas ndo sdo capazes de solucionar um outro problema com
caracteristicas um pouco diferentes.

Dentre os métodos de minimiza¢do encontrados na literatura tem-se os

métodos deterministicos, que geralmente se baseiam em procedimentos iterativos e
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utilizam-se das derivadas de primeira e segunda ordem da funcdo objetivo [Ozisik &
Orlande 2000].

M¢étodos como o de Newton, que ¢ baseado na aproximagdo quadratica da
funcdo objetivo, e o método de Gauss-Newton, que ¢ o método de Newton quando utilizado
a aproximag¢ao de Gauss para a matriz Hessiana, requerem a inversao da matriz Hessiana ao
longo das iteragdes, o que pode ser computacionalmente ineficiente em problemas de
grande porte.

Outros métodos utilizam apenas a informagao disponivel na primeira derivada
da fun¢do objetivo (isto €, o vetor gradiente). Como o vetor gradiente indica a diregdo € o
sentido em que a fun¢do aumenta com maior taxa, a busca numérica deve seguir o seu
sentido contrario para que a fung¢do seja minimizada. Métodos como o método de
Levenberg-Marquardt, tem a vantagem de evitar o computo da matriz Hessiana e a sua
inversao, o que torna as iteragdes mais rapidas.

Uma outra classe sdo os métodos estocasticos de otimizagdo, que sao
caracterizados pela realizagdo de um grande numero de avaliagdes da fungdo objetivo em
toda a regido de busca, de forma a aumentar a probabilidade de encontrar o 6timo global da
funcdo objetivo. Além disso, estes métodos ndo precisam de uma estimativa inicial muito
precisa da solucao e nao utilizam as derivadas para chegar ao ponto 6timo, evitando assim
muitas das dificuldades associadas aos métodos mais tradicionais. Sao portanto, algoritmos
adequados para lidar com fungdes objetivo fortemente ndo-lineares e para problemas onde
ndo estdo disponiveis boas estimativas iniciais para os parametros. Dentre os métodos
estocasticos, encontram-se o método de Monte Carlo, o Algoritmo Genético e o algoritmo
de Recozimento Simulado (Simulated Annealing), o Enxame de Particulas, etc [Colago et
al. (20006)].

Além disso, Colago et al. (2006) chamam a ateng¢do para uma terceira classe
de métodos conhecida como métodos hibridos que combinam os métodos deterministicos e
os métodos estocasticos a fim de aproveitar as vantagens especificas de cada um. Os
métodos hibridos geralmente empregam os métodos estocasticos para localizar a regido de
minimo global e entdo mudam para os métodos deterministicos para encontrar a solucao

mais rapidamente.
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4.2. Estimativa de Funcio

Os métodos descritos anteriormente sdo aplicados a minimizagcdo de uma
funcdo objetivo num espaco paramétrico de dimensao finita. Varios problemas inversos e
de otimizagao baseiam-se em estimativas de fungdes, ao invés de parametros. Nesses casos
a minimizagdo necessita ser realizada num espago de fun¢do de dimensao infinita, onde
nenhuma hipotese a priori é fornecida sobre a forma funcional da fun¢do desconhecida,
exceto pelo espago funcional a que ela pertence. Uma escolha geralmente adotada ¢é o
espaco de Hilbert de fun¢des com quadrado integravel no dominio de interesse.

O procedimento de solugdo de problema inverso geralmente requer sua
reformulagdo em termos de um problema bem-posto e utiliza algum tipo de técnica de
regularizagdo (estabilizacdo). Em muitos métodos para estimativa de propriedade, onde a
solugdo ¢ obtida em termos de minimos-quadrados, o procedimento de regularizagao se da
pela adicdo de termos a norma de minimos-quadrados de modo a reduzir as oscilagdes
causadas pelo carater mal-posto do problema, como no procedimento de regularizagdo de
Tikhonov, onde o pardmetro de regularizagdo ¢ escolhido baseado no residuo entre as
medidas e as temperaturas estimadas.

De fato, se o problema inverso envolve a estimativa de poucos parametros,
como por exemplo, a estimativa de uma propriedade constante de um meio a partir de
medidas transientes de temperatura neste meio, a minimizag¢ao das fung¢des objetivos dadas
acima pode ser estavel. Todavia, se o problema inverso envolve a estimativa de um grande
numero de parametros, como a recuperacao das componentes desconhecidas do fluxo de

calor nos tempos ¢, f(t,)=f,, i=1,..,1, oscilagdes na solugdo podem acontecer. Uma

abordagem possivel para reduzir estas instabilidades ¢ a utilizacdo de procedimentos
chamados de Regularizagdo de Tikhonov, que modificam a norma de minimos quadrados

adicionando um termo como:

S®) =X (Y, -T) +raX (4.7)

i=1
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onde o (>0) ¢ o parametro de regularizacdo e o segundo somatdrio da direita

¢ o termo de regularizacio de ordem-zero. A escolha do parametro de regularizagao

influencia a estabilidade da solu¢do durante a minimizagdo. Para a— 0, concordancia

entre os valores medidos e estimados ¢ obtida no processo de minimizacdo da fungao
objetivo e a solucdo inversa exibe um comportamento oscilatério e instavel. No entanto,
para valores muito grandes de « a solugdo ¢ entdo amortecida, se afastando da solucao
exata [Colacgo ef al. (2006)]. A instabilidade na solucdo pode ser aliviada através da escolha
apropriada do valor de « . Tikhonov sugere que « deve ser escolhido de modo que o
menor valor da fungdo objetivo deve ser igual a soma dos erros quadraticos das medidas, o

que ¢ conhecido como Principio da Discrepancia.

O procedimento de regularizagdo de Tikhonov de primeira-ordem por sua vez

envolve a minimizacao da seguinte forma modificada da norma de minimos quadrados:

S(P) = Z +aZ fin—1) (4.8)

Uma técnica de solugdo de problemas inversos de estimativa de funcao,
alternativa aquela descrita anteriormente da regularizagdo de Tikhonov, ¢ o Método do
Gradiente Conjugado desenvolvido por Alifanov [Ozisik & Orlande (2000)]. Esse ¢ um
método iterativo, cujo critério de parada também envolve o principio da discrepancia. Na
verdade, o procedimento iterativo ¢ parado quando a diferenca entre as temperaturas
medidas e estimadas torna-se da ordem dos erros experimentais esperados, dando ao
método do gradiente conjugado um carater de regularizacao iterativa.

O critério de parada baseado no principio da discrepancia, requer, todavia, um
conhecimento a priori do desvio padrdo dos erros de medidas. No entanto, existem varias
situacdes praticas em que esta informagao nao ¢ disponivel. Para estas situagdes um critério
alternativo de parada baseado em medidas adicionais pode ser empregado, mantendo ainda
assim o carater de regularizagdo iterativa do método de gradiente conjugado [Ozisik &

Orlande (2000)].
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4.3. Analise dos Coeficientes de Sensibilidade

A matriz de sensibilidade, eq. (4.9), tem um importante papel no problema de
estimativa de parametros. Sendo assim, apresenta-se aqui uma breve discussdo sobre a
significancia matematica e fisica dos coeficientes de sensibilidade e os métodos para

calcula-los [Ozisik & Orlande (2000)].

O coeficiente de sensibilidade J,, , como definido na equagéo (4.10), ¢ uma
medida da sensibilidade da temperatura estimada 7, com respeito as variagdes no
parametro P,. Pequenos valores de magnitude de J; indicam que grandes variagdes em P,
causam pequenas mudangas em 7;. Nestes casos a estimativas dos parametros P, pode ser
extremamente dificil, basicamente porque um mesmo valor de temperatura pode ser obtido

para uma grande faixa de valores de P,. De fato, quando os coeficientes de sensibilidade

sdo0 pequenos tem-se que o determinante de J'J ¢é aproximadamente zero ‘J 'y ‘ ~ 0, e neste
caso o problema inverso ¢ considerado mal-condicionado [Ozisik & Orlande (2000)]. Pode
ainda ser mostrado que ‘J 'y ‘ ¢ nulo quando uma coluna de J pode ser expressa como uma

combinacdo linear de outras colunas. Sendo assim, ¢ desejavel ter coeficientes de
sensibilidade linearmente independentes e de grandes magnitudes, para que uma estimativa

acurada dos parametros possa ser obtida.

J(P)= [aTaIEP)} (4.9)
oT;
Jy = P (4.10)

J
Em problemas que envolvem parametros com diferentes ordens de magnitude,

os coeficientes de sensibilidade com respeito aos varios parametros podem ser diferentes

em ordens de grandeza, criando assim dificuldades na comparagdo e identificacdo da
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dependéncia linear. Esta dificuldade pode ser aliviada através de uma andlise dos

coeficientes de sensibilidade reduzidos, definidos como:

Jp =P — (4.11)

A maximizagdo de ‘J 'y ‘ ¢ geralmente utilizada em projetos Otimos de

experimentos para estimativa de parametros, porque a regido de confiancga das estimativas ¢
minimizada [Ozisik & Orlande (2000)]. Uma abordagem mais detalhada sobre projeto
otimo do experimento serd apresentada na proxima secao deste trabalho.

Geralmente a variagdo temporal dos coeficientes de sensibilidade e do

determinante de J'J deve ser examinada antes de se iniciar o procedimento de soluc¢io do
problema inverso propriamente dito. Tais andlises ddo, por exemplo, indicagdes das
melhores localizagdes para os sensores ¢ numero de medidas no tempo necessarias na
analise inversa, que correspondam a coeficientes de sensibilidade linearmente

independentes com grandes valores absolutos e grandes magnitudes do determinante de

J'J [Ozisik & Orlande (2000)].

Existem diferentes abordagens no calculo dos coeficientes de sensibilidade.
Ozisik & Orlande (2000) ilustram trés diferentes abordagens incluindo: solucdo direta
analitica, o problema de valor de contorno, € a aproximacgao por diferencas finitas.

Se o problema direto de condugao de calor ¢ linear e a sua solugdo direta esta
analiticamente disponivel para o campo de temperatura, os coeficientes de sensibilidade

com respeito aos pardmetros desconhecidos P, podem ser determinados pela diferenciagdo
da solugdo direta com respeito a P..

A abordagem do problema de valor de contorno para determinacdo dos
coeficientes de sensibilidade pode ser empregada através da diferenciagdo do problema
direto original com respeito aos parametros desconhecidos. Se o problema direto de
condugdo de calor for linear, a construgao do problema de sensibilidade correspondente ¢

relativamente simples [Ozisik & Orlande (2000)].
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A aproximagcao por diferencas finitas pode ser empregada na determinacao dos
coeficientes de sensibilidade aproximando as derivadas de primeira ordem que aparecem na
propria defini¢cdo dos coeficientes de sensibilidade eq. (4.10). Se uma aproximagdo por
diferenca avancada for usada, tem-se os coeficientes de sensibilidade aproximados segundo
a equacao (4.12). Se a aproximac¢do de primeira ordem nao for suficientemente acurada, o
coeficiente de sensibilidade pode ser aproximado por diferenca centrada na forma dada pela

equacao (4.13) abaixo [Ozisik & Orlande (2000)]:

T(B,Pyees P+ EP s Py )~ T(By Py Py Py

J. = S (4.12)
y S}Dj
J LEBP Pt e By )~ TR By B = 8P, Py)
;= 7 (4.13)

J

Vale notar que a aproximacdo dos coeficientes de sensibilidade dada pela
equacdo (4.12) requer o célculo adicional de Npar-vezes da solugdo do problema direto,
enquanto a equacao (4.13) requer o calculo adicional de 2Npar-vezes da solugdo do
problema direto. Sendo assim, a computagdo dos coeficientes de sensibilidade através da
aproximagao por diferencas finitas pode muitas vezes ser dispendiosa computacionalmente.

No caso de se tratar de medidas de multiplos sensores, algumas modificagdes
na forma da matriz de sensibilidade J sd3o necessdrias. Sendo assim a matriz de

sensibilidade pode ser escrita na forma:

[ =T —T —T —T
or. oI 0T oT
OPR 0P, OP,  OP

Npar
—T —T —T —T
o' )T oT: o> oT: o
J(P) = —p | 7| R OB R Py, (4.14)

—T —T —T —T
T, oT: oT: oT,
OB 0P, OP,  OP

Npar |

onde
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—r | 0T}
oT

oP. J

, parai=1,..,1 e j=1,.., Npar (4.15)

sendo / ¢ o nimero de medidas transientes por sensor, M ¢ o nimero de sensores, € Npar
igual o nimero de parametros desconhecidos. Os elementos da matriz de sensibilidade

podem entdo ser rescritos na forma dada por:

A (4.16)
K= .

o,
onde os sub-escritos & e j referem-se ao nimero de linhas e ao nimero de colunas da matriz
de sensibilidade, respectivamente. A k-ézima linha estd entdo relacionada a medida no

tempo #; e ao sensor m pela expressao [Ozisik & Orlande (2000)]:

k=@G-D)M +m (4.17)

4.4. Projeto Otimo do Experimento

Uma analise estatistica possibilita a estimativa da incerteza de P;, que sdo os

valores estimados para os pardmetros P;, j=1,...,N,,-. Supondo validas as hipoteses descritas
anteriormente para os erros de medida (ndo-correlacionados, com distribui¢do normal,
média zero e desvio-padrdo constante), a matriz de covaridncia para as estimativas
correspondentes a funcdo objetivo de maxima verosimilhanca (ver eq. (4.5)) ¢ dada por

[Ozisik & Orlande (2000)]:
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V =cov(P) =[J"WJ]" (4.18)

Sendo assim, os desvios-padrdo para as estimativas dos pardmetros sao

obtidos da diagonal de cov(P) como:

A equacdo (4.20) apresenta os intervalos para um nivel de confianga requerido
de 99%. Todavia, o intervalo de confianga nao fornece uma boa aproximagao da regido de
confianca conjunta dos parametros estimados. De fato, o intervalo de confianga ¢ obtido
para cada pardmetro, sem levar em conta as estimativas dos outros pardmetros. A regido de
confianga construida a partir dos intervalos de confianga pode acabar por incluir areas fora
da verdadeira regido de confianga ou deixar de incluir areas que pertengam a verdadeira

regido [Ozisik & Orlande (2000)].

Pj—2.576013j <P;<P; +2.576013j para j=1,....Nyar (4.20)

A regido de confianga conjunta para os parametros estimados ¢ entdo dada

pela equacdo (4.18) e refere-se ao interior do hiper-elipsdide centrado na origem e com

coordenadas (ﬁ} —Pl),(lf’2 —1’2), ,(13

Npar

-P

Npar

). A superficie do hiper-elipsoide tem

densidade de probabilidade constante dada por uma distribuicdo chi-quadrada para um
determinado nivel de confianga [Ozisik & Orlande (2000)].

(P-P) V'(B-P)<z2 para j=1...Np 4.21)

A otimizacao dos experimentos se d& minimizando o hiper-volume da regiao

de confianga, de modo que as estimativas dos parametros tenham varidncia minima. A

minimiza¢do da regido de confianca pode ser feita maximizando o determinante de V.
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Uma vez que V™' ¢é dado pela inversa de (4.18), tem-se que projetar o experimento 6timo

significa maximizar o determinante da matriz J'J, também conhecida como matriz de
informagdo de Fischer. Este critério é o chamado critério D-Otimo [Colago et.al. (2006a)].
Usando a definicdo da matriz de sensibilidade envolvendo um unico sensor a
matriz de informacdo de Fischer pode ser escrita como na expressdo (4.22). Se a restricao
de que existe um grande, porém fixo, nimero de medidas de M sensores, os experimentos
podem ser otimizados utilizando-se uma forma alternativa da matriz F, cujos elementos sao
dados pela expressdo (4.23), onde # ¢ a duragdo do experimento [Ozisik & Orlande,

(2000)]:

. ! T oT
[F1,., :Z[ﬁ [ﬁ_F;] para  mn = 1,...Ny (4.22)
i=l m n
. 1 L% (or )\ or
(K 1. :_Z s j[_fj dt para mn=1,.,Ny, (4.23)
Mtf s=1 t!o é,Pm é,ljn

4.5. Inferéncia Bayesiana

Segundo Gamerman & Lopes (2006), o desenvolvimento da estatistica como
ciéncia de tratamento ¢ analise de dados sempre esteve atrelado as capacidades
computacionais do momento, tendo sido entdo alavancado nas ultimas décadas com a
disseminacdo de meios de computagdo cada vez mais velozes. Ainda segundo Gamerman
& Lopes (2006), a area que talvez tenha se beneficiado mais com esse avango foi a de
inferéncia Bayesiana. Embora essa abordagem encontre a simpatia de usuarios pela sua
flexibilidade, ela obriga a incorporagao de todas as fontes de informag¢do em um dado
problema.

Segundo Zabaras (2006), a recente aplicagdo da inferéncia Bayesina a partir

da propagagdao de métodos eficientes de amostragem, como o Método de Monte Carlo via
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Cadeia de Markov (MCMC) empregados na solugdo de problemas inversos em
transferéncia de calor, acrescentou novas perspectivas a esta frente de estudos.

Assim como na inferéncia frequentista, a inferéncia Bayesiana trabalha na
presenca de observacdes Y cujos valores sdao inicialmente incertos e descritos através de
uma distribuicdo de probabilidade com densidade ou funcdo de probabilidade f(Y|P).
Gamerman & Lopes (2006) acrescentam que a situagcdo canoOnica ¢ aquela onde uma
amostra aleatoria simples Y = (Y1, Y2,., Yo ) ¢ extraida de uma populagdo que se distribui
de acordo com a densidade f(Y|P). Tipicamente neste caso as observagdes Y,’s sdo
identicamente distribuidas e independentes (condicionalmente ao conhecimento de P).

A quantidade P serve como indexador da familia de distribuicdes das
observagdes representando caracteristicas de interesse que se deseja conhecer. Todavia, a
quantidade P pode ser mais do que um simples indexador, podendo ser a propria razao da
tomada de medi¢des uma vez que o interesse principal de estudo seja a determinagdo do seu
valor. Além disso, Gamerman & Lopes (2006) ressaltam que ¢ bastante provavel que se
tenha, ou se saiba, como caracteriza-la, sendo nestes casos possivel, e até recomendavel,
que esse conhecimento prévio a respeito da quantidade seja incorporado a analise e € nesse
ponto que o método Bayesiano se diferencia do frequentista. Enquanto o segundo nao
admite essa forma de informagdo por ndo ser observavel, e portanto ndo ser passivel de
comprovacao empirica, o primeiro sempre incorpora essa informacao a analise através de
uma distribuicao p(P), mesmo que esta informacao nao seja muito precisa.

Como descrito acima, a inferéncia Bayesiana contém dois ingredientes: a
distribui¢do das observacdes f(Y|P)e a distribui¢do p(P). Olhando para o primeiro como
funcdo de P obtém-se a fungdo de verosimilhanca de P, p(Y|P) que fornece informacao
sobre a chance de cada valor de P ter levado aquele valor observado para Y. O segundo
ingrediente ¢ chamado de densidade a priori, pois contém a distribui¢ao de probabilidade
de P antes da observagdo do valor de Y. Colocado desta forma ¢ razoavel que o processo de
inferéncia seja baseado na distribui¢do de probabilidade de P apds observar o valor de Y,
que passa a fazer parte do conjunto de informacao disponivel. Essa distribuicao, p(P|Y), ¢
chamada de distribuicdo a posteriori em direta oposi¢do a priori e pode ser obtida através
do teorema de Bayes, equacdo (4.24). Uma vez obtida a distribuicao a posteriori, pode-se

procurar sumarizar a informag@o nela contida através de algumas medidas, em particular
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podem ser calculadas medidas de localizagdo para fornecer uma idéia de possiveis valores
centrais e de dispersdo, para dar uma idéia da variabilidade associada a situacdo descrita
pela posteriori. As principais medidas de posicdo sdo a média, a moda e a mediana, e as
principais medidas de dispersdao sdo a variancia, o desvio-padrdo, a precisdo e a curvatura
na moda. Uma relagdo dessas medidas e a relagdo delas com regras de decisdo ¢ dada por

Migon & Gamerman (1999):

Y|P)p(P
P ZL(;‘)’( )_ L (v P)p(P) (4.24)

p(PY)=

Assim, a fun¢do de densidade de probabilidade posteriori pode ser escrita como sendo

proporcional ao produto da verossimilhanga e da distribui¢do a priori:

p(PY) < p(Y|P)p(P) (4.25)

Sendo assim, assumindo que os dados de temperatura sao independentes e

identicamente distribuidos (i.i.d.), a verossimilhanga pode ser escrita como:

Y-7(P)) (Y—T(P))] w6)

1
p(Y|P)= y EXP[( "

2
2roy,

onde 7(P) ¢ a temperatura calculada em fungdo dos parametros a serem estimados, e Y ¢ a
temperatura medida. Nesta etapa do presente trabalho as temperaturas experimentais foram
obtidas através de dados experimentais simulados, perturbados por um erro com média
centrada no valor exato da temperatura e variancia constante e conhecida.

A quantidade desconhecida no problema de conducdo de calor aqui
abordado ¢ a condutividade térmica do meio, representado na se¢@o anterior como k(x).
Lembre-se, todavia, que a abordagem adotada na solugdo do problema direto optou por

expandir as propriedades termofisicas em termo de autofunc¢des; tem-se entdo que em
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ultimo plano as quantidades desconhecidas sdo os coeficientes da expansdo e os dois
valores da propriedade nos contornos utilizados na solug¢ao filtro.

Quando ndo ¢ possivel a obtencdo das correspondentes distribuigcdes
marginais analiticamente tem-se a necessidade de fazer uso de algum método baseado em
simulagdo. Gamerman & Lopes (2006) descrevem algumas das principais técnicas como:
linearizagdo e aproximacdo pela normal, aproximacdo de Laplace, aproximagdo via
quadratura Gaussiana e a técnica de simulacdo estocastica baseada no principio de re-
amostragem, e ressaltam que, com excec¢do desta ultima técnica, as demais citadas estdo
atreladas a resultados assintoticos (quando o tamanho da amostra cresce) € a normalidade.

A inferéncia baseada em técnicas de simulacao utiliza amostras da posteriori
p(P|Y) para extrair informacdo a seu respeito de P. Obviamente, como uma amostra ¢
sempre um substituto parcial da informagdo contida em uma densidade, métodos baseados
em simulagdo sdo inerentemente aproximados e devem apenas ser utilizados quando for
constada a impossibilidade de extragdo analitica de informacao da posteriori, como € o caso
no presente estudo. Infelizmente, segundo Gamerman & Lopes (2006), para a maioria dos
problemas de relevancia pratica ¢ complicado fazer uma geracdo da posteriori p(P|Y).
Portanto, sdo necessarios métodos mais sofisticados que permitam a obten¢cdo de uma
amostra de p(P|Y), como por exemplo, a técnica baseada em simulacdo via cadeias de
Markov. O método numérico mais utilizado para explorar o espaco de estados da posteriori
¢ a simulacdo de Monte Carlo. A simulagdo de Monte Carlo ¢ baseada em uma grande
amostra da fun¢do densidade de probabilidade (neste caso, a funcdo de densidade de
probabilidade da posteriori p(P|Y)). Varias estratégias de amostragem sdo propostas na
literatura, entre elas, o Método de Monte Carlo via Cadeia de Markov (MCMC), adotado
pelo presente trabalho, onde a idéia basica ¢ simular um “passeio aleatorio” no espago de
p(P|Y) que converge para uma distribui¢ao estaciondria, que € a distribuicao de interesse no

problema.
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4.5.1. Método de Monte Carlo via Cadeia de Markov - MCMC

A teoria dos processos estocasticos, onde a cadeia de Markov esté inserida, ¢
geralmente definida como a parte dinamica da teoria das probabilidades, onde se estuda
uma cole¢do de variaveis aleatérias, sob o ponto de vista de suas interdependéncias e de seu
comportamento limite. O método de Monte Carlo via Cadeia de Markov ¢ uma versao
iterativa dos métodos de Monte Carlo tradicionais. A idéia ¢ obter uma amostra da
distribui¢do a posteriori e calcular estimativas amostrais das caracteristicas desta
distribui¢ao usando técnicas de simulagdo iterativa, baseadas em cadeias de Markov.

Uma cadeia de Markov ¢ um processo estocastico {Py, Pi,...} tal que a
distribui¢ao de P;, dados todos os valores anteriores Py, ..., Pi.; , depende apenas de P;.;. Ou
seja, interpreta-se o fato de um processo satisfazer a propriedade de Markov (eq. (4.27))
como que, dado o presente, o passado ¢ irrelevante para se prever a sua posicdo num

instante futuro [Gamerman & Lopes (2006)].
p(P e AP,,...P )= p(P, e 4|P) (4.27)
Uma cadeia de Markov ¢ mais precisamente definida pela sua probabilidade

de transi¢do p(i,j)=p(i—j), a qual define a probabilidade de que o processo, estando no

estado s; mova-se para o estado s; em um Unico passo, conforme segue:
pli. )= pi— j)=p(P,, =s [P, =5) (4.28)

Os métodos MCMC requerem, para que se obtenha uma tnica distribuicao de

equilibrio, que a cadeia de Markov seja [Ehlers (2003)]:

e homogénea, isto €, as probabilidades de transi¢ao de um estado para outro sejam
invariantes;
e irredutivel, isto ¢, cada estado pode ser atingido a partir de qualquer outro em

um numero finito de iteracdes;
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e aperiddica, isto ¢, ndo haja estados absorventes;

Assim, uma condicdo suficiente para se obter uma unica distribui¢do

estacionaria ¢ que o processo atenda a seguinte equagao de balanco:

pi— )p,(P|Y)=p(j —>i)p,(P]Y) (4.29)
onde p(Pi|Y)e p(P;|Y) sdo as probabilidades dos estados distintos da distribuicdo de
interesse.

Uma questdo importante de ordem pratica € como os valores iniciais
influenciam o comportamento da cadeia. A idéia ¢ que conforme o numero de iteracdes
aumente, a cadeia gradualmente converge para uma distribui¢do de equilibrio. Assim, em
aplicagdes praticas € comum que os estados iniciais sejam descartados, como se formassem
uma amostra de aquecimento. O problema entdo consiste em construir algoritmos que
gerem cadeias de Markov cuja distribuigdo converge para a distribuicdo de interesse. Os
algoritmos MCMC mais comumente utilizados sdo o Metropolis-Hastings (aqui

empregado) e o Amostrador de Gibbs [Ehlers (2004)].

4.5.2. MCMC - Algoritmo Metropolis-Hastings

A cadeia de Markov segundo o nome genérico de Metropolis-Hastings advém
dos artigos de Metropolis et.al. (1953) e Hastings (1970). Esses trabalhos foram
considerados basicos para a identificagdo do método embora, na opinido de Gamerman &
Lopes (2006), os trabalhos de Barker (1995) e Peskun (1973) tenham trazidos contribuigdes
relevantes.

O algoritmo de Metropolis-Hastings usa a mesma idéia dos métodos de
rejeicdo, i.e. um valor ¢ gerado de uma distribui¢do auxiliar e aceito com uma dada
probabilidade. Este mecanismo de correcdo garante a convergéncia da cadeia para a
distribuicao de equilibrio. Ou seja, o algoritmo agora inclui uma etapa adicional, aonde o

mecanismo de transi¢do depende de uma proposta de transicao e de uma etapa posterior de
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avaliacao da densidade de equilibrio, mas esta esta representada na transi¢ao global através
da probabilidade de aceitagdo.

O algoritmo de Metropolis-Hastings faz uso de uma funcdo densidade de
probabilidade auxiliar, g(P*|P), da qual seja facil obter valores amostrais. Supondo que a
cadeia esteja em um estado P, um novo valor candidato, P* , serd gerado da distribuicao
auxiliar ¢(P*|P), dado o estado atual da cadeia P, onde P ¢ o vetor dos parametros em
estudo.

O novo valor P* ¢ aceito com probabilidade dada pela equagao (4.30), onde a
razdo que aparece nesta equagdo ¢ chamada por Hastings (1970) de razdo de teste, hoje

chamada de razdo de Hastings “RH"’:

(4.30)

RH(P,P*)—min{l p(® ‘Y)q(P ‘P)]

" p(P|Y)q(P|P")

onde p(P|Y) ¢ a distribui¢@o a posteriori de interesse. Uma observacao importante ¢ que sO
precisamos conhecer p(P|Y) a menos de uma constante, uma vez que estamos trabalhando
com razoes entre densidades, e a constante de normalizacao se cancela.

Em termos praticos, isto significa que a simulagdo de uma amostra de
p(PY) usando o algoritmo de Metropolis-Hastings pode ser esquematizado da seguinte

forma [Ehlers (2004)]:

1. Inicializa-se o contador de iteracdes da cadeia i = 0 e arbitra-se um valor inicial P”.

2. Gera-se um valor candidato P* da distribui¢ao ¢(P*|P),.

3. Calcula-se a probabilidade de aceitagio RH(P,P") do valor candidato através da
eq. (4.30).

4. Gera-se um numero randomico u com distribui¢ao uniforme, isto é u~U(0, 1),

j+ ‘o
(D = p*  Caso contrario

5. Se u < RH(P,P")entdo aceita-se 0 novo valor e faz-se P
rejeita-se e faz-se P/ = p @,

6. Incrementa-se o contador de i parai + 1 e volta-se ao passo 2.
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O nucleo de transi¢dao g define apenas uma proposta de movimento que pode

ou nio ser confirmada por RH(P,P"). Por este motivo ¢ ¢ normalmente chamado de

)

proposta e, quando olhado como uma densidade (ou distribui¢cdo) condicional ¢(P*
chamado de densidade (ou distribuicao) proposta.

O sucesso do método depende de taxas de aceitagdo ndo muito baixas e de
propostas faceis de simular. O método substitui uma geracao dificil de p(P|Y) por varias
geragOes propostas de g.

O presente trabalho optou por adotar cadeias simétricas ou seja, para o
algoritmo de Metropolis-Hastings, a no¢ao de cadeia simétrica ¢ aplicada sobre a transi¢cdo
proposta g. Sendo assim, g define uma transi¢dao uniforme em torno das posi¢des anteriores
na cadeia, isto ¢, q(P*|P) = q( P|P*), para todo (P* P). Neste caso a expressao (4.30)
reduz-se apenas a razao entre as densidades calculadas nas posi¢des, anterior € proposta, da
cadeia, e ndo depende de g.

Nota-se também que a cadeia pode permanecer no mesmo estado por muitas
iteragdes, € na pratica sugere-se monitorar isto calculando a taxa de aceitacdo, ou seja, a
porcentagem média de iteragdes para as quais novos valores gerados sdo aceitos. Sendo
assim, uma cadeia que ndo se move, isto ¢, com baixas taxas de aceitacdo, deve ser evitada.
Para que se tenha convergéncia para a distribuicao de equilibrio, a cadeia deve ser capaz de
percorrer todo o seu dominio. Uma forma de se resolver as baixas taxas de aceitagdo ¢ fazer
com que a cadeia caminhe muito lentamente, isto ¢ se desloque através de movimentos
diminutos. Todavia, cadeias com taxas de aceitagdo muito altas também sdo indesejadas,
uma vez que a cadeia levara muitas iteragdes para percorrer todo o dominio p(P). Assim, os
movimentos da cadeia, determinados por ¢, devem ser dosados de forma a fazé-la ter
deslocamentos grandes, mas que tenham chances reais, determinados pela eq. (4.30), de ser

aceitos.
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Capitulo 5

5. Experimentos com Termografia por Cimera de

Infravermelho

Este capitulo tem como objetivo apresentar a utilizagdo da técnica nao-
intrusiva de medi¢do de temperatura por termografia de infravermelho na realizagdao de
experimentos em transferéncia de calor visando a identificacdo de propriedades
termofisicas, conjugada a técnica de Inferéncia Bayesiana na solugcdo dos respectivos
problemas inversos. Neste sentido, dois experimentos envolvendo condu¢do de calor
transiente foram montados em uma bancada experimental projetada para este fim, e as
medidas de temperatura foram obtidas com uma camera de infravermelho, ThermoVision
A-10 da Flir Systems Inc. As imagens termograficas aquisitadas ao longo do transiente
térmico foram tratadas e alimentaram o algoritmo de solu¢do do problema inverso,
construido na plataforma Mathematica 5.2, como mais tarde ilustrado no capitulo de

resultados.

5.1.Fundamentos da Termografia por Camera de Infravermelho

Medidas de temperatura com sensores de contato, como por exemplo
termopares, sdo por vezes de dificil execu¢do uma vez que a introducdo de um sensor no
meio a ser caracterizado pode causar uma perturbacdo significativa no mesmo. Tal
perturbacdo requer que o sensor seja modelado como parte do sistema, causando
dificuldades adicionais na andlise do problema térmico. A resolug¢do espacial das cameras

termograficas na faixa do infravermelho ja atinge hoje valores inferiores a 20 um. Portanto,

59



a termografia por camera de infravermelho se apresenta como uma técnica nao-intrusiva, de
alta definicdo e pequena incerteza, e vasta aplicabilidade.

A radiacdo na faixa do infravermelho (IR, do inglés “infrared”) ¢ uma parte da
radiacdo eletromagnética cujo comprimento de onda € maior que o da luz visivel ao olho
humano. O infravermelho ¢ uma frequéncia eletromagnética naturalmente emitida por
qualquer corpo, com intensidade proporcional a sua temperatura. A Termografia ¢ a técnica
que possibilita a medi¢ao de temperaturas e a formagao de imagens térmicas de um objeto,
a partir da radiacdo infravermelha que emana da superficie.

Os infravermelhos se subdividem em infravermelhos curtos (0.7 — 5 pm),
infravermelhos médios (5 — 30 um) e infravermelhos longos (30 — 1000 um). Entretanto,
esta classificagdo nao ¢ precisa porque em cada area de utilizacdo, se tem uma idéia
diferente dos limites dos diferentes tipos.

Um detector ou sensor de radia¢do infravermelha ¢ um transdutor de energia
eletromagnética, isto é, um dispositivo que converte a energia radiante incidente sobre o
mesmo em alguma outra forma conveniente de sinal mensuravel, geralmente, um sinal
elétrico. Analisando-se o mecanismo fisico envolvido no processo de deteccdo pode-se
estabelecer duas categorias distintas de detectores: os Detectores Quanticos e os Detectores
Térmicos.

Os detectores quanticos se baseiam no efeito fotoelétrico, onde o material
exposto a uma radiacdo eletromagnética de freqii€ncia suficientemente alta, emite elétrons,
ou seja, estes detectores utilizam a conversao direta dos fotons incidentes em portadores de
carga via transicao eletronica em um material semicondutor. Neste caso, os fotons
absorvidos acarretam um aumento na populagdo de portadores de carga fazendo com que a
resisténcia elétrica do dispositivo diminua. Um portador de carga refere-se a uma particula
livre portadora de uma carga elétrica. Na fisica de semicondutores, os buracos produzidos
pela falta de elétrons sdo tratados também como portadores de carga. Esses dispositivos
podem ser construidos e operados sob duas formas diferentes:- Fotocondutor ou
Fotoresistor; e Fotovoltaico (Fotodiodo).

No caso dos detectores térmicos, a energia eletromagnética absorvida provoca o
aquecimento do dispositivo. Isto provoca a alteragdo de alguma propriedade do material

que ¢ funcao da temperatura e pode ser mensurada por uma das seguintes formas:
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- Medida direta da temperatura (calorimetria)

- Mudanga na resisténcia elétrica do material

- Um sinal de corrente ou tensao termoelétrica

- Alteracao de carga ou capacitancia do dispositivo

Este tipo de detector apresenta uma resposta proporcional a energia incidente, sendo
praticamente independente do comprimento de onda da radiagdo. Devido a inércia térmica
dos processos de absorcao e troca de calor, este tipo de sensor apresenta tempos de resposta
relativamente longos (>10 ms). Em geral esses detectores ndo precisam de refrigeragao,
facilitando o seu uso em diversas aplicagdes de campo com menor custo operacional. Os
principais tipos de detectores térmicos sdo: a Termopilha, o Detector Piroelétrico e o
Bolometro.

Detectores do tipo bolometro tratam-se basicamente de um termoresistor, isto
¢, de um dispositivo cuja resisténcia elétrica varia com a temperatura. Pode ser construido
tanto a partir de metais (dispositivos classicos) quanto com semicondutores (dispositivos
modernos) que apresentem dependéncia significativa da resisténcia elétrica com a
temperatura. Existe ainda uma terceira categoria de materiais conhecidos como termistores
que sao compostos por 6xidos mistos e vem sendo utilizados com sucesso na construgao de

bolometros.

A Camera ThermoVision-A10:

A camera utilizada em nosso experimento, mostrada na figura 5.1, ¢ o modelo
ThermoVision® Micron/A10 fabricada pela Indigo/Flir Systems para comprimentos de
onda longa (entre 7,5 a 13,5 um), com temperatura de trabalho da camera entre -40 e 50C°.
A medigao da temperatura pela camera ¢ baseada na conversao da radiagdo infra-vermelha
em um sinal elétrico, que faz com que a imagem termografica seja gerada. A
ThermoVision-A10 utiliza detectores de microbolometros de 6xido de vanadio arranjados
em malha de 51x 51microns.

Os modos de saida de video da ThermoVision-A10 podem ser em digital (em 8
ou 14bits) ou em analdgico (8bits), para o formato de video em escala de cinza RS-170A4
(com taxa de 30 quadros por segundo com fonte de codificacdo analdogica NTSC padrdo nos

EUA) ou de video em escala cinza CCIR (com fonte de codificacdo analogica PAL propria
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e padrao na Europa e em outros paises, com taxa de 25 quadros por segundo) por interface
RS-232.

A lente da ThermoVision-A10 tem padrao de distancia focal de 11mm com
campo visual de 40° por 30° (resolucao 640 por 480 pixels e resolugdo espacial em torno de
0,22mm/pixel para o ensaio de 200mm de distancia).

Seu ruido equivalente, mais conhecido pela sigla NETD (noise equivalent
temperature difference), € menor que 85mK em baixas temperaturas inferiores a 150°C e
considerando temperatura ambiente em torno de 25°C (Low temperature state — High
Sensitivity ), e menor que 350mK em altas temperaturas, temperaturas superiores a 500°C e
ambiente em torno de 25°C (High temperature state — Low Sensitivity).

Com consumo nominal de 1,5 Watts, massa de apenas 107 gramas, sendo uma
das menores cameras disponiveis no mercado (dimensdes de 1,35 por 1,45” por 1,9”) e
montagem simples pela base padrdo para cdmeras (furagdo com rosca de 5/16”), ela se
apresenta como uma op¢ao bastante versatil e de baixo custo para aplicacdes cientificas. A

tabela 5.1 a seguir apresenta algumas das especificagdes técnicas da ThermoVision-A10.

=

Fig. 5.1- CaAmera ThermoVision A10 (fonte:Flir Systems)
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Tabela. 5.1 — Especificacdes técnicas da cAmera ThermoVision A10

Thermo Vision A10
Microbolometro de Oxido de Vanadio
Detector ~ :
(ndo refrigerado)
Disposicao Resposta
Plana Focal Espectral 7:5—13.5 pm
Sensibilidade <40mK para {/1.0
Térmica < 80mK para /1.6
Performance da | Tempo para
Video Imagem Primeira < 2 segundos
Térmica Imagem
Sistema Otico Foco Fixo Ajuste Manual
Sinal de Saida | Analodgico : 30Hz para RS-170A ou 25Hz para CCIR
do Video Suporte de Saida Digitais de 14-bit
Tamanho Pixel 51 x50 pm
Formato da 160H x 120V (RS-170A)
Matriz de Saida 160H x 128V (CCIR)
TemperatuNra de 0°C a +40°C
Operagdo
Sistema Ter’np_eratura 150°C - modo padrio
Maxima da °
400°C - modo de auto-ganho
Amostra
Informacgoes Tamanho 1.35’W x 1.45”H x 1.90”D
Gerais Peso 120 g

O processamento dos sinais (imagens) fornecidos pela camera ThermoVision
AI0 pode ser feito de forma analdgica ou digital. O sinal analdgico ¢ um tipo de sinal
continuo que varia em fung¢do do tempo e ¢ obtido de forma direta sem passar por qualquer
decodificacdo complexa. Ja o sinal digital € um sinal com valores discretos (descontinuos)
no tempo e amplitude. As informagdes obtidas pelos microbolomeros de 6xido de vanadio
da ThermoVision A-10 fornecem informagdes discretas na escala de 14 bits (0 a 16383,
(2'*-1)) a um moédulo conversor. Este modulo transmite tanto as informagdes digitais
(discretas) quanto converte e transmite de forma analdgica (continua). Por termos uma
placa de recepcao analdgica da National Instruments disponivel, acabamos por capturar as
informagdes analdgicas deste modulo. Porém, tais informagdes sdo recebidas pela placa da
National Instruments como uma imagem na escala de cinzas comum, o que a faz retornar
ao processador do computador informacdes digitais na escala do Graylevel de 8 bits (0 a
255). O software no computador interage com a placa através de controles ActiveX

(fornecidos pela National Instruments junto com a placa) mediante programacao orientada
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a objetos. Uma otimizacao da captagdo das informagdes estaria na aquisicdo de uma nova
placa, s6 que de recep¢ao digital, a fim de se obter toda a amplitude da escala de 14 bits

oferecida pela camera, obtendo uma escala 64 vezes mais detalhada (2/*).

5.2. Aparato Experimental e Modelos Fisicos

A bancada experimental apresentada na figura 5.2 foi projetada, construida e
testada para realizagdo do presente estudo de identificagdo de propriedades termofisicas
usando medidas de temperatura obtidas com a camera de infravermelho. Os principais
componentes da bancada sdo: a) camera ThermoVision A10; b) suporte para camera em
experimento vertical; ¢) amostra com placas aquecidas em sanduiche; d) suporte para
camera em experimento horizontal; e) suporte das amostras; f) conversor digital-analogico;
g) sistema de aquisicdo de dados (Agilent 34970-A); h) microcomputador de aquisicao e

tratamento de dados.

Fig. 5.2. — Bancada experimental para identificaciio de propriedades termofisicas

com termografia por cimera de infravermelho.
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A bancada foi idealizada para duas configuracdes experimentais distintas: um
experimento de placa aquecida na horizontal com as imagens de termografia sendo tomadas
na direcdo normal a placa (aparato da esquerda — Figs. 5.3) e experimentos feitos em placa
vertical com as imagens feitas com a camera ajustada horizontalmente (Figs. 5.4). Neste
ultimos casos, pode-se distinguir a posi¢ao da resisténcia aquecedora em dois casos
distintos, uma vez que as placas em sanduiche sejam mais longas que a resisténcia.
Observa-se também na Fig.5.4 a cupula em acrilico confeccionada para reduzir as
perturbacdes externas no processo de convecgdo natural que ocorre junto as placas

aquecidas.

Figs. 5.3— Experimento de placa horizontal, com detalhe do

dispositivo de posicionamento vertical da cimera e do porta-amostras.

Figs. 5.4. — Experimentos de placa vertical, com detalhe do

dispositivo de posicionamento horizontal da cAmera e do porta-amostras.
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Para os experimentos foram escolhidos dois conjuntos de corpos de prova
diferentes, um par de placas de aluminio com espessura de 3 mm e de dimensdes 4 por 4
cm e um par de placas de baquelite de 1.58 mm e dimensdes 4 por 8 cm (Figs.5.5). As
superficies receberam uma pintura em grafite (Graphit 33, Kontact Chemie) para que sua
emissividade fosse aproximadamente uniforme e relativamente alta em toda a placa (¢ =
0.97), minimizando os erros nas variagdes da emissividade. Nos experimentos com as
placas de aluminio, apenas a face voltada para a camera foi pintada com a tinta de graphite,
enquanto a face oposta foi deixada com a textura original do aluminio polido. Nos
experimentos com baquelite, ambas as placas foram pintadas com grafite, visando obter-se
uma situacdo mais proxima a simetria. Observa-se também da Fig.5.5 que as placas de
baquelite, na face em contato com a resisténcia elétrica, tem um filme de cobre depositado,
também com dimensdes 4x4 cm.

Como referéncia para as medidas da camera, bem como para validagdo da
técnica experimental, utilizou-se de medidas de temperatura com termopares do tipo-K,
afixadas com adesivo especial (Loctite com ativador) na superficie de cada placa, como
mostrado em detalhe na Fig.5.5a. Em todos os casos foi utilizado um termopar de
referéncia no topo da superficie exposta a cdmera, método este preferido na correlagdao dos
niveis digitais da cdmera com a temperatura, tendo em visto a dificuldade de controlar a
saturacao da camera quando se emprega um calibrador de corpo negro. Foram também
fixados termopares do tipo-K na face oposta a camera de modo a possibilitar comparagdes
com as temperaturas medidas pela camera, sendo um total de 5 termopares adicionais para
o experimento com placas de aluminio e apenas 1 termopar para os experimentos com
placas de baquelite. A Fig. 5.5b. mostra em detalhe a face interna das placas de baquelite,
com um deposito de cobre de mesmas dimensdes da resisténcia elétrica que serd utilizada
no aquecimento da placa com o objetivo de uniformizar o fluxo de calor fornecido.

Utilizou-se no aquecimento das placas uma resisténcia com dimensdes 4x4 cm
e de 38.18Q (medida com 4 fios e multimetro de 7 digitos Agilent) isolada eletricamente
com fita kapton (preparada pelo Prof. Saulo Gunths, UFSC), como mostrado na figura 5.6.
Na montagem, a resisténcia foi colocada entre as duas placas untadas com pasta térmica
para uniformizar o contato térmico. A resisténcia estd ligada a uma fonte de corrente

continua eletronicamente controlada (marca INSTRUTHERM). A fixacdo deste conjunto
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placa-resisténcia-placa se deu através de uma moldura em acrilico com aperto por
parafusos, com bragadeiras nas extremidades da moldura para sustentacao no suporte, como
mostrado no detalhe da figura 5.7. Os corpos de prova de aluminio, como tém as mesmas
dimensdes da resisténcia e alta condutividade térmica, foram empregados para
experimentos sem variagdo significativa espacialmente de temperatura, enquanto as placas
de baquelite, com o dobro do comprimento da resisténcia e baixa condutividade térmica,

oferecem experimentos com variagdo apreciavel de temperatura ao longo do seu

comprimento.

Fig.5.5a. — Detalhe das placas de baquelite (4x8cm)  Fig.5.5b. — Detalhe da face interna das placas de
com os termopares tipo K afixados. baquelite, com depoésito de cobre (4x4cm).

Fig. 5.6. — Detalhe da resisténcia elétrica (4 x 4cm)  Fig. 5.7. — Detalhe da fixa¢do do conjunto placa-
com isolamento em filme kapton. resistencia-placa no experimento vertical
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Em todas as configuragdes experimentais, o sistema de aquisicdo de dados
utilizado foi baseado em microcomputador, na placa de recepcdo analdgica da National
Instruments e no sistema modular fabricado pela Agilent Technologies (modelo 34970-A)
que faz a transferéncia dos dados para o computador via conexdo RS232 com uma taxa de
115Kbits/s, para a aquisicdo das temperaturas dos termopares e da voltagem na resisténcia
(ver figura 5.8). O software utilizado na aquisi¢cao dos dados da camera e dos termopares
foi o LabView 7.0 da National Instruments. O painel frontal do programa construido e

utilizado nos experimentos reportados no presente trabalho pode ser visto na figura 5.9.
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Fig. 5.8. — Sistema de aquisicio de dados de

temperatura e voltagem — Agilent 34970-A Fig. 5.9. — Painel frontal do programa de aquisicao

construido na plataforma LabView 7.0

5.3. Procedimento Experimental

O procedimento experimental inicia-se fixando o valor da voltagem a ser
imposta na resisténcia com os fios desconectados de modo a ndo iniciar o processo de
aquecimento das placas. Em seguida a fonte ¢ desligada e os fios da resisténcia sdo entao
conectados a fonte. A aquisicao das imagens e das temperaturas dos termopares ¢ entao
simultaneamente iniciada. Ap6s um certo nimero de medidas iniciais utilizadas para definir
a temperatura ambiente média no comego do experimento, inicia-se o aquecimento do
corpo de prova em questdo pelo ligamento da fonte ja fixada previamente na voltagem

desejada. O aumento da temperatura da placa pode ser acompanhado na tela do computador
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pelas curvas de temperatura dos termopares que estdo sendo aquisitados, assim como pelas
imagens da camera, que mostram qualitativamente o aquecimento do corpo de prova. As
figuras 5.10 a 5.12 ilustram as imagens aquisitadas pela TermoVision A-10, no momento do
ligamento da fonte, Figs.5.10, trés minutos ap6s o ligamento da fonte (Figs.5.11), quando ja
pode-se observar o posicionamento da placa e do termopar, e a ultima imagem aquisitada
em cada experimento, ja no regime permanente (Figs.5.12). A sequéncia a esquerda
(Figs.5.10.a, 5.11.a, e 5.12.a) referem-se ao aquecimento superior, ou seja quando a
resisténcia estd posicionada na parte superior do sanduiche de placas, enquanto a seqiiéncia
a esquerda refere-se ao aquecimento inferior, onde a fita de alumino identifica o final da
placa.

Uma vez atingido o regime permanente, ¢ aquisitado por tempo suficiente, o
sistema de aquisi¢do ¢ encerrado e a fonte ¢ entdo desligada. Os arquivos de temperatura
dos termopares e das imagens da camera sdo devidamente identificados e salvos para

futuras comparagdes com resultados de simulacdo e/ou solucdo dos problemas inversos

correspondentes.

Fig. 5.10.a. — Imagem antes de ligar a fonte, no Fig. 5.10.b. — Imagem antes de ligar a fonte, no

experimento horizontal aquisitada pela cAmera; experimento vertical aquisitada pela cAmera;
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Fig. 5.11.a. — Imagem no momento seguinte ao Fig. 5.11.b. — Imagem no momento seguinte ao
ligamento da fonte, no experimento horizontal ligamento da fonte, no experimento vertical

aquisitada pela camera; aquisitada pela camera;

Fig. 5.12.a. — Imagem do experimento horizontal Fig. 5.12.b. — Imagem do experimento vertical

aquisitada pela cimera de infravermelho, durante aquisitada pela cimera de infravermelho, durante

0 aquecimento 0 aquecimeto

5.4. Tratamento de Dados

As imagens da camera de infravermelho sdo salvas no formato “JPEG”, e sdo
entdo lidas e tratadas por um codigo computacional construido no presente estudo na
plataforma Mathematica 6.0. As imagens sdo tratadas como matrizes de “digital level”, em
valores que variam de -255 a 255. Para converter a informagdo em digital level para
temperatura em graus Celsius, ¢ necessario um ponto de referéncia na imagem sobre o qual

se tenha a informagao da variagdo do digital level no tempo, assim como a informagao sobre
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a variagdo no tempo da sua temperatura. Para realizar esta correlagdo entre digital level e
temperatura € necessario que ambas as informagdes retratem o mesmo tempo fisico, ficando
claro nesta etapa do tratamento das imagens a importancia da sincronizacao das medidas da
camera e do sistema de aquisi¢ao (Agilent). A correlagdo entre estas duas quantidades se da
a cada tempo e em termos da temperatura em graus Kelvin a quarta potencia, uma vez que o
detector micro-bolométrico produz um sinal proporcional ao fluxo de calor por radiagdao

sobre ele incidente:
DLx g, (5.1

A equagdo (5.2) abaixo representa o fluxo de calor por radiacdo que emana da

placa aquecida a cada posi¢ao na superficie da placa:

Grua (X, 151) = gWO'T4 (x,y,0)+ px’yO'T;

(5.2)
4 4
= 5X,y0'T (x,y,0)+(1- &y )oT;

Deve-se lembrar que nos experimentos abordados pelo presente trabalho

utilizou-se uma tinta de grafite com emissividade proxima de ¢, ~0.97, para reduzir a

parcela refletida da radiag@o térmica, que poderia se tornar relevante em temperaturas mais
baixas (proximas ao valor da temperatura ambiente); deste modo, para os nossos

experimentos, pode-se dizer que a refletividade ¢ de aproximadamente p  ~0.03.

Entretanto, na correlagdo aqui proposta entre temperatura e digital level, ndo se assume a
priori o conhecimento do valor numérico dessa emissividade, uma vez que se emprega um
termopar de referéncia ao longo do processo transiente de medigao.

A parcela da radiosidade que deixa um elemento de area da superficie da placa
e chega a camera ¢ funcdo do fator de forma de cada elemento de area em relacdo ao

detector da camera, e de acordo com a relagao de reciprocidade (5.3), tem-se que:

A

cam * cam—(x,y) ~

A F (5.3)

x,y = (x,y)—cam
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(5.4)

e F i -cam

qcam ('x’ y’ t) = qrad (‘x’ y’ t) = F‘cam—(x,y)qrad (x’ y’ t)

cam

A correlagdo entre o digital level de qualquer posicao na placa, o digital level
da posi¢do do termopar de referéncia e das respectivas temperaturas em graus Kelvin, pode

entdo ser escrita na forma dada pela equacao (5.5):

cam—=(x,y)

DL,(t) F

cam—ref

DL, () F (€x7}70T4 (x,y.0)+(-¢, YoT! )

(grefo-T;':f (t) + (1 - gref )O-Toj )

(5.5)

Para a situagdo de ¢, , ~ 1, a parcela refletida costuma ser desprezada, e tem-se

que a equacao (5.2) pode ser escrita como:
Qs (X, 3,0) = &, 0T (x,,0) (5.6)

Neste caso, a equagao (5.5) pode fornecer uma relagao entre o produto do fator

de fator de forma de cada posi¢do na placa pela sua respectiva emissividade com relagao aos

respectivos valores dos digital level na condicao inicial conhecida, 7'(x, y,t) =T, :

DLx,y(O) — Ex,}v)—camgx,y (5 7)
DL ,(0)  F, ..& ‘

ref —cam“ ref

Em geral a camera ¢ utilizada a uma distancia suficientemente grande da placa
para que os fatores de forma tenham valores relativamente uniformes, e as diferencas de
digital level na condigdo inicial acabam sendo provenientes das diferengas de emissividades
locais.

Entretanto, com a finalidade de eliminar ruidos ¢ a influéncia de variacdes das
condigdes ambientais, decidiu-se filtrar a imagem correspondente a condi¢@o inicial para
modificar as imagens a serem correlacionadas com a temperatura. Ao subtrair de cada

imagem aquela representativa da condicdo inicial, tem-se a eliminag¢do dos pixels que
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permaneceram inalterados nas imagens ao longo do periodo transiente do experimento e,
deste modo, segregando a parcela da imagem de maior interesse. Assim, o digital level

filtrado torna-se proporcional ao fluxo de calor incidente filtrado:

DLS o qCam (‘x’ y’ t) _qcam (x’y’o) (5’8)

Reescrevendo a correlagdo entre o digital level de qualquer posicao na placa, o
digital level da posi¢do do termopar de referéncia e das respectivas temperaturas em graus

Kelvin tem-se:

DLSx,y(t)_ F, 3 (T4(x’yat)_Toj)

cam=(x,y)”x,y

- (5.9
DLSVEf (t) Fl’am—refgref (T;if (t) - Toj )
Fazendo uso da equagao (5.7) tem-se:
DLS. (1) DL. (0)(T*(x,y,t)-T
L _ DL, O ) (5.10)

DLS,, (1)  DL,(0) (T} 0-T)

Logo, a partir da equagdo (5.10) chega-se a forma empregada para correlagao
dos sinais em digital level filtrados, com os valores de temperatura para qualquer posicao da
placa em relacdo aos valores de digital level e temperatura da posicdo do termopar de

referéncia:

_|DLS, ()DL, (0) /.y s
T(x,y,0) = 4{/ DLS. (DL, .(0) (T2 (-1 )+ (5.11)

Todos os valores de temperatura acima sdo dados em graus Kelvin, ¢ o
resultado final ¢ subtraido por 273.15 para fornecer a temperatura em cada ponto em graus

Celsius.
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Capitulo 6

6. Resultados e Discussoes

No presente capitulo sdo apresentados os resultados obtidos para problemas
diretos e inversos a partir das formulagdes apresentadas nos capitulos 3 e 4, bem como os
resultados experimentais encontrados e as valida¢des necessarias.

A apresentacdo dos resultados inicia-se com a andlise critica da solugdo via
transformada integral do problema de condugdo de calor unidimensional transiente,
apresentado no capitulo 3, para trés diferentes aplicacdes. Em seguida apresenta-se os
resultados das estimativas das propriedades termofisicas e das condi¢gdes de contorno em
problemas tedricos através da abordagem Bayesiana via MCMC. E por ultimo apresenta-se
resultados de estimativa de propriedades termofisicas e condi¢des de contorno a partir de

resultados experimentais reais obtidos através de medidas termograficas.

6.1. Problema Direto — Transformacao Integral

A abordagem proposta no capitulo 3 deste trabalho para solu¢do do problema
direto de condugdo de calor unidimensional transiente em meios heterogéneos foi
implementada na plataforma Mathematica 5.2 [Wolfram (2005)], e alguns resultados
representativos sao aqui apresentados de modo a ilustrar o comportamento da convergéncia
das expansdes em autofuncdes do problema de autovalor original. A convergéncia da
expansdo dos coeficientes da equagdao também foi criticamente analisada e os resultados
encontram-se apresentados logo a seguir.

Foram, portanto, analisadas as trés aplicacdes discutidas no capitulo 3, visando

desafiar a metodologia proposta no tratamento de heterogeneidades, representadas pelas

74



variagdes espaciais dos coeficientes da equagdo de difusdo de naturezas fisica e matematica
bem distintas entre si. O primeiro exemplo, referente ao estudo de um FGM (Functionally
Graded Material), retrata a situacdo fisica de um material projetado e fabricado para
desempenhar mais de uma fungdo (por exemplo, estrutural e térmica) em geral nas faixas
extremas das propriedades fisicas correspondentes. Nesse caso, os coeficientes da equagdo de
difusdo experimentam variagdes de até algumas ordens de grandeza ao longo da dimensao
espacial.

A figura 6.1 abaixo ilustra o efeito do parametro f no comportamento das
propriedades termofisicas do primeiro exemplo de acordo com a eq.(3.70), relacionado a
variagado significativa do coeficiente de difusdo no caso do FGM. Vale ressaltar, para o caso

de =3, a razdo de aproximadamente 400 vezes entre os dois valores de k(x) nos contornos

opostos.

0.l Te— T

001} ~—~—

o0 0.z 04 G 0 10

Figura 6.1 — Comportamento do coeficiente de difusio k(x) para o caso do FGM eq.(3.70) para:
p=-3,-1,1e3

Resultados numéricos para os autovalores e para a distribui¢do da temperatura

no exemplo do FGM sao reportados a seguir, para os valores numéricos de f=-3, -1, 1 e 3, e

para os valores de w,=10 e k,=1. Na geracdo destes resultados as equagdes dos

coeficientes foram empregadas na forma analitica original eq.(3.70), sem expansdo em termos
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de autofuncdes. A tabela 6.1.a,b ilustra a excelente convergéncia dos primeiros 10 autovalores
associados ao problema original, eq. (3.66) a (3.69), com variacdo dos coeficientes, k(x) e
w(x) dados pela equacdo (3.70). As diferentes colunas correspondem ao aumento na ordem
de truncamento na expansdo da autofuncdo original em termo das autofungdes auxiliares,
para: N=20, 30, 40 e 50. Deve-se notar que os dez primeiros autovalores estdo completamente
convergidos em seis digitos significativos para o caso =1 com 50 termos na expansao (tabela

6.1.a.) e em cinco digitos significativos para a situagdo mais critica de /=3 (tabela 6.1.b.).

Tabela 6.1.a — Convergéncia dos dez primeiros autovalores para o caso do FGM (#=1)

A““Zal"r Ni=20 Ni=30 Ni=40 Ni=50
i 1.04258 1.04258 1.04257 1.04257
2 2.01194 2.01193 2.01193 2.01193
3 2.99712 2.99711 2.99711 2.99711
4 3.98643 3.98641 3.98640 3.98640
5 4.97738 4.97736 4.97735 4.97735
6 5.96918 5.96915 5.96914 5.96914
7 6.96145 6.96141 6.96140 6.96140
8 7.95403 7.95398 7.95397 7.95396
9 8.94680 8.94674 8.94673 8.94672
10 9.93973 9.93964 9.93963 9.93962

Tabela 6.1.b — Convergéncia dos dez primeiros autovalores para o caso do FGM (#=3)

A““Zal"r N; =20 N; =30 N; =40 N; =50
1 137371 1.37368 137367 137367
2 2.20190 220182 220180 220179
3 3.12789 3.12777 3.12774 3.12773
4 4.08578 4.08558 4.08554 4.08552
5 5.05739 5.05716 5.05711 5.05709
6 6.03623 6.03589 6.03582 6.03580
7 7.01911 7.01875 7.01868 7.01865
8 8.00481 8.00426 8.00416 8.00412
9 8.99207 8.99150 8.99139 8.99135
10 9.98090 9.98001 9.97987 9.97982

As figuras 6.2.a,b ilustram o comportamento transiente dos perfis de temperatura
para trés tempos adimensionais diferentes # = 0.01, 0.05 e 0.1, para as duas situa¢des extremas

consideradas =3 e f= - 3, respectivamente. No primeiro caso, a propriedade termofisica
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cresce aproximadamente 400 vezes na dire¢do dos valores mais baixos das temperaturas, isto
¢, lado direito do grafico, onde tanto a condutividade quanto a capacidade térmica estdo
significativamente aumentadas, e o efeito de resfriamento na direcdo do contorno x=1 ¢
intensificado. No segundo caso, as propriedades termofisicas estdo significativamente
reduzidas na extremidade x=1, afetando sensivelmente o resfriamento. Deve ser chamada a

aten¢do aqui, para o fato de que a difusividade térmica adimensional ¢, foi mantida a mesma

para os dois exemplos, mas a condigdes iniciais sdo diferentes uma vez que esta ¢ func¢ao do
valor do parametro f no resultado em regime permanente, eq. (3.77). Além disso, com o
proposito de validagdo, os resultados encontrados com a solugdo exata para a mesma forma
funcional dos coeficientes aqui considerados, foram também tragados nos graficos com
simbolos. Pode-se observar em ambas as figuras a excelente concordancia entre os resultados
reportados via GITT com 50 termos na expansdo e a solu¢do exata, proveniente das egs.

(3.72) a (3.76)

1.0 -
0.9 5
0.8 5
j GITT
0.7 5 % Exata
X
=
U
0.8 1.0

Figura 6.2.a — Comportamento fisico e validacdo (GITT x Solucido Exata) da distribuicio de
temperatura para o exemplo do FGM com f=3
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Figura 6.2.b — Comportamento fisico e validaciao (GITT x Solucio Exata) da distribuicdo de
temperatura para o exemplo do FGM com f=-3

O segundo exemplo propde a analise de meios heterogéneos caracterizados pela
unido de diferentes materiais, com regido de transi¢ao entre eles, quer pela interposi¢ao de um
material de ligacao ou pelo proprio processo de fabricacdo que resulta em uma fase de mistura
entre os materiais. Nesse caso busca-se avaliar variagdes abruptas no comportamento espacial
dos coeficientes no problema de difusao.

A figura 6.3 ilustra o comportamento do coeficiente varidvel k(x) para o
exemplo de duas camadas com zona de transi¢do, para os valores de k =1, k, =20 e
x, = 0.3, segundo as equagdes (3.82) e (3.84) e para diferentes valores do parametro y = 10,

20, 100, 500 e 1000. Na escala da figura os dois ultimos valores, y = 500 e 1000 produzem

uma variagdo praticamente descontinua na propriedade termofisica. Deve-se chamar a atengao
para o fato que existe solucdo exata para o problema de conducdo de calor de multiregides
com coeficientes constantes em cada regido. Todavia, o problema aqui abordado ndo se trata
de solucionar um problema descontinuo, o que exigiria um problema de autovalor

descontinuo para ser formalmente correto [Mikhailov. & Ozisik (1984), Cotta & Nogueira
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(1998)], mas sim solucionar um problema mais geral de propriedades varidveis quaisquer,
entre outros exemplos, um problema com variagdo abrupta dos coeficientes. Esta aplicagdo ¢
particularmente importante quando lida-se com a identificagao de propriedades termofisicas
nos casos onde a posi¢do da interface entre diferentes materiais ndao ¢ conhecida a priori e/ou

existe uma regido de transi¢ao onde se faz necessario estimar a variacao da propriedade.

L) i

20k ¥ =300 — —
I 1000 ¥ 4 =100~ e
I |I _"Ir=2 )

15+ |'
i N ¥ = 1':'

w0k 4
I |

sk § |

1 1 " 2 " 1 1 5 " L 1 A 1 1 1 " L 1 X
02 0.4 0.6 na 1.0

Figura 6.3 — Comportamento do coeficiente de difusio k(x) para o caso de duas camadas com regido
de transi¢o, para ¥ =10, 20, 100, 500 e 1000

As tabelas 6.2.a,b, ilustram a convergéncia dos dez primeiros autovalores para o
problema de duas camadas com regido de transi¢do, para os valores de » = 100 e 500,
respectivamente, para ordens de truncamento crescentes na expansao, N; =30, 60, 90 e 120,
com k =1, k,=20, x,=03, w=1 e w,=4. Além disso, a Ultima coluna ilustra o
resultado para a solu¢ao exata do caso descontinuo de duas camadas apenas para referéncia,
mas ndo como resultado benchmark a ser atingido, uma vez que formalmente ndo se pode
recuperar exatamente tais valores com a abordagem de um problema de autovalor continuo.
Vale ressaltar que estes resultados até aqui apresentados ainda ndo utilizam a expansao dos
coeficientes em termos de autofuncgdes, mas sim na sua forma analitica original como dada

nas equacgdes (3.82) e (3.83). O primeiro autovalor z,=0 foi omitido da tabela uma vez que

ele ¢ exatamente recuperado em todos os casos. Para a situagdo menos abrupta com y = 100
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(tabela 6.2.a), os 10 primeiros autovalores estdo convergidos com 6 digitos significativos para
uma ordem de truncamento N;=90 ou menor, enquanto que para o caso mais abrupto y = 500
(tabela 6.2.b), € necessario empregar mais termos na expansao, N=120, para a garantir no
minimo 3 ou 4 digitos convergidos nos autovalores. Pode-se observar ainda a tendéncia dos
autovalores na dire¢ao dos resultados do problema descontinuo de duas regidoes a medida que

se aumenta y .

Tabela 6.2.a — Convergéncia dos autovalores para o caso de
duas camadas com regiio de transicio ( ¥ =100)

Autovalor N=30 N: =60 N, =90 N =120 Problema
L Descont.
1 5.69548 5.69249 5.69248 5.69248 5.21316
2 10.0904 10.0903 10.0903 10.0903 10.0779
3 16.9740 16.9645 16.9645 16.9645 15.6389
4 20.2694 20.2674 20.2673 20.2673 20.1568
5 27.9236 27.9082 27.9081 27.9081 26.0627
6 30.6674 30.6564 30.6564 30.6564 30.2380
7 38.4493 38.4303 38.4303 38.4303 36.4832
8 41.3598 41.3228 41.3227 41.3227 40.3228
9 48.6995 48.6742 48.6742 48.6742 46.8986
10 52.2297 52.1382 52.1380 52.1380 50.4129

Tabela 6.2.b — Convergéncia dos autovalores para o caso de
duas camadas com regido de transicio (7 =500)

Autovalor N: =30 N: =60 N: =90 N =120 Problema
)7 Descont.
1 5.38136 5.32149 5.30854 5.30481 5.21316
2 10.0791 10.0785 10.0784 10.0784 10.0779
3 16.1432 15.9615 15.9227 159115 15.6389
4 20.1674 20.1623 20.1614 20.1612 20.1568
5 26.9008 26.5920 26.5274 26.5090 26.0627
6 30.2779 30.2577 30.2544 30.2535 30.2380
7 37.6438 37.2041 37.1147 37.0893 36.4832
8 40.4352 40.3739 40.3648 40.3623 40.3228
9 48.3439 47.7844 47.6730 47.6416 46.8986
10 50.6907 50.5246 50.5034 50.4977 50.4129

A figura 6.4 apresenta o comportamento da décima autofungdo para o caso mais

abrupto y = 1000, para diferentes ordens de truncamento N; =30, 60, 90, 120. Pode-se
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perceber que na escala do grafico a décima autofuncao neste caso severo estd convergida ja

com N; =60 termos, com melhor convergéncia para a primeira regido (x < x,).

1.0- N=30
N=60
- N=90
N=120
0.5+
= 00+ ' ’}\\{
Q
= "
-0.5 1
|
404 M b
: : ; , ; , ; , ; !
0.0 02 0.4 0.6 0.8 1.0

Figura 6.4 — Convergéncia da décima autofuncio para exemplo de duas camadas com regiao de
transicio, paray =1000

A figura 6.5 ilustra a excelente taxa de convergéncia da expansao em
autofungdes no calculo do perfil de temperatura para o exemplo de duas camadas, novamente

para o caso mais abrupto y = 1000, em trés diferentes tempos =0.001, 0.01, 0.05, com

resultados convergidos em escala grafica com N; <30.

A tabela 6.3 demonstra a excelente convergéncia da temperatura para ordens de
truncamento crescentes na expansao, N; =30, 60, 90 e 120 no caso mais abrupto do exemplo
de duas camadas, com y = 1000, apresentando os valores de temperatura no contorno da
segunda camada x=1, onde a convergéncia da autofuncdo ¢ aparentemente mais lenta, e para o
tempo =0.01. Pode-se observar em todos os casos, inclusive para a solucao exata descontinua
de duas regides, a convergéncia em seis digitos para ordens maiores que i=6 na expansao das
autofungdes originais. No outro sentido, aumentando N, pode-se notar que o campo de

temperatura encontra-se convergido em no minimo quatro digitos significativos mesmo para
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N; =30, concordando com a solug¢do exata para o problema descontinuo também em quatro

digitos.

T[x.4]

0.0

0.0

02

X

Figura 6.5 — Convergéncia do perfil de temperatura para exemplo de duas camadas com regiio de
transiciio, paray =1000

Tabela 6.3 — Convergéncia da temperatura para o caso de duas camadas com regiiio

de transiciao, para (7 =1000)

Ordemi |  N;=30 N; =60 N; =90 N; =120 Problema
Descont.

0 0.578603 0.578603 0.578603 0.578603 0.578602
1 0.521377 0.521690 0.521724 0.521768 0.521924
2 0.403499 0.403586 0.403567 0.403588 0.403616
3 0.402522 0.402532 0.402491 0.402500 0.402461
4 0.401761 0.401764 0.401721 0.401730 0.401686
5 0.401756 0.401758 0.401716 0.401724 0.401681
6 0.401752 0.401755 0.401712 0.401721 0.401677
7 0.401752 0.401755 0.401712 0.401721 0.401677
8 0.401752 0.401755 0.401712 0.401721 0.401677
9 0.401752 0.401755 0.401712 0.401721 0.401677
10 0.401752 0.401755 0.401712 0.401721 0.401677

O comportamento espacial a principio arbitrario dos coeficientes do problema

de difusdo, pode requerer integragdes numéricas no procedimento de transformacao integral
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aqui proposto, para geracao das matrizes de coeficientes do problema de autovalor algébrico
transformado. Para uma utilizagdo muito intensiva deste procedimento de simulagdo direta,
como por exemplo, nos processos de otimizagdo associados ao problema inverso de
identificagdao de propriedades termofisicas, pode ser computacionalmente interessante propor
representagdes alternativas para os coeficientes que levem a integracdo analitica em todas as
etapas do processo de transformacdo integral. Uma alternativa possivel aqui investigada ¢ a
representagdo dos coeficientes, eles proprios, em termos de expansdes em autofuncdes
conhecidas.

Em seguida ¢ apresentada uma ilustracdo da convergéncia na representacdo
dos coeficientes variaveis em termos de expansdes em autofuncdes, para os exemplos de
dupla camada com zona de transi¢do e para o caso de variagdo randomica da propriedade
termofisica. Por exemplo, as figuras 6.6.a,b ilustram o comportamento do coeficiente variavel

k(x) para o caso de duas camadas, expandido em autofungdes, com k =1, k, =20 e
x, = 0.3 para diferentes valores do pardmetro y, y =20 e y =200, respectivamente. Pode-se

observar na figura 6.6.b que na escala grafica y =200 produz uma variagdo da propriedade

termofisica praticamente descontinuas.

25 -
204 -
154
E 1 Nk:g
| —o— N&IS
—%— =20
] Descontinua
=
0 . . T . . | . : . \
0,0 0,2 0.4 0.6 08 1,0

Figura 6.6.a — Comportamento do coeficiente de difusio variavel k(x) e sua expansio em autofun¢oes
para o caso de duas camadas com y=20
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Figura 6.6.b — Comportamento do coeficiente de difusdo variavel k(x) e sua expansao em autofuncgdes
para o caso de duas camadas com y=200

No procedimento de expansdo dos coeficientes em autofungdes foi adotada
uma fungdo filtro linear que liga os dois valores extremos k(0) e k(1), w(0) e w(l), ndo
levando em conta o conhecimento da posicao da interface. O mesmo problema de autovalor
auxiliar usado na expansdo das autofungdes originais foi empregado na expansdo dos

coeficientes k(x) e w(x), s6 que com condi¢des de contorno de primeiro tipo, isto €:
Fj(x)=\/§Sin(ij) para v, = jx, j=12,3,.. (6.1)

Para o caso menos abrupto da variagdo espacial da condutividade térmica, k(x),
no exemplo de dupla camada, figura 6.6.a, a convergéncia da expansao deste coeficiente ¢
alcangada, na escala grafica, para ordens de truncamento bem baixas, como N;=6 ¢ N;=9, ¢
praticamente concordando com a curva original do coeficiente k(x). Para o caso mais abrupto
de variacdo, figura 6.6.b, um numero maior de termos na expansdo deste coeficiente ¢é

necessario para recuperar apropriadamente o comportamento do coeficiente, como ilustrado
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pela curva com N, =70, que praticamente ¢ coincidente com a curva da representacao exata do
coeficiente.

Resultados similares foram obtidos e analisados para os coeficientes do exemplo
de propriedades randomicas, como ilustrado abaixo nas Figuras 6.7.a,b para o coeficiente k(x),
eq. (3.85), tomando k;=0.5, e Figuras 6.8.a,b para o coeficiente w(x), eq. (3.86), gerado para
w,=0.5, com um ganho de G=0.2 e G=0.8.

Um total de 40 pontos igualmente espagados foi tomado ao longo do dominio
para a geracdo das propriedades randomicas, enquanto os numeros randomicos em cada
posicao foram mantidos os mesmos nos dois casos com diferentes ganhos. Em oposi¢ao ao
caso em [Lin (1992)], os dois coeficientes foram gerados de forma independente, para
desafiar ainda mais o procedimento proposto. As ordens de truncamento para a expansdo em
autofungdes dos coeficientes sao ilustradas para Ny= N,=20, 40 e 80.

As mesmas tendéncias sdo observadas para o comportamento randomico dos
dois coeficientes k(x) e w(x), claramente, o caso com menor ganho, G=0.2, apresenta um
comportamento mais favoravel de convergéncia, devido ao efeito de amortecimento nas
amplitudes das oscilagdes, com os resultados para N;=N,~=80 sendo completamente
coincidentes com as curvas originais interpoladas que estdo sobrescritos pelos resultados da
expansdo. Para o caso de maiores amplitudes nas variagcdes randomicas, G=0.8, a curva para
N;=N,~=40 ainda apresenta desvios perceptiveis com relagdo a curva interpolada original,
enquanto a curva para Ny=N,~=80 praticamente sobrescreve o grafico para os coeficientes
originais, exceto nas cristas mais acentuadas que podem ainda requerer alguns termos

adicionais na expansao.
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Figura 6.7.a — Comportamento do coeficiente difusivo variavel k(x) e da sua expansao em autofuncoes
para o exemplo de propriedades randomicas com G=0.2
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Figura 6.7.b — Comportamento do coeficiente difusivo variavel k(x) e da sua expansiao em autofuncoes
para o exemplo de propriedades randémicas com G=0.8
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Figura 6.8.a — Comportamento do coeficiente capacitivo variavel w(x) e da sua expansao em
autofuncées para o exemplo de propriedades randomicas com G=0.2
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Figura 6.8.b — Comportamento do coeficiente capacitivo variavel w(x) e da sua expansio em

autofuncées para o exemplo de propriedades randomicas com G=0.8
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A solucao do problema de autovalor obtida com os coeficientes expandidos €
agora demonstrada, primeiramente considerando o exemplo de dupla camada, de novo com

k=1, k,=20, x,=03,w,=1 e w, =4, para y =20 e 200. As Tabelas 6.4.a,b mostram os

valores convergidos dos primeiros dez autovalores y;’s para diferentes ordens de truncamento
nas expansdes dos coeficientes, Ny ¢ N,,, comparados nas duas ultimas colunas com a solugao
obtida a partir dos coeficientes continuos originais € com a solucao exata do problema de
autovalor descontinuo, aqui mostrado apenas como um caso limite. As expansdes em
autofungdes do problema de autovalor original tiveram suas ordens de truncamento fixadas
em N=50 para o caso de y =20, e N=100 para y =200, que sdo mais que suficientes para
prover resultados convergidos para os primeiros dez autovalores aqui apresentados, como o0s
anteriormente obtidos com a representacao original dos coeficientes.

Na Tabela 6.4.a, para o comportamento mais suave dos coeficientes, ordens de
truncamento razoavelmente baixas (V;=N,,~27) nas expansdes dos coeficientes ja fornecem
quatro digitos significativos de convergéncia nos primeiros dez autovalores, em comparagao
com os autovalores obtidos com integracdo numérica das representagdes originais dos
coeficientes. Por outro lado, para a variacdo bastante abrupta com y =200, mostra-se na
Tabela 6.4.b que N=N,=110 termos sdao necessarios para chegar-se a quatro digitos
significativos completamente convergidos nestes mesmos dez primeiros autovalores.

De novo, fica claro que os resultados na Tabela 6.4.b sdo mais proximos da
solugdo exata do caso descontinuo, conforme a representacao dos coeficientes se aproxima de

valores constantes em cada camada, em contraste com o caso de y=20.
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Tabela 6.4.a — Influéncia da ordem da expansio dos coeficientes na convergéncia dos autovalores para o
exemplo de duas camadas com y=20.

Autovalor Coeficientes | Problema
Ni=Nw=3 | Ni=Nw=9 | Ni=N,,=15 | Ni=N,=21 | N;=N,=27

Hi Originais | Descont.
1 7.86584 | 7.56036 7.58226 7.58278 7.58282 7.58283 5.21316
2 12.0937 11.0779 11.1062 11.1072 11.1073 11.1073 10.0779
3 18.1562 18.1547 18.1168 18.1191 18.1192 18.1192 15.6389
4 24.1409 | 23.6115 23.4188 23.4229 23.4232 23.4233 20.1568
5 30.0858 | 29.2754 29.1625 29.1583 29.1588 29.1589 26.0627
6 36.0473 | 35.0508 | 35.0189 35.0032 35.0038 35.0040 30.238
7 42.0149 | 40.8188 40.7035 40.6934 40.6930 40.6934 36.4832
8 479863 | 46.6067 | 46.5132 46.5116 46.5098 46.5102 40.3228
9 53.9608 | 52.3996 | 52.2864 52.2758 52.2743 52.2744 46.8986
10 59.9374 | 58.1925 58.0674 58.0627 58.0623 58.0618 50.4129

Tabela 6.4.b — Influencia da ordem da expansao dos coeficientes na convergéncia dos autovalores para o
exemplo de duas camadas com y=200.

Autovalor Coeficientes | Problema
Ni=Nw=30 | Ny=Ny=50 | Nyx=Ny=70 | Ny=Ny=90 | Nyx=N,=110

Hi Originais | Descont.
1 3.92070 5.35783 5.43630 5.44375 5.44380 5.44376 5.21316
2 10.0070 10.0756 10.0800 10.0805 10.0805 10.0805 10.0779
3 13.5127 16.0994 16.2970 16.3147 16.314 16.3139 15.6389
4 19.9172 20.1566 20.1772 20.1793 20.1794 20.1794 20.1568
5 243117 26.8147 27.1049 27.1299 27.1286 27.1284 26.0627
6 29.7991 30.2606 30.3167 30.3214 30.3213 30.3213 30.238
7 35.5958 37.4502 37.8105 37.8416 37.8407 37.8402 36.4832
8 39.6450 40.4020 40.5349 40.5439 40.5431 40.5431 40.3228
9 49.1208 47.9772 48.3633 48.3998 48.4000 48.3994 46.8986
10 49.7108 50.5804 50.8729 50.8906 50.8884 50.8882 50.4129
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Agora o caso de propriedades randomicas ¢ examinado mais de perto, visando
observar o comportamento da metodologia proposta no tratamento de coeficientes com
inimeras alteragcdes no dominio espacial, como na situagao fisica de sistemas dispersos sem
controle de concentracdes locais de fase dispersa e/ou como resultado de redistribuicdes
aleatorias no processo de fabricagdo do material compésito. Iniciando-se pela ilustragao do
comportamento da convergéncia dos primeiros dez autovalores para uma ordem fixa na
expansao dos coeficientes (N=N,=60), mas com ordens crescentes na expansido em
autofungdes do problema original (N; < 150). O objetivo ¢ demonstrar que o procedimento
proposto ¢ capaz de chegar a convergéncia nos autovalores de um caso como este de
coeficientes variaveis randomicos para o pior caso de ganho G=1, dentro de valores razoaveis
das ordens de expansdo. Como pode ser observado na Tabela 6.5 abaixo, pelo menos quatro
digitos significativos estdo completamente convergidos nos primeiros dez autovalores, na
presente faixa de ordens de truncamento da expansdo em autofungdes do problema original

(V).

Tabela 6.5 —.Convergéncia dos dez primeiros autovalores para o exemplo de propriedades randomicas
com G=1 e N;=N,=60.

Autovalor

Ni=30 N; =50 N; =70 Ni=90 | N;=110 | N;=130 N; =150
Hi
1 2.90236 | 2.81658 | 2.79154 | 2.78586 | 2.78378 | 2.78283 2.78251
2 5.23446 | 5.10402 | 5.02386 | 5.00907 | 5.00218 | 4.99923 4.99836
3 8.10146 | 7.98014 | 7.92516 | 7.91856 | 7.91641 | 7.91562 7.91551
4 11.0150 | 10.7348 | 10.6866 | 10.6733 | 10.6694 | 10.6673 10.6667
5 14.2056 | 13.7055 | 13.5243 | 13.4471 | 13.4149 | 13.4000 13.3948
6 18.0474 | 17.5089 | 17.4113 | 17.3497 | 17.3335 | 17.3257 17.3232
7 21.7988 | 21.3903 | 21.3198 | 21.2922 | 21.2888 | 21.2873 21.2869
8 23.8719 | 22.7118 | 22.4950 | 22.3415 | 22.3052 | 22.2910 22.2843
9 26.1803 | 25.4689 | 25.2843 | 25.2324 | 25.2139 | 25.2064 25.2034
10 28.0210 | 27.1340 | 26.9713 | 26.9298 | 26.9163 | 26.9121 26.9104
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Além disso, a influéncia das ordens de truncamento das expansdes dos
coeficientes (N; e N,)no comportamento dos autovalores ¢ investigada, para as seguintes
ordens selecionadas, N;=N,=20, 40, 60, e 80, e os coeficientes sdo dados nas Figuras 6.7.a,b e
6.8.a,b, respectivamente para G=0.2 e 0.8. Os dez primeiros autovalores completamente
convergidos sao mostrados para as quatro ordens de truncamento nas Tabelas 6.6.a,b,
enquanto a ultima coluna representa a solucao exata para o caso de propriedades constantes

tomando os valores médios efetivos (k, =0.5,w,=0.5), que correspondem a fazer G=0.

Pode-se observar que o caso G=0.2 (Tabela 6.6.a) apresenta um comportamento mais
acelerado da convergéncia, com cinco digitos significativos completamente convergidos para
N;=N,=80, e quatro digitos mesmo em ordens muito menores (N;=N,~40). O caso G=0.8
(Tabela 6.6.b) requer N;=N,=80 para convergéncia em trés ou quatro digitos. Também, os
resultados para o caso G=0.2 estdo muito mais proximos daqueles do caso de coeficientes

médios, em comparag¢ao com os resultados do caso com maiores amplitudes (G=0.8).

Tabela 6.6.a — Influéncia da ordem na expansio dos coeficientes na convergéncia dos autovalores para o
caso de propriedades randomicas com G=0.2 e N=130.

Autovalor Coeficientes
N=N,=20 Ni=Nw=40 Ni=Ny=60 Nx=N,=80
Ui Médios
1 3.16555 3.15678 3.15695 3.15686 3.14159
2 6.28652 6.26833 6.26858 6.26838 6.28319
3 9.36202 9.33868 9.33895 9.33878 9.42478
4 12.6601 12.6152 12.6163 12.6160 12.5664
5 15.7812 15.7351 15.7352 15.7347 15.7080
6 19.0825 19.0163 19.0168 19.0160 18.8496
7 22.2211 22.1142 22.1176 22.1168 21.9911
8 25.0214 24.8849 24.8881 24.8868 25.1327
9 28.1124 27.9357 27.9379 27.9368 28.2743
10 31.4528 31.0315 31.0302 31.0296 31.4159
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Tabela 6.6.b — Influéncia da ordem na expansao do coeficiente na convergéncia dos autovalores para o
caso de propriedades randomicas com G=0.8 e N=130.

Autovalor Coeficientes
N=N,=20 Ni=Nw=40 Ni=Ny=60 Ni=Ny=80
y72 Médios
1 3.09140 2.99458 2.98961 2.98921 3.14159
2 5.81296 5.67551 5.65526 5.65416 6.28319
3 8.69607 8.50171 8.50780 8.51193 9.42478
4 12.2436 11.6288 11.6549 11.6589 12.5664
5 15.2666 14.8153 14.7007 14.6916 15.7080
6 19.1082 18.4638 18.3620 18.3454 18.8496
7 22.9467 21.7388 21.7486 21.7476 21.9911
8 249176 24.0072 23.9370 23.8987 25.1327
9 27.6446 26.3021 26.3031 26.2804 28.2743
10 31.4090 28.3980 28.4054 28.4077 31.4159

Finalmente, examinamos o comportamento da distribuicdo de temperaturas no

meio com propriedades randomicas, como fun¢do do ganho G para os valores G=0, 0.2, 0.5,

0.8 e 1, que governa a amplitude das variacdes dos coeficientes, mas mantendo os mesmo

numeros randémicos em cada posicao para os diferentes ganhos. As Figuras 6.9.a,b ilustram o

comportamento do perfil de temperatura em dois tempos adimensionais diferentes,

respectivamente, =0.05 e 0.1. O caso-base G=0 prové resultados para a situacdo de

propriedades constantes, quando as variagdes locais de propriedades sdo ignoradas e

substituidas por um valor médio efetivo. Como podemos ver, as diferencas entre os casos de

coeficientes constantes médios e variaveis, sdo mais significativas para valores crescentes de

G e do tempo, e mais préximo ao contorno x=I, nesta aplicacdo em particular. Uma

reprodugao razoavel da solug@o do problema heterogéneo real empregando valores efetivos s6

foi obtida para o caso moderado de G=0.2.

92




1=0.05

Figura 6.9.a — Distribuicio de temperatura no tempo t=0.05 para o caso de propriedades randomicas
com G=0,0.2,0.5,0.8 ¢ 1
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Figura 6.9.b — Distribui¢do de temperatura no tempo t=0.1 para o caso de propriedades randomicas
com G=0,0.2,0.5,0.8¢1
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6.2. Problema Inverso

Esta secdo estd subdividida em subse¢des onde sdo apresentados os resultados
para: (i) a estimativa da condutividade térmica varidvel em uma situagdo onde considera-se
conhecida a variagdao da capacidade térmica; (ii) a estimativa simultdnea de condutividade e
capacidade térmica variaveis; (iii) a estimativa simultanea da condutividade e da capacidade
térmica variaveis no campo transformado.

A apresentacao dos resultados inicia-se com as analises de pré-processamento de
problemas inversos, com a analise de sensibilidade das solu¢des e em seguida as analises dos

resultados de estimativas de pardmetros via inferéncia Bayesiana.

6.2.1. Estimativa de Condutividade Térmica Variavel

Esta subsecdo ilustra a aplicacdo da inferéncia Bayesiana através do Método de
Monte Carlo via Cadeia de Markov (MCMC), [Kaipio e Somersalo (2004), Lee (2004),
Gamerman e Lopes (2006), Migon e Gamerman (1999), Orlande et.al.(2008), Fudym et.al.
(2008)], na estimativa da condutividade térmica varidvel em um problema unidimensional
transiente de condugdo de calor em um meio heterogéneo, exemplificado por um meio de
duas fases dispersas com variagdo abrupta das propriedades.

O algoritmo de Metropolis-Hastings foi utilizado no procedimento de
amostragem implementado na plataforma Mathematica 5.2. Com o objetivo de examinar a
acuracia e a robustez do algoritmo de estimativa proposto, fez-se uso de temperaturas
experimentais simuladas obtidas com a solucdo do problema direto para fungdes de
distribui¢do de concentragdo e propriedades termofisicas prescritas e, em seguida,
perturbando-se a solugdo exata com erros randomicos com distribuicdo Gaussiana, aditivos,
ndo correlacionados e com um desvio padrao prescrito. As temperaturas simuladas utilizadas
na andlise inversa foram obtidas via transformada integral, geradas com alta precisdo,
enquanto que na solucao do problema inverso foram usadas expansdes de ordens mais baixas,
com o objetivo de se evitar o chamado crime inverso [Kaipio e Somersalo (2004)]. Com o

objetivo de testar e analisar a robustez da solugdo inversa, comparou-se a utilizagao de prioris
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Gaussianas e prioris Uniformes ndo-informativas nas estimativas e, ainda, a utilizagdo de
diferentes correlagdes como informagao a priori para a média das prioris normais.

A formulagdo adimensional da equagdo de condugao para este caso ¢ dada por:

oT (x,t) i
ot Ox

0T (x,t)

[k(x) ], O<x<l1, >0 (6.2.2)

w(x)

Com condigdes inicial e de contorno dadas por:

T(x,0)=CI(x), 0<x<l (6.2.b)
oT (x,1) -0 XDl _o />0 (6.2.c,d)
X ly=0 , o ly= ,

Para a presente aplicacdo, a condigao inicial foi randomicamente gerada entre 0
e 1, como apresentada na figura abaixo, de modo a aumentar os gradientes de temperaturas

locais e conseqiientemente a sensibilidade do problema de estimativa [Fudym ez.al. (2008)].

CI[x]
1

a_z 0.4 0_6 a_& 1
CI(x) = CI, {H[@—qc}
&3

Figura 6. 10.a — Condicao inicial randomica adimensional para CI,=0.5 e G=0.8

Para a geracdo dos dados experimentais simulados empregados nas analises do
problema inverso apresentadas nesta subsecao, empregou-se os valores extraidos do trabalho de

Kumlutas et.al.(2003) para o caso de um material compodsito composto de uma matriz
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polimérica (HDPE) e nanoparticulas de 6xido de aluminio (alumina), como apresentado na

tabela 6.7.

Tabela 6.7 — Valores utilizados na geracao dos dados experimentais simulados, Kumlutas et.al.(2003).

Comprimento adimensional L=1
Concentragao percentual de particulas em x=0 =0
Concentragao percentual de particulas em x=L Or=45
Propriedades da matriz polimérica (HDPE) Pu=968 kg/m’

cpm=2300 J/kgC
knm=0.545 W/mC

Propriedades das particulas (alumina) pa=3970 kg/m’
Cpa=760 J/kgC
kg=36 W/mC
Modelo para a condutividade térmica efetiva Lewis- Nielsen (A=1.5; ¢,=0.637 )

Parametros da fun¢do de concentragdo de particulas | y=25

x~0.2

A distribuigdo espacial para a variagdo abrupta da concentracdo do particulado

na matriz polimérica ¢ governado pelo pardmetro y de acordo com a forma funcional abaixo:

P(X) = o+ (brep = i=0)0(x) (6.3.a)

1

e

(6.3.b)

onde x. representa a posicao de transi¢do entre as regidoes de baixa e alta concentragdes de
particulas.

A partir da distribui¢do de concentracao de particulas no dominio espacial, dada
pela equagdo (6.3.a), que pode ser a principio obtida por diferentes técnicas de medicao, pode-
se deterministicamente obter a capacidade térmica ao longo da coordenada espacial pela
teoria de misturas. Sendo assim, para esta primeira analise do problema inverso a ser

apresentada nesta subse¢@o, considerou-se conhecida a distribuigdo espacial de concentragdo
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de particulas na matriz polimérica e, conseqiientemente, também conhecendo-se a capacidade

térmica, ou seja, o coeficiente w(x), que pode ser obtido pela seguinte expressao:

w(x) =1+ (PLPL 1)) (6.4)

m“pm

A figura 6.11 a,b ilustra o comportamento da distribuicdo de particulas
empregada nas simulagdes subsequentes, além do correspondente comportamento da
capacidade térmica adimensional de acordo com a equagdo (6.4), para o caso de =25 e

x.~0.2.

(b)

Figuras 6.11 — Comportamento espacial da concentracio de particulas (a) e a capacidade térmica
adimensional resultante (b), de acordo com os dados da tabela 6.7.

Todavia, para a determinagdo da condutividade térmica, a informagdo sobre a

fragdo volumétrica de particulas e a sua distribuigdo espacial ndo sdo suficientemente
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informativas para previsao desta propriedade fisica, especialmente para altas concentragdes,
[Kumlutas et.al.(2003)].

Diversos modelos empiricos e teoricos tem sido propostos para predizer a
condutividade térmica efetiva de um sistema de duas fases dispersas. Uma revisao e discussao
detalhadas sobre a aplicabilidade de alguns destes modelos pode ser encontrada no trabalho de
Kumlutas e Tavman (2006). Apresenta-se abaixo uma breve discussdao sobre alguns destes
modelos que serdo relevantes nas analises inversas subsequentes.

Como valores limites maximo e minimo para a condutividade térmica efetiva,
tem-se respectivamente as correlagdes para arranjos em paralelo e em série, que sdo dados

pelas seguintes relacdes:

k. =(1-@)k,, +pk,;, modelo de condutividade em paralelo
(6.5.a,b)

k' =(1-@)k,! +¢k;', modelo de condutividade em série

Um modelo mais simples de media geométrica para a condutividade térmica

efetiva de compositos também ¢ apresentada na literatura, [Kumlutas e Tavman (2006)]:
k, = kS k(P (6.5¢)

Um dos modelos tedricos mais conhecidos na previsao da condutividade térmica
efetiva ¢ devido a Maxwell [Maxwell (1954)], na forma de uma solugdo exata para a
condutividade de esferas homogéneas ndo-interativas e randomicamente distribuidas em um

meio homogéneo:

b i | a2k, + 200~ )
oo kd+2km_¢(kd_km)

(6.6)

O modelo de Maxwell prevé a condutividade térmica efetiva razoavelmente bem
para baixas concentracdes de particulas, mas para regioes de altas concentra¢des de particulas,

este modelo subestima os valores da condutividade. Lewis e Nielsen (1970) propuseram um
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modelo que leva em consideragdo a forma e a orientagdo do material de enchimento para um

sistema de duas fases. A expressao resultante ¢ dada por:

_y | 1+4Bg _ (kg k)1 T Rt
kc_km[l—BWy} OndeB_(kd/km)+A e v 1+{ ¢nz1 J¢ (6.7a-c)

Os valores de 4 e ¢, sdo sugeridos por Lewis e Nielsen (1970) para um niimero variado de
diferentes formas geométricas e orientagdes. Para esferas com acomodagdo randomica das
particulas no meio, tem-se 4=1.50 ¢ ¢,=0.637.

Agari e Uno (1986) propuseram um outro modelo que leva em consideragdo de
forma combinada os mecanismos de conducdo dados pelos modelos de arranjo em paralelo e

em série, na forma:
logk. = ¢C; logk, +(1-¢)log(Cik,,) (6.8)

onde as constantes C; e C, sdo experimentalmente determinadas. Uma vez que este modelo
apresenta dois parametros ajustados experimentalmente, em geral resulta em melhores
concordancias com os respectivos resultados experimentais disponiveis. As figuras abaixo
ilustram o comportamento de alguns destes modelos para o presente trabalho, de acordo com
os dados apresentados na tabela 6.7. A figura 6.12.a apresenta em vermelho o modelo de
arranjo em paralelo, e em azul o modelo em série, assim como o modelo de médias
geométricas (curva verde) e os dois modelos de derivagao tedrica Maxwell (curva preta) e
Lewis-Nielsen (curva cyan). A figura 6.12.b apresenta uma comparagao mais detalhada entre
os modelos de Maxwell e Lewis-Nielsen. Por fim o desvio na predicdo da condutividade

térmica efetiva para estes dois ultimos modelos ¢ apresentado na figura 6.12.c.
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o,z 0.3 0.k 0.4 1

(a) Modelo de arranjo em paralelo (vermelha), média geometrica (verde), Lewis-Nielsen (cyan),
Maxwell (preta), arranjo em série (azul)

k
3
2
Z
1
i
o,z 0.4 .o o.& 1
(b) Lewis- Nielsen (cyan) e Maxwell (preta)
damwr_ %
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(¢) Desvio percentual entre o modelo de Lewis- Nielsen e 0 modelo de Maxwel.

Figura 6.12 — Comportamento da condutividade témica efetiva de diferentes modelos.
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As analises subseqiientes, sobre a solugdo direta do problema de condugdo de
calor unidimensional transiente, foram feitas utilizando a técnica da transformada integral
generalizada (GITT), empregando a expansao dos coeficientes, k(x) € w(x), em termos de
autofungdes como descrito no capitulo 3 e na secdo 6.1 do presente trabalho. O problema de

autovalor empregado na solugdo do problema descrito pelas eqgs. (6.2) ¢ dado por:

A i)

1+ 12wy, (x)=0, 0<x<I (6.9.a)
dx dx

com condi¢des de contorno dadas por:

dy;(x) -0 dy;(x) -0 (6.9.b,c)
N dx

Com o intuito de demonstrar a aplicabilidade da presente abordagem, o
problema auxiliar utilizado na solug¢ao do problema de autovalor apresentado acima baseou-se
na escolha de coeficientes os mais simples possiveis, como k*(x)=1, w*(x)=1, e d*(x)=0, e

mantendo as mesmas condigdes de contorno dadas pelas egs.(6.9.b,c), resultando em:
f)n (%)= \/Ecos(knx), and f)o(x) =1, com A,=nn, n=0,12.. (6.10.a-¢)

Sendo assim, o procedimento de solugdo inversa adotado para esta parte do
presente trabalho destina-se a estimativa apenas dos coeficientes da expansdo em autofungdes
da condutividade térmica k(x), assim como dos dois valores da fun¢do nos contornos,
utilizados na funcgao filtro linear adotada no procedimento de expansao de k(x). Uma vez que
considerou-se conhecia a concentragdo de particulas e consequentemente a capacidade
térmica w(x), (eq.6.4). Desta forma, os parametros € o numero de parametros a serem

estimados sao dados por:

P :[kxzo,kx:L,;a,zzz,/g,...,/sz], com Np=N, +2 6.11.2)

N, _
onde, k(x) =k (x)+ D T ;(0)k; (6.11.b)

J=1
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Na abordagem inversa proposta, o nimero de termos usados na expansao da
condutividade térmica, Ny, controla o nimero de pardmetros a serem estimados. Uma analise
da convergéncia da expansao de k(x), para o caso do uso do modelo de Lewis-Nielsen dado
pelas eqgs.(6.7), € apresentado nas Figuras 6.13.a-c, para trés diferentes ordens de truncamento,
Nir=4,7 e 10. Pode-se observar que as trés ordens de truncamento apresentadas nestas figuras
sdo capazes de recuperar o comportamento caracteristico da funcao de condutividade térmica.
Todavia, o resultado para a ordem de truncamento mais baixa, Ny = 4, ainda apresenta alguma
oscilagdo em torno da fungdo exata, enquanto que para Ny = 10 pode-se observar uma

concordancia bem melhor entre a fungdo expandida e a fungdo exata.

X [x]
4
.5
2
2.5
2
1.5
n
n_g [ 0.6 0. 1
(a) Ni=4
k [x]
. —_—
2.5
2
.5
4
1.5
-
n.z 0.3 n_g .G 1
(b) N\=7
* [=]
LY
2.5
2
Z.5
Z
1.5
0.z 0.3 a.6 [ ) 1 *
(c) N=10

Figura 6.13. — Analise da convergencia da expansao da condutividade térmica para trés diferentes
ordens de truncamento da série: a) N,=4, b) N,=7, ¢) N,=10.
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Antes de se iniciar o procedimento de estimativa de parametros, procuorou-se
avaliar a influéncia do numero de parametros a serem estimados na solu¢ao do problema

inverso, através da andlise do determinante da matriz de sensibilidade J"J[ Beck e Arnold

(1977); Ozisik e Orlande (2000)].

Analisou-se entdo, o determinante da matriz J'J para o caso da variagio do
nimero de parametros a serem estimados para um numero fixo de medidas espaciais € uma
freqliéncia fixa de medidas no tempo (figura 6.14.a). Em seguida analisou-se a variacdo do

numero de medidas espaciais para um nimero fixo de parametros (figura 6.14.b).

A figura 6.14.a mostra a evolugdo no tempo do determinante da matriz de
informacao para um total de 20 mil medidas sendo N,=200 ao longo do dominio espacial e
N~=100 no tempo. As trés curvas correspondem a valores crescentes no numero de parametros
Np=6, 9 e 12 que correspondem respectivamente a um numero crescente de termos na
expansdo da condutividade térmica Ny = 4, 7 e 10, somados aos dois valores empregados na

funcao filtro.

Claramente, observa-se que o aumento gradual no numero de parametros
decresce consideravelmente o valor do determinante, como ilustrado pelos seus valores no
final da escala no tempo, 7.8x10'12, 6.0x10'24, e 1.0x10'38, respectivamente para Np=6, 9 e 12.
Com isso, tem-se que o aumento no numero de parametros a serem estimados afeta

sensivelmente o condicionamento do procedimento de estimativa.

A figura 6.14.b apresenta o determinante para o caso de uma estimativa
envolvendo Np=9 parametros, mas com um numero varidvel de medidas igualmente
espacadas ao longo do dominio espacial (N,=200, 100, 50 e 5, de baixo para cima). O valor
mais baixo de N,=5, foi considerado para avaliar o emprego de medidas tradicionais de
temperatura com termopares, enquanto que os valores mais altos representam a aquisi¢ao das
temperaturas através de técnicas de medidas como termografia por infravermelho. Observa-se
que o valor do determinante da matriz de informagao decresce quando reduz-se o nimero de
medidas ao longo do dominio (61x10'24, 1.4x107%°, 3.4x10™%°, e 3.3x107%, para N,=200, 100,

50 e 5, respectivamente).

Na figura 6.14.c tem-se uma andlise mais detalhada do comportamento do

determinante da matriz de informagdo para a curva mais acima apresentada na figura 6.14.b,
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com um numero fixo de medidas ao longo do dominio espacial (N,=200) e para uma
frequencia fixa de medidas no tempo (A, = 5x10™), para o caso de uma estimativa envolvendo
nove parametros (Np=9). Pode-se observar desta figura o efeito do crescimento do nimero de
medidas no tempo (N~=20, 50 e 100), resultando no aumento de apenas uma ordem de

magnitude no valor do determinante (1.7x107%°, 2.7x10*, and 6.0x10™%).

det[J ]

L1072 |
1x10-% |
i //

Lx107% |

L1073t |

1.x 10760 L - . . . o N
0 20 40 60 20 100

(a) N,=200, At=0.0005,
Np=6 (curva vermelha), Np=9 (curva azul) e Np=12 (curva preta)
det[J ]
L1071y

11072 |

Lx 107 ¢

Lx10%

L1077 |

1.x10-%3 |

Mt

0 20 40 fi &0 100

(b) Ny=9 parametros, Ar =0.0005
N, =200 (curva vermelha), NV, =100 (curva azul), N, =50 (curva cyan), e N, =5(curva preta).
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det[ 7717
Ls107® ¢

Lx10-2% |

1.x10-%

L1072 |

11073 |

kMt

DI 20 4ID 6ID SID 100
(¢) Ny=9 parametros, N, =200, Ar=0.0005 ¢ N;=20, 50 e 100
Figura 6.14.— Evolucido do determinante da matriz de sensibilidade.

Os dados experimentais simulados foram gerados com um desvio padrao de 1%
do valor exato da temperatura calculada pela solucao direta com N7=100 termos na expansao
da tempertura, N~=100 termos na expansdo da autofungdo original e Ny= N,=20 termos na
expansdo das propriedades k(x) e w(x). Nas andlises inversas realizadas subseqilientemente,
foram utilizadas, todavia, N;=NT=15 termos tanto na expansdao da temperatura quanto na
expansdo da autofun¢do, de modo a evitar o chamado crime inverso [Kaipio e Somersalo
(2004)].

Na expansao do coeficiente w(x), manteve-se o nimero de termos igual a N,,=20,
de modo a garantir uma convergéncia de quatro digitos significativos em sua representacgao.
Baseado na andlise do determinante da matriz de sensibilidade apresentada acima,
considerou-se para a solugdo do problema inverso N,=200 medidas espaciais ¢ N~=20 medidas
no tempo, ¢ adotou-se N;=7 termos na expansiao da condutividade térmica, de modo que o
numero de parametros a serem estimados foi de Np=9.

Um aspecto relevante na utilizagdo da expansdo em autofungdes dos coeficientes
no procedimento de estimativa de parametros ¢ a defini¢do de valores maximos e minimos
para os coeficientes da expansdo a serem estimados, a partir dos correspondentes valores

maximos e minimos da propriedade termofisica correspondente, &

max

¢ kmin :
A fungdo de condutividade térmica usada na presente aplicagdo, em funcao dos

parametros a serem estimados, ¢ dada por:
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k., —k o — =
k(x)= (%}Hkx_o +ij1“j(x)

(6.12.2)
=
que por sua vez pode ser reescrito na forma:
N
b — k.., —k._
D kT (x)=k(x) —(%jxﬁu k.o (6.12.b)
J=1
L ~
Operando com _[F ,(x)__ dx em ambos os lados da equagdo acima, tem-se:
0
_ Lk ko —k _
k= j rl(x)k(x)dx—(%] g —k_of, (6.13.2)
0
onde,
L ~
glzjxrl(x)dx (6 13 b)
. 13,
— _fr 6.13
fi= J.Fl(x)dx (6.13.¢)
0

Assim, para um valor constante, minimo ou maximo, de k(x) tem-se k;, =k, ou k, =k, .

— — (ke —ko )
ki = (ky — ko) i —[‘LTO) g (6.14)

Uma vez que os valores da condutividade térmica nos contornos nio sao

conhecidos a priori, para maximizar ou minimizar os valores dos coeficientes transformados

da equacdo (6.14), tem-se que levar em consideragdo o sinal dos coeficientes g, e 7,
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Da analise da expressao acima, e com os valores dos coeficientes transformados,

g,¢ f,,chega-se aos limites conservadores, superior e inferior, dos coeficientes da expansdo,

k

[, max

S kl,min s

na forma:

para [ =par - (k.o =k _;, =k, ; k, =k

max) :
]; _ 2\/E(kmax _kmin)
I, max —
x|V, (6.15.2)

]; _ 2\/E(kmax — kmin) (6 1 5b)

I, min — I %

para [ =impar = (k.o =k, 5 kof =Fkpax)

7 2(kmax — kmin )
kl,max = 1 (6.16.a)
Iz %

para [ =impar — (k,_; =k, ;5 k._o=Kk

X max )

T _\/E(kmax - kmin) (6 16b)

) lﬂ'%

kl,min -

Os parametros foram entdo estimados através do algoritmo de Metropolis-
Hastings, aceitando ou rejeitando, conjuntamente, os pardmetros candidatos a cada iteragao.
Para a estimativa dos intervalos de maximo ¢ minimo do coeficiente k(x) adotou-se como

limite superior a condutividade da particula, (x)=k; e como limite inferior a

kmax

condutividade da matriz, k_; (x)=k,. Poder-se-ia ter utilizado alguns dos modelos

discutidos anteriormente como limites minimos € maximos de modo a reduzir o intervalo de
procura [Kyin, kmax]. Todavia, no presente estagio de demonstragdo da ferramenta de estimativa

aqui desenvolvida, preferiu-se usar intervalos mais dilatados.
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Para a estimativa inicial dos coeficientes k(x), foram escolhidos valores de modo
a considerar uma fun¢ao inicialmente constante dada pelo valor médio entre os limites

k k

k _ max,l+ min,/

superior ¢ inferior, k..., = 5

Os dois primeiros parametros, k_, e k_,, tem os seus valores maximos,

X

minimos e iniciais dados pelos coeficientes k__(x), k

max min

(x), k;

nicial (¥) avaliados em x=0 e
x =L respectivamente. Os demais pardmetros, referentes aos coeficientes da expansdo de
k(x), tém os seus valores maximos ¢ minimos determinados a partir da expansdo em termos

das autofungdes dos coeficientes maximo e minimo, £k (x), k£, (x), como mostrado

anteriormente, € os seus valores iniciais sdo tomados iguais & metade do valor entre o
parametro maximo e minimo encontrado. O passo de procura utilizado no procedimento de
geragdo dos parametros candidatos dentro do intervalo [minimo,maximo] foi de 20% do valor
exato do parametro.

A tabela 6.8 apresenta os valores maximos, minimos, iniciais € o passo de

procura para os 9 parametros a serem estimados.

Tabela 6.8 — Valores exatos, iniciais, passo de procura e limites maximos e minimos para o problema inverso
de estimativa de condutividade térmica.

Parametros Exato Inicial passo kumin o
k=0 1.0072 18.27 0.201 0.545 36
/- 4.2070 18.27 0.841 0.545 36

_1 1.0066 0 0.201 -31.921 31.921
_2 0.01874 0 0.00375 -7.980 7.980
_3 -0.2592 0 0.0518 -10.640 10.640
_4 -0.2441 0 0.0488 -3.990 3.990
_5 -0.1218 0 0.0244 -6.384 6.384
_6 -0.009845 0 0.00197 -2.660 2.660
];7 0.04450 0 0.00890 -4.560 4.560
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Cinco casos foram analisados, correspondendo a diferentes informagdes a priori.
No caso 1, considerou-se uma distribui¢ao uniforme a priori, enquanto que no caso 2 a priori
foi dada na forma de uma distribui¢cdo normal com média centrada no modelo de
condutividade térmica de Lewis-Nielsen e um desvio padrdo de 40% do valor da média. No
caso 3, similarmente ao caso 2, adotou-se uma priori normal centrada no modelo de Lewis-
Nielsen, mas com desvio padrao adotou-se um valor de 80% do valor da média. Os casos 4 e
5 tratam de prioris normais com médias dadas pela correlagdo de Maxwell, respectivamente,
com desvios padrao de 40% e 80% do valor da média. Espera-se para o caso 1 as piores
estimativas, uma vez que a priori adotada neste caso ¢ ndo informativa. Os casos 2 ¢ 3
empregam prioris Gaussinas centradas no mesmo modelo adotado na geragdo dos dados
experimentais simulados, mas com valores para os desvios padrdo relativamente altos, de
modo a desafiar o algoritmo na estimativa da func¢do de condutividade térmica. Nao obstante,
deve-se chamar a atengdo para o fato de que uma vez que evitou-se o crime inverso, nao ¢
esperado a recuperagdo exata dos parametros empregados na geragao dos dados experimentais
simulados.

Os casos 4 e 5 também desafiam a abordagem aqui adotada na solugdo do
problema inverso, uma vez que a priori Gaussiana fornecida para estes dois casos baseia-se
em um modelo para a condutividade térmica efetiva (Maxwell) diferente do modelo
empregado na geracao dos dados experimentais simulados (Lewis-Nielsen). Vale ressaltar que
para baixas concentragdes estes dois modelos predizem valores para a condutividade térmica
razoavelmente concordantes, todavia para concentragdes mais altas tem-se valores distintos
para cada modelo, como foi observado na figura 6.12.c.

Assumindo um periodo de aquecimento de 10 mil estados na cadeia de Markov,
para um total de 50 mil estados em toda a cadeia, obteve-se a estimativas para os parametros
em cada caso tomando-se a média amostral dos 40 mil estados restantes. A Tabela 6.9 abaixo
sumariza as estimativas encontradas assim como os intervalos de confianca para um grau de

confianca de 95% para os cinco casos analisados.
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Tabela 6.9 — Parimetros estimados para os cinco casos analisados
(Caso 1: priori Uniforme; Caso 2: priori Normal Lewis-Nielsen ¢/ 40% desvio padrio;

Caso 3: priori Normal Lewis-Nielsen ¢/ 80% desvio padrio; Caso 4: priori Normal Maxwell ¢/ 40% desvio

padrio; Caso 5: priori Normal Maxwell ¢/ 80% desvio padrio)

P Exato Caso 1 Caso 2 Caso 3 Caso 4 Caso 5
1.426 1.075 1.163 1.010 1.063
k=0 1.0072
[0.630, 2.775] [0.7041, 1.487] [0.655, 1.813] [0.684, 1.390] [0.644, 1.569]
6.921 4.300 4.646 3.979 4.538
k=1 4.2070
[1.950, 14.327] [2.483, 6.424] [2.199, 7.837] [2.505, 5.576] [2.373, 7.102]
_ 0.307 0.957 0.841 0.757 0.655
kl 1.0066
[-2.189, 3.207] [0.356, 1.610] [-0.279, 1.908] [0.249, 1.261] [-0.226, 1.510]
— 0.328 0.0185 0.018 0.0747 0.067
k2 0.01874
[-0.068, 0.586] [0.0034, 0.033] [-0.016, 0.049] [0.029, 0.121] [-0.0013, 0.147]
_ -0.336 -0.270 -0.293 -0.146 -0.169
k3 -0.2592
[-1.238, 0.663] [-0.452, -0.086] [-0.625, 0.048] [-0.248, -0.047] [-0.353, 0.0223]
_ -0.487 -0.244 -0.280 -0.180 -0.204
k4 -0.2441
[-1.816,0.706] | [-0.419,-0.0582] [-0.596, 0.044] [-0.309, -0.05] [-0.437, 0.030]
_ -0.511 -0.1216 -0.113 -0.107 -0.116
k5 -0.1218
[-1.305, 0.288] | [-0.214,-0.0248] | [-0.294, 0.0782] [-0.187,-0.029] [-0.274, 0.056]
_ 0.154 -0.0101 -0.00976 -0.0388 -0.031
k6 -0.00985
[0.029, 0.271] [-0.017,-0.0024] [-0.027, 0.006] [-0.064, -0.016] [-0.090, 0.023]
_ 0.202 0.0453 0.0425 0.0088 0.0089
k7 0.04450

[-0.167, 0.625]

[0.013, 0.0795]

[-0.024, 0.113]

[0.0021, 0.016]

[-0.005, 0.023]

Claramente, o caso 1 apresenta o pior conjunto de estimativas, com um amplo

intervalo de confianga, que por vezes nem inclui o valor exato, como para o caso do

coeficiente K45 . O emprego de uma priori uniforme também leva a uma estimativa com pouca

aderéncia, devido aos limites amplos empregados para os intervalos de minimo e maximo,

que poderiam ter sidos reduzidos fornecendo assim uma melhor informagao ao procedimento

de estimativa, como por exemplo com o emprego dos modelos em paralelo e em série na

definicao de limites mais estreitos.
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Como esperado, os casos 2 e 3 apresentaram resultados bem mais proximos aos
valores exatos, mesmo para o caso 3 onde foi empregado um desvio padrao relativamente alto
para a distribuigdo a priori, resultando em intervalos de confianga mais amplos para os

parametros estimados.

Nos casos 4 ¢ 5 o algoritmo ainda consegue corrigir o comportamento da funcao
de condutividade, recuperando de forma razoavelmente acurada os parametros exatos.
Todavia, um aspecto deve ser ressaltado com respeito as estimativas obtidas para o caso da
escolha da priori normal centrada no modelo de Maxwell, embora os dois modelos de
condutividade, Lewis-Nielsen e Maxwell, sejam localmente divergentes em no maximo 22%,
apos a transformacao integral para expressar as duas fungdes em termos de autofungdes, o
desvio entre os coeficientes de cada expansdo ¢ bem maior, chegando a ordem de 300% de
desvio. Este aspecto, ndo ¢ imediatamente evidente através da simples comparagao entre os

dois modelos apresentado na figura 3.b, todavia, certamente € a principal razdo para as

diferencas encontradas nas analises inversas destes dois ultimos casos.

A figura 6.15.a apresenta os limites maximos, minimos, o valor inicial e a fungdo
de condutividade térmica a ser reconstruida pela solu¢do do problema inverso. Enquanto isso,
as figuras 6.15.b-f apresentam as condutividades térmicas estimadas em comparagdo com a
funcdo exata para cada um dos cinco casos aqui considerados, baseadas na estimativa dos
nove parametros apresentados na Tabela 6.9.

Estas figuras confirmam as observacdes feitas anteriormente baseadas nos
resultados apresentados na Tabela 6.9. Pode-se observar ainda que a oscilagdo presente na
reconstrucao da condutividade térmica para o caso envolvendo a priori ndo-informativa (caso
1), figura 6.15.b, é uma conseqiiéncia da baixa concordancia nas estimativas dos coeficientes
da expansao com os valores exatos esperados.

A figura 6.15.c apresenta a melhor estimativa obtida (caso 2) e a figura 6.15.d
apresenta as estimativas para o caso do aumento no desvio padrdo da priori para 80% (caso 3),
onde pode-se observar apenas um leve desvio na condutividade térmica estimada, quando
comparada a funcdo exata.

Para os dois ultimos casos, com priori dada pelo modelo de Maxwell, nota-se a

tentativa de corre¢cdo do modelo por parte do algoritmo, que distorce a fun¢do inicial na
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tentativa de se aproximar da fungao exata, percebendo-se uma concordancia um pouco melhor

para as estimativas no caso com menor desvio padrao 40% (figuras 6.15.e-f)
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Figura 6.15.— Condutividade térmica exata, chute inicial, limites maximo e minimos e a comparacio entre
a funcio exata e as fungdes estimadas para os 5 casos considerados.

Finalmente, as figuras 6.16. e 6.17. ilustram a evolugdo das cadeias de Markov
durante os 50 mil estados para os nove parametros nos casos 1 e 2, respectivamente. A partir
da figura 6.16, que ¢ relativa a priori ndo-informativa, e em vista dos limites superiores e
inferiores bem amplos aqui propostos, pode-se notar a amplitude significativa das oscilagdes
das cadeias. Por outro lado, as cadeias obtidas para o caso 2, onde prioris normais centradas
no modelo de Lewis-Nielsen foram empregadas, tem-se uma menor amplitude de oscilacdo e

uma completa convergéncia das cadeias mesmo antes de se alcancar os 50 mil estados.
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6.2.2. Estimativa Simultinea da Capacidade Térmica e da

Condutividade Térmica Variaveis

Esta subsecdo apresenta a estimativa simultdnea da variagdo espacial da
capacidade e da condutividade térmicas em um problema unidimensional transiente de
condugdo de calor em meios heterogéneos, aqui ilustrado para um sistema de duas fases com
particulas dispersas em uma matriz polimérica. Empregou-se o método de Monte Carlo via
Cadeia de Markov (MCMC), [Kaipio e Somersalo (2004); Gamerman e Lopes (2006); Migon
e Gamerman (1999); Orlande et.al. (2008); Fudym et.al. (2008)], através da implementagao,
na plataforma Mathematica [Wolfram (2005)], do procedimento de amostragem de
Metropolis-Hastings [Metropolis et.al. (1953); Hastings (1970)].

Para as analises que serdo apresentadas nesta subse¢do considerou-se uma
formulacdo unidimensional transiente para descrever o processo de condugdo de calor em
uma regido xe[0,L] como a apresentada pelas equagdes (1) abaixo. A presente formulacao

inclui a variacdo espacial da capacidade e da condutividade térmicas, w(x) e k(x), que por

sua vez sao responsaveis por carregar as informagdes relativas a heterogeneidade do meio:

or,(xt) 0 T, (x,0) 1l (x) 4(x1)
C, () —0 — =5 | HO— - T,(x,0)-T,)+—"=, 0<x<L;t>0
P()C,(x) o 8x( (%) o ) L (T,(x,0)-T,)+ L <x<L;t> (6.16:3)
I,(x0)=T,, LD _g 150 M| ., (616bd)
ox x=0 ox =L

A formulagdo adotada e descrita pelas equacdes (1) foi construida baseada na
aproximacdo de pardmetros concentrados na dire¢do transversal da amostra, sendo
representativa do aparato experimental descrito no capitulo 5, para uma placa termicamente
fina com fluxo de calor prescrito em uma das suas faces e perdas de calor por convecgdo na

face oposta, conforme ilustrado na figura 6.18.
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Figura 6.1 8- Esquema representative de um aparato experimental para determinacio de
propriedades termofisicas.

Para este aparato experimental representativo, considera-se que as medidas de
temperatura se dao pelo mapeamento na face oposta a aplicacdo do fluxo de calor, via
termografia por infravermelho. Antes de efetuar a transformacao integral do problema (6.16),
uma solugdo filtro simplificada foi adotada com o objetivo de melhorar a convergéncia da
expansao, na forma:

T(xt) =T, +T (x,t) (6.17)

Outros filtros analiticos mais complexos poderiam ter sido adotados de modo a
homogeneizar completamente a equagdo original (6.16.a), eliminando o termo fonte, mas a
escolha da temperatura ambiente como filtro para este problema ja apresentou resultados
satisfatorios na presente andlise demonstrativa da solugdo do problema inverso

correspondente. A formulagao filtrada ¢ entdo dada por:

(oo LD _ O f O oD | T (o) + Px,t), 0<x<L:t>0 (6.18.2)
ot Ox ox
T (x,0)=0, LZBCr1))] i LCZRCr1))] BRI (6.18.b-d)
o |, ox |,

onde,

w(x) = p(x)C,(x); d(x):@; P(x,t):q(z’t) (6.18.e-g)

z z
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A solucdo exata para o problema (6.18) ¢ entdo obtida via Transformada

Integral Classica [Mikhailov e Ozisik (1984); Cotta (1993)] e escrita como :
— Sy b =) g
TCo0 =T+ 270 [ g@wear (6.19)

onde os autovalores z; e autofungdes y,(x) sdo obtidas do problema de autovalor que

incorpora toda a informagao sobre a heterogeneidade do meio, na forma:

dy; (x)

=1+ (uPw(x) = d(x)y;(x) = 0, x€[0,L] (6.20.0)

d
k()

com condig¢des de contorno dadas por:

Wil _o 1o (6.20.b)
dx
Mzo, x=1L (6.20.c)
dx

Na solugdo do problema de Sturm-Liouville apresentado pelas equagdes
(6.20.a-c) empregou-se a Técnica da Transformada Integral Generalizada GITT, através da
proposi¢do de um problema de autovalor, mais simples, ¢ entdo da expansdao da autofungao
desconhecida em termos de uma outra autofungao conhecida [Cotta (1993)]. Também para os
coeficientes da equacdo w(x) e k(x) propde-se a expansdo em termos de autofuncdes
conhecidas. Esta abordagem ¢ particularmente vantajosa na avaliagcdo das matrizes 4, , € By .
do sistema algébrico, uma vez que todas as integrais podem ser entdo expressas em termos de
autofungdes, permitindo a sua integrag@o analitica.

Os coeficientes w(x) e k(x) podem ser entdo escritos como nas equagdes
abaixo, em termos de autofuncdes conhecidas e de uma fungao filtro, de modo a acelerar a

convergéncia desta expansao nos contornos:
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w(x) :wf-(x)+il:j(x)v_vj, (6.21.a)
j=1

k(x) = kf(x)+il~" SOk, (6.21.b)
j=1

As fungoes consideradas desconhecidas nesta etapa do presente trabalho foram
a capacidade térmica w(x), a condutividade térmica k(x), e o coeficiente de transferéncia de
calor efetivo A(x), que por simplicidade foi assumido uniforme. Todavia, como a abordagem
adotada na solugao do problema direto envolve a expansao destes coeficientes em termos de
autofungdes, as quantidades desconhecidas de fato sdo os coeficientes desta expansdo, os dois
valores nos contornos, de cada propriedade, empregados no procedimento de solugcdo como
funcdo filtro, e o coeficiente de transferéncia de calor uniforme. Logo, o numero e os

parametros a serem estimados sdo:

P= [wxzo,wx:L,WI,WZ,@,...,WNW,kxzo,kx:L,kl,kz,k3,...,ka ,d],

(6.22)

com Np=N,,+ N, +5

O problema inverso aqui ilustrado envolve a analise de uma variagcdo abrupta
da concentracdo de particulas envolvendo um sistema de duas fases dispersas. Com o objetivo
de avaliar a acuracia e a robustez da proposta de solugdo do problema inverso, utilizou-se de
dados de temperatura simulados ao longo do comprimento do dominio, no regime transiente.
Tais medidas simuladas foram obtidas pela solugdo do problema direto através da
especificacdo das fungdes das propriedades termofisicas. As temperaturas simuladas foram
entdo perturbadas com erros aditivos, Gaussianos, ndo-correlacionados de média zero e desvio
padrao conhecido. Para a geracdo dos dados experimentais simulados e para as analises
inversas subseqiientemente apresentadas empregou-se os valores apresentados na Tabela 6.10,

que foram extraidos dos trabalhos de [Tavman, I.H., (1996); Kumlutas et.al. (2003)].
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Tabela 6.10 — Valores usados na geraciio dos dados experimentais simulados
Comprimento L,=0.04 m

Concentragdo volumeétrica de particulas em x=0 0o=0%

Concentragdo volumétrica de particulas em x=Lx | ¢;=45%

Propriedades da matriz polimérica (HDPE) pn=968 kg/m’
cpm=2300 J/kgC
ky=0.545 W/mC

Propriedades das particulas (alumina) p~3970 kg/m’
cpa=160 J/kgC
k=36 W/mC
Modelo de condutividade térmica efetiva Lewis and Nielsen (A=1.5; ¢,=0.637 )
Parametros da fungdo para descrever a | y=25
concentracao de particulas dispersas na matriz x~=0.2
Coeficiente de tranferencia de calor efetivo he=16.7 W/m>C

Parametros adotados na fun¢do do fluxo de calor | y=100

x~0.5

qo=0

qr=598 W/m*
Temperatura ambiente e inicial T=23C
Espessura da placa L,=0.003 m

A distribuigdo espacial para a variagdo abrupta da concentracao de particulas na

matriz polimérica ¢ governada pelo parametro yde acordo com a forma funcional abaixo:

P(xX) =g+ (D= — Pr0)O (%) (6.23.2)

1

e

(6.23.b)

onde x. representa a posicao de transicdo entre as regides de baixa e alta concentragdo de
particulas.
A partir da distribuicdo de concentracdo de particulas na matriz polimérica ao

longo do dominio, pode-se determinar por teoria de misturas a capacidade térmica w(x):
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C
() =1+ (22224 1) (6.24)

m“pm

Todavia, para a condutividade térmica a informagao sobre a fracao volumétrica
de particulas e a sua distribui¢cdo espacial ndo sdo suficientemente informativas para previsao
desta propriedade fisica, especialmente para altas concentragdes, [Kumlutas et.al.(2003)].
Muitos modelos empiricos e tedricos tem sido propostos para predizer a condutividade
térmica effetiva de um sistema de duas fases dispersas. Para a presente analise utilizou-se o

modelo de Lewis-Nielsen, como apresentado na subsecao anterior.

_ | 1+4B¢ G0 it SN B el
kc_kmL—BW//} onde B—(kd/km)+Aez//—1+[ ¢,%, J¢ (6.25.a-c)

As figuras 6.19.a-c ilustram o comportamento da distribui¢do de concentracio
alem das fun¢des de capacidade e condutividade térmicas empregadas na geracao dos dados
experimentais simulados.

O fluxo de calor prescrito neste problema também foi considerado como tendo
um comportamento abrupto na coordenada espacial, como dado pela equagdo (6.3), mas
usando x.=0.5 L, e o argumento » =100, que praticamente reproduz uma fun¢do degrau. Os
dois patamares da funcao fluxo de calor foram considerados como apresentado na tabela 6.10,
q0=0 e g1=q,.. Nesta fase do presente trabalho, ¢,, nao ¢ estimado devido a dependéncia linear
resultante com os demais parametros remanescentes na estimativa. Optou-se entdo por dividir
os parametros pelo valor de gy, , de modo que depois de se obter as estimativas, os parametros

procurados sao entao multiplicados pelo valor de gy, € sua respectiva incerteza.
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Figura 6.19 — Variacao espacial da (a) concentracao de particulas na matriz, (b) capacidade térmica, (c)
condutividade térmica, de acordo com os parametros apresentados na tabela 6.10.

Na abordagem inversa proposta, a ordem de truncamento nas expansdes da
capacidade e da condutividade térmicas, N,, € Ny, controlam o numero de parametros a serem
estimados. Neste sentido, uma andlise da convergéncia das expansdes de w(x) e k(x),
eqs.(23b,c), ¢ apresentada nas figuras 6.20.a-c, para diferentes ordens de truncamento, N,, € Nj
=4, 7 e 10. Pode-se observar que com o aumento da ordem de truncamento, melhora-se
significativamente a concordancia entre a fungdo expandida e a funcdo exata. Para a ordem de
truncamento mais baixa, N,, ¢ N; =4, ainda percebe-se alguma oscilagdo em torno da fungdo
exata, mas para N,, € Ny =7 ja se consegue uma boa aderéncia entre as fungdes expandidas e

exatas, e para N,, ¢ Ny =10 praticamente tem-se a concordancia plena entre as fungoes.
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Figura 6.20 — Analise da convergéncia das expansdes da condutividade e da capacidade térmicas
(linha solida — func¢éo exata, linha pontilhada — funcio expandida)
a) Ny e Ni=4, b) Ny, e N =7, ¢) N;, e N =10,

Antes de se iniciar o procedimento de solugdo do problema inverso, analisou-se

o determinante da matriz de informagdo J'J, para o caso de se variar o nimero de parametros
envolvidos na estimativa para um nimero fixo de medidas espaciais e uma freqiiéncia fixa de
medidas no tempo (figura 6.21.a). Em seguida, avaliou-se o comportamento do determinante
devido a variagdo do nimero de medidas ao longo do dominio espacial para um numero fixo
de parametros a serem estimados (figura 6.21.b).

A figura 6.21.a mostra a evolu¢do no tempo do determinante da matriz de

informagdo para um total de 12 mil medidas sendo (N,=40 ao longo do dominio espacial e
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N=300 no tempo). As trés curvas, de baixo para cima, representam um numero crescente de
parametros envolvidos na estimativa, Np=13, 19 e 25, que correspondem respectivamente a
N,, e Ny =4, 7 e 10 mais os dois valores dos contornos de cada propriedade presentes nos
filtros das expansdes, além de “d”. Claramente, com o aumento gradual no numero de
parametros, tem-se um decréscimo de algumas ordens de grandeza do valor do determinante,
como ilustrado pelos seus valores no fim da escala temporal (1.7427x10"°, 5.36019, ¢
5.39711><10'23), respectivamente para Np=13, 19 e 25, afetando assim o condicionamento do
processo de estimativa.

A figura 6.21.b apresenta o comportamento do determinante da matriz de informagao
para um numero variavel de medidas espaciais igualmente espacadas ao longo do dominio
(N,=160, 40 e 4, de cima para baixo), para o caso de uma estimativa envolvendo dezenove
parametros, Np=19. O menor valor de N, considerado refere-se a uma situagdo onde seriam
empregadas técnicas de medida de temperatura tradicionais, como por exemplo termopares,
enquanto que os valores mais altos representariam, por exemplo, o emprego de técnicas
termograficas. O determinante da matriz de informagao tem seu valor reduzido sensivelmente
a medida que se tem uma redug¢do do nimero de medidas espaciais, (1.4734><1012, 5.36019, e

8.10324x10™%, para N,=160, 40 e 4 respectivamente).
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(a) N,=40, Ar=10s, Np=13 (curva superior), 19 (curva do meio) and 25 (curva inferior)
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Figura 6.21 — Evolucao do determinante da matriz de informacio para diferentes nimeros de medidas
espaciais, temporais e nimero de parametros envolvidos nas estimativas:
(a) N,=40 sensores, Ar=10s, (Np=13, 19 e 25 parimetros);
(b) Np=19 parimetros, At =10 s e N, =4, 40, e 160 sensores.

Os dados experimentais simulados foram gerados com uma incerteza padrdao no
valor da temperatura de 0.1°C, 0.5°C e 1°C, a partir da solu¢do do problema direto computado
com 50 termos na expansdo da temperatura (N7=50) e 14 termos na expansdao das
propriedades (N,= N;=14). As andlises inversas subseqiientes foram realizadas com 15 termos
na expansdao da temperatura, de maneira a evitar-se o chamado crime inverso [Kaipio e
Somersalo (2004)]. Baseado nas analises de sensibilidade apresentadas anteriormente,
realizou-se estimativas para os casos de Np=13 e 19, respectivamente N,, = N; =4 ¢ 7 termos
na expansdes da capacidade e da condutividade térmicas, para o caso de N,=40 medidas
espaciais e N=300 medidas no tempo.

Da mesma forma como apresentado na secdo anterior, a definicdo dos limites
maximos € minimos € uma etapa crucial no procedimento de estimativa, uma vez que se tem
uma informagao fisica dos valores maximos e minimos para as propriedades, e a partir destes
valores define-se os limites superiores e inferiores para os coeficientes de suas respectivas
expansoes. Todavia, como os valores das propriedades nos contornos nao sao conhecidos, ou

seja, sdo estimados juntamente com os demais parametros, faz-se necessario a definigado
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destes limites de maneira bem conservativa em fun¢do do indice de cada termo da expansdo

proposta, na forma:

para [=par > (k_,=k,_; =k, ; k,=k

max) :
1 _ 2\/5(kmax - kmin)

kl max —
’ 1] yL (6.26.2)

]? _ 2\/§(kmax — kmin) (626b)
[,min —
Ir, /%
para [ =impar = (k,_y =k, 5 kof = kpax)
]? _ 2(kmax _kmin)
Imax — [,
=1 (6.27.2)

para [ =impar — (k,_; =k, 5 ko =Ku)

7 _\/E(kmax — kmin)

kl,min_ 627b
In yL (6.27.b)

Para a estimativa dos intervalos de maximo e minimo dos coeficientes de k(x) e
w(x), adotou-se como limite superior a condutividade e a capacidade térmica da particula,

Wiax (X) =W, € k.. (x)=k,, e como limite inferior a condutividade ¢ a capacidade térmica

da matriz polimérica, w,;, (x) =w,, € k;,(x)=k,. Poder-se-ia ter utilizado alguns dos
modelos anteriormente discutidos como limites minimos e maximos de modo a reduzir o
intervalo de procura [Wiin, Winax] € [Kmin, kmax], todavia, optou-se por trabalhar com intervalos
mais dilatados de forma a desafiar o método e a abordagem aqui adotados.

A estimativa inicial para os coeficientes de k(x) e w(x) foram escolhidos de
modo a considerar uma fun¢do inicialmente constante dada pelo valor médio entre os limites
superiores e inferiores para cada parametro. A tabela 6.11 resume os valores maximos,
minimos, iniciais € o passo de procura pelos parametros candidatos, para os 19 parametros a

serem estimados.

125



Tabela 6.11 — Valores exatos, iniciais, passo de procura e limites dos intervalos usados na solugio inversa.

Parametro Exato Inicial Passo Pin Pax
hef 16.694 18.364 0.0334 10. 20.
ko 0.54897 0.60386 0.00220 0.545 5.7856
Ko, 2.2929 2.5221 0.00909 0.545 5.7856
k, 0.10972 0.12069 0.000455 -0.9436 0.9436
k, 0.00204 0.00225 4.1668x10° -0.2359 0.2359
ks -0.02825 -0.03108 0.000111 -0.3145 0.3145
k, -0.02661 -0.02927 0.000122 -0.1180 0.1180
ks -0.01328 -0.01461 0.0000443 -0.1887 0.1887
k -0.00107 -0.00118 1.7004x10° -0.07864 0.07864
k, 0.00485 0.00534 0.0000185 -0.1348 0.1348

Wi 2.2288x10° | 2.4517x10° 4457.56 2.226x10° | 2.938x10°
Wyet 2.5823x10° | 2.8405x10° 5161.94 2.226x10° | 2.938x10°
W, 25047.5 27552.2 50.516 -128155. 128155.
W, 4370.18 4807.2 8.6067 -32038.7 32038.7
W, -2701.11 -2971.23 5.3624 -42718.2 42718.2
w, -4449.02 -4893.93 9.3753 -16019.3 16019.3
W, -3613.83 -3975.21 6.9235 -25630.9 25630.9
W, -1955.27 -2150.79 3.6800 -10679.6 10679.6
W, -512.218 -563.44 1.0244 -18307.8 18307.8

Como informacdo a priori para as estimativas das propriedades, considerou-se
que fosse possivel ter uma medida da distribui¢do da concentragdo volumétrica de particulas
ao longo do dominio espacial, assumindo que esta concentracdao poderia ter sido medida com

um desvio padrdo de até 20% do valor exato, o que levaria a uma incerteza de mais de 50%
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no seu valor absoluto (figura 6.22.a). Através das medidas de concentracdo seria entdo
possivel construir prioris para a capacidade térmica a partir da teoria de misturas e para a
condutividade térmica a partir do emprego de algum dos modelos discutidos anteriormente,
como por exemplo, Lewis-Nielsen. As prioris para os coeficientes das expansdes de cada
propriedade seriam entdo posteriormente determinadas a partir da expansdao das prioris das
propriedades. As figuras 6.22.b-c apresentam as propriedades obtidas para a distribuicao de
concentracao com 20% de desvio padrao (linha solida) e as suas respectivas expansdes para
um numero de termos nas séries de N,, e Ny = 7 (linha pontilhada).

Cinco casos testes, sumarizados na tabela 6.12, foram estudados de modo a
validar e demonstrar a metodologia de solugdo proposta pelo presente trabalho.

O caso 1 foi escolhido para validagao do algoritmo implementado, uma vez que
o nimero de termos na expansdo para geracdo dos dados experimentais € na solugdo do
problema inverso para este caso foram escolhidos iguais, ou seja, 15 termos na expansao da
temperatura (N7=15) e 4 termos nas expansdes das propriedades (N, e Ny = 4, Np=13
parametros). Para os casos 2 e 3, os dados experimentais simulados foram gerados com 50
termos na expansdo da temperatura e 14 termos na expansdo das propriedades e uma
distribui¢do da concentragdo com desvio padrao de 20%, mantendo-se para a solugdo do
problema inverso um numero de termos nas expansdes da temperatura e das propriedades
reduzido (NT=15 e N,,e Ny =4, tal que Np=13 parametros).

Para o caso 1, considerou-se entdo que as temperaturas teriam uma pequena
incerteza, de 0.1°C, e que as medidas da distribui¢do de concentragdo nao teriam nenhum erro,
de modo que as prioris normais para os coeficientes foi centrada nos seu respectivos valores
exatos. Todavia, os desvios padrdao considerados para as prioris normais das propriedades foi
de 40% do valor exato. Ja para o coeficiente de transferéncia de calor, pode-se ter quase
sempre uma idéia da sua ordem de grandeza através de correlagdes disponiveis na literatura, e
por isso considerou-se que seria possivel oferecer uma priori normal também para este
parametro, centrado no valor obtido por uma destas correlagdes. Para este primeiro caso de
validacdo utilizou-se entdo para o coeficiente de transferéncia de calor uma distribui¢ao

normal centrada no seu valor exato e com um desvio padrao de 20% da sua média.
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Figura 6.22 — Distribuicées a priori: (a) distribuicio da concentracio para um desvio padrio de 20%
(b) capacidade térmica e (c¢) condutividade térmica
(Linha solida) propriedade calculada a partir de (a) e (Linha pontilhada) propriedade expandida.
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O caso 3 ¢ essencialmente igual ao caso 2, aumentando-se contudo a incerteza das
medidas de temperaturas para 0.5°C. Os casos 4 e 5, por sua vez, levam em consideragdo a
solucdo do problema inverso para um nimero maior de parametros (Np=19, com N,,= N, = 7),
mantendo-se uma incerteza na temperatura de 0.5°C. A diferenca entre estes dois ultimos

casos deve-se aos diferentes valores para o desvio padrao empregados em cada uma das

analises.
Tabela 6.12 — Definicio dos dados de entrada para a solu¢io do problema inverso.
Dados Caso 1 Caso 2 Caso 3 Caso 4 Caso 5
NT, N,, Ny
15,4, 4 50, 14, 14 50, 14, 14 50, 14, 14 50, 14, 14
(dados simul.)
NT, N,, N
15,4, 4 15,4, 4 15,4, 4 15,7,7 15,7,7
(sol.inversa)
Np
13 13 13 19 19
(sol.inversa)
Passo 1% 1% 1% 1% 1%
Desvio Padrao ) ) ) )
Nao Sim 20% Sim 20% Sim 20% Sim 20%
(concentragado)
Desvio Padrao 40%, 40%, | 40%, 40%, | 40%, 40%, 40%, 40%, 40%, 20%,
(k, w, hep) 20% 20% 20% 20% 20%
Incerteza Exp.
0.1°C 0.1°C 0.5°C 0.5°C 0.5°C
(Temperatura)

Adotando-se um periodo de aquecimento de 10 mil estados para as cadeias de
Markov, em um total de 50 mil estados para cada cadeia, tem-se que as estimativas dos
parametros podem ser dadas pelas estatisticas amostrais dos 40 mil estados remanescentes. A
tabela 6.13 sumariza estas estimativas encontradas para cada um dos parametros nos cinco

casos analisados.
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. Tabela 6.13 — Parametros estimados para os 5 casos analisado.

P Exato Caso 1 Caso 2 Caso 3 Caso 4 Caso 5
hef 16.694 16.690 16.686 16.676 16.692 16.692
ko 0.54897 0.55742 0.54552 0.55593 0.56523 0.57677
ket 2.2929 2.3041 2.4129 2.4219 2.3023 2.3359
_1 0.10972 0.10801 0.10061 0.09989 0.10723 0.10327
_2 0.00204 0.00225 0.00231 0.00230 0.00205 0.00232
_3 -0.02825 -0.02912 -0.02654 -0.02662 -0.02969 -0.03080
_4 -0.02661 -0.02636 | -0.03320 -0.03368 -0.02728 -0.02658
_5 -0.01328 - - - -0.01275 -0.01351
_6 -0.00107 - - - -0.00111 -0.00105
1?7 0.00485 - - - 0.00580 0.00589
Wamo 2.229x10° | 2.234x10° | 2.239x10° | 2.277x10° | 2.281x10° | 2.247x10°
Wy—t 2.582x10° | 2.587x10° | 2.5848x10° | 2.573x10° | 2.618x10° | 2.595x10°
W, 25047.5 24264.8 23953.3 22037.0 15923.9 22196.6
W, 4370.18 4928.48 4983 .48 3290.25 4892.01 5009.25
W, -2701.11 -3156.08 -2968.88 -3051.92 -2405.1 -2622.2
w, -4449.02 -5132.59 -5029.64 -3746.84 | -4654.52 -4857.93
W -3613.83 - - - -3912.02 -4337.8
W -1955.27 - - - 2367.64 | -2283.89
w, -512.22 - - - -610.09 -529.54
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Como era esperado, o caso 1 apresentou as melhores estimativas uma vez que
se tratava de um caso de validacdo do algoritmo computacional construido. Para os casos 2 ¢
3 evitou-se o crime inverso e conseqlientemente os resultados das estimativas ndo estdao tao
aderentes aos valores exatos como no caso 1. Todavia, mesmo com o aumento da incerteza na
temperatura de 0.1°C para 0.5°C, percebe-se que ainda sim tem-se uma boa estimativa dos
parametros. Ambos os casos, 4 ¢ 5, envolvem estimativas com uma incerteza na temperatura
de 0.5°C e um numero maior de parametros € mesmo assim conseguem recuperar os valores
dos parametros de maneira satisfatoria, percebendo-se uma melhora na estimativa nos
parametros referente a capacidade térmica para o caso 5, em que se utiliza de um desvio
padrao reduzido para esta propriedade.

As figuras 6.23 a 6.27 sumarizam a reconstru¢ao das duas propriedades a partir
dos parametros estimados apresentados na tabela 6.13 acima e comparam com a func¢ao exata
(linha solida preta), com a funcdo exata expandida com mesmo numero de termos usado na
estimativa inversa (curva solida vermelha) e a fun¢do resconstruida a partir das estimativas
(curva pontilhada em azul), com os seus respectivos intervalos de 99% de confianca para cada
uma das propriedades nos cinco casos analisados.

As figuras 6.23.a-d vem confirmar graficamente o que ja era esperado e que ja
havia sido observado anteriormente pela analise da tabela 4, de que o caso 1 tem a melhor
aderéncia entre as fun¢des exatas ¢ estimadas.

As figuras 6.24.a-d apresentam a comparagdo entre as fungdes exatas e
estimadas para o caso 2, onde o crime inverso nao foi cometido. Pode-se observar uma
pequena divergéncia entre a fungdo exata expandida e a fungdo estimada préximo ao contorno
x=L, na estimativa da condutividade térmica, enquanto que na estimativa da capacidade

térmica tem-se ainda uma boa concordancia entre as fungoes.
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Figuras 6.23.a-d —caso 1:
a) k(x) e o)wx)
Funcao exata (linha sélida preta), funcio exata expandida com 4 termos (linha solida vermelha), funcao
estimada com 4 termos (linha pontilhada azul);
b) k(x) e d)wkx)
Funcao exata (linha sélida preta), fun¢ao estimada com 4 termos (linha pontilhada azul) e intervalos com
99%de confianca maximos e minimos;
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Figuras 6.24.a-d —caso 2:
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Funcao exata (linha sélida preta), funcio exata expandida com 4 termos (linha solida vermelha), funcao

b) k(x)

e d)wkx)

estimada com 4 termos (linha pontilhada azul);

Funcao exata (linha sélida preta), fun¢ao estimada com 4 termos (linha pontilhada azul) e intervalos com
99%de confianca maximos e minimos;
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Pelas figuras 6.25.a-d referentes ao caso 3, pode-se observar que novamente tem-se
um pequeno desvio na estimativas da condutividade témica no contorno x=L, e, além disso, a
capacidade térmica tem um comportamento um pouco menos concordante do que no caso 2 proximo

ao contorno x=0, contudo ainda apresentando um intervalo de confianca suficientemente amplo.

k(x) [W/mC] k(x) [W/mC]
3,0j 3'()?
2.5; “"---... 2.5f Zesvttaay
2,0f 2'0f
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(a) (b)
w(x) [J/m3C] w(x) [J/m3C]
30x100 30 %100
28 %100 28 x100
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Figuras 6.25.a-d —caso 3:
a) k(x) e o)wx)
Funcao exata (linha sélida preta), funcio exata expandida com 7 termos (linha solida vermelha), funcao
estimada com 7 termos (linha pontilhada azul);
b) k(x) e d)wkx)
Funcao exata (linha sélida preta), fun¢ao estimada com 7 termos (linha pontilhada azul) e intervalos com
99%de confianca maximos e minimos;
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As figuras 6.26.a-d, relativas ao caso 4, ilustram o comportamento das propriedades
com 7 termos na série, que claramente oferecem uma melhor concordancia com a fungdo original
(linha solida preta). Para este caso, foi testado um desvio padrdo relativamente alto 40%, de modo a
desafiar a abordagem aqui proposta, e pode-se notar pela analise destas figuras que o resultado das

estimativas conseguidas foram bem satisfatorios, mesmo para este caso mais severo.
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Figuras 6.26.a-d —caso 4:
a) k(x) e o)wx)
Funcgéo exata (linha sélida preta), fungio exata expandida com 7 termos (linha solida vermelha), funcéio
estimada com 7 termos (linha pontilhada azul);
b) k(x) e d)wk)
Funcio exata (linha sélida preta), fun¢fo estimada com 7 termos (linha pontilhada azul) e intervalos com
99%de confianca maximos e minimos;
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O caso 5, figuras 6.27.a-d, resulta em estimativas bastante acuradas mesmo para
um numero maior de parametros. Comparando as figuras 6.27.c e 6.26.c percebe-se a melhora
das estimativas da capacidade témica para o caso 5 como uma consequéncia da reducao do
desvio padrao considerado para esta propriedade neste ultimo caso. A estimativa da
condutividade térmica apresentou-se satisfatoriamente concordante em ambos os casos 4 € 5,
enquanto que para o coeficiente de transferencia de calor efetivo obteve-se estimativas bem

acuradas para todos os 5 casos analisados.
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Figuras 6.27.a-d —caso 5:
a) k(x) e o)wkx)
Funcio exata (linha sélida preta), fun¢ao exata expandida com 7 termos (linha solida vermelha), funcéo
estimada com 7 termos (linha pontilhada azul);
b) k(x) e d)wx)
Funcao exata (linha sélida preta), fun¢ao estimada com 7 termos (linha pontilhada azul) e intervalos com
99%de confianca maximos e minimos;
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6.2.3. Estimativa Simultinea da Capacidade Térmica e da

Condutividade Térmica Variaveis no Campo Transformado

Em seqiiéncia a anélise da se¢do anterior, buscou-se desafiar a metodologia de
solucdo do problema inverso para estimativa simultanea das propriedades termofisicas, no
tratamento de uma situacdo com variagdo acentuada das propriedades (FGM), na forma do
comportamento exponencial com a variavel espacial apresentada na secdo de solucdo do
problema direto, sem informagdo a priori da distribuicdo espacial das concentracdes
volumétricas das particulas. Tendo em vista a dificuldade encontrada na inversdo a partir da
utilizacdo dos campos de temperatura, quer na qualidade das estimativas quer no custo
computacional requerido ao se utilizar um grande numero de sensores e medidas
experimentais, surgiu a idéia de se empregar a temperatura transformada como medida
experimental na expressdo da versossimilhanga. Desta forma, os dados experimentais
referentes a todos os sensores seriam reduzidos a um conjunto bem menor de campos
transformados, a cada medida na varidvel temporal. Ou seja, a transformacdo integral dos
resultados experimentais disponiveis ao longo da varidvel espacial, permite a compactacao dos
dados em um numero de campos transformados que seja suficiente para representar o campo
de temperaturas garantindo convergéncia da expansdo com erro inferior ao das proprias
medidas experimentais. Assim, obteve-se a identificagdo de parametros pretendida, dentro dos
limites de precisao desejados e a um custo computacional compativel com a dificuldade do
problema tratado, como descrito a seguir.

O problema fisico a ser tratado diz respeito a uma placa térmicamente fina de

espessura L.=Imm sendo aquecida por uma resisténcia elétrica em uma das faces, em apenas

~ L - .
uma por¢ao Xcont = % do seu comprimento total, L,=/2cm. Na face oposta considera-se

uma perda de calor devido a convecg¢do natural e radiacdo, e os demais contornos sao
considerados isolados. Modelou-se este problema fisico como sendo um problema de
conducdo de calor transiente unidimensional usando parametros concentrados na dire¢ao
transversal, como formulado nas equagdes abaixo e apresentado esquematicamente na figura

6.28. Para as analises inversas que serdo apresentadas a seguir assumiu-se conhecido o fluxo

de calor oriundo da poténcia dissipada na resisténcia “ ¢i,s ” e a variagdo espacial do fluxo de
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calor ¢(x) e propde-se fazer a estimativa simultanea da distribui¢do espacial da capacidade e

da condutividade térmicas, da distribuicao do coeficiente de transferéncia de calor efetivo ¢ a

dependéncia temporal do fluxo de calor, respectivamente, W(x), k(x), h,(x), f(?).

T,

amb

qconv.natural + qradia&;ﬁo

s

N

1
1
1
1
1
1
1
1
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F e X

4 :
! W/W
MY =0
L g, ; 5
' Lx

X X coNT

Figura 6.28 — Modelo fisico estudado na estimativa simultinea no campo transformado

OT,[xt] _ 0 oT, ) helx] 7.[x.]
Zomi ] T ] | — =8 T _T w
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6.28.e-
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0 L% <x<L,

Analisando-se o termo de geracdo, tem-se que a dependéncia temporal do fluxo

13 29

de calor, na forma paramétrica adotada, depende dos pardmetros @, b, ¢ em que “c¢” ¢ a
fragdo do valor do fluxo de calor em regime permanente. As figuras 6.29.a-b abaixo fazem

uma breve analise da influéncia destes valores no comportamento temporal do fluxo de calor.
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Em ambas as andlises, o parametro ¢ assumiu o valor igual a 1, isso porque considerou-se que

em regime permanente toda a poténcia dissipada pelo elemento de aquecimento (resisténcia

b

elétrica) ¢ fornecida a placa. A figura 6.29.a mostra, para um valor fixo do parametro “ @ ”, a
influéncia de trés ordens de grandeza diferentes para o pardmetro “ b”. A figura 6.29.b
apresenta uma analise similar para um valor fixado de b, ou seja, o comportamento da fungdo

b

para trés diferentes valores de “ a .

flt] fIt]
1200

1000F
800
600|-

400}

1 1 1 T R R 1
0 500 1000 1500 2000

2500

L g S S N S
3000 3500 0 500 1000 1500

t[s]

Curva vermelha:  qinr Curva vermelha: Qs
Curva cyan: a=0.7; b=0.05; c=1; Curva cyan: a=0; b=0.005; c=1;
Curva preta: a=0.7; b=0.005; c=1; Curvapreta: a=0.7; b=0.005; c=1;
Curva azul: a=0.7; b=0.0005; c=1; Curvaazul: a=0.3; b=0.005; c=1;

Figura 6.29.- Analise da dependéncia temporal do fluxo de calor;

Para o termo de dissipacdo linear considerou-se a correlagdo do coeficiente de
transferéncia de calor por convec¢do natural para fluxo de calor prescrito uniforme em placa
plana horizontal, dada pelas egs. (6.29.a-c) [Bejan (1993)], enquanto para a parcela da perda
de calor por radiagdo considerou-se a aproximacdao de linearizacdo dada pela equacdo
(6.29.d), de modo que o coeficiente de transferéncia de calor efetivo apresentou a forma

funcional em degrau da eq. (6.30), como ilustrado na figura 6.30.
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Numero de Rayleigh:
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Figura 6.30.- Comportamento espacial do coeficiente de transferéncia de calor efetivo (a)
e do nimero adimensional de Biot (b);

Coef. Transferencia de Calor Efetivo:

hcxcow
hep (x) = h '

r Xcont <X <L,

+ hr 0 <X <XconT

(6.30)
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Na presente analise do problema inverso considerou-se as propriedades
termofisicas na forma de uma matriz polimérica (HDPE), com nanoparticulas de 6xido de
aluminio (Al,O3) dispersas na matriz, onde a variagdo espacial de particulas ¢ descrita pela
forma funcional de uma exponencial, considerando que em x=0 tem-se apenas a matriz
polimérica, ou seja 0% de particulas dispersas e em x=L, tem-se 60% de concentracdo de
particulas dispersas no meio.

A matriz polimérica considerada tem capacidade e condutividade térmicas de

w,, =2.2264x10° /.. e k, =0.545"/ .  respectivamente, enquanto que as particulas de 6xido

de aluminio tem propriedades dadas por W, =3.0172x10° /.. e k, =36"/. . Sendo assim, se
utilizarmos a teoria de misturas para calcular a capacidade térmica e a correlagdo de Lewis-
Nielsen [Lewis e Nielsen (1970)] para calcular a condutividade térmica, ambas sob uma
concentracdo final de 60%, tem-se que em x=L, a capacidade térmica ¢ de
W, i, =2.7008x10° %/ . e a condutividade térmica ¢ de k,, =9.078"/ .

Sob a forma funcional de uma exponencial dada pelas equagdes (6.31.a,b)
abaixo tem-se que o comportamento espacial das propriedades pode ser verificado nas figuras

6.31.a-c.

k(x) = ko Expl[2 ,8(1 —LixJ] w(x) =wy Exp[2 (1 —LLJ] (6.3l.a-b)

X

B =1.4064 B =0.0966
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Figura 6.31.- Comportamento espacial do propriedades termofisicas
(a)condutividade térmica; (b)capacidade térmica; (c)difusividade térmica;

Como esta subsegdo trata de uma andlise tedrica de solugdo do problema
inverso, utilizou-se de dados simulados de temperatura experimental ao longo do
comprimento do dominio, no regime transiente. Tais medidas simuladas foram obtidas pela

solucdo do problema direto através da especificacdo das fungdes e das distribuigdes das
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propriedades termofisicas. As temperaturas simuladas foram entdo perturbadas com um erros
Gaussianos aditivos, nao-correlacionados de média zero e desvio padrdo conhecido. Para a
geragdo dos dados experimentais simulados e para as andlises inversas subseqilientemente

apresentadas, empregou-se os valores apresentados na Tabela 6.14.

Tabela 6.14 — Valores usados na geracio dos dados experimentais simulados

tfinal 3 600s I3 0.97

Ly 0.12m a 0.7

L, 0.04m b 0.005

L, 0.001m c 1
XCONT 0.04m T(x, t=0) Tamp=23.4°C

O perfil de temperatura resultante da solugdo do problema direto, com os valores
dados pela Tabela 6.14, ¢ apresentado nas figuras 6.32.a-b. Na figura 6.32.a tem-se a
distribui¢@o de temperatura para trés diferentes posi¢cdes na placa ao longo do tempo. Percebe-se
que para toda a placa o regime permanente foi alcangado para tempos maiores que 1200
segundos. A figura 6.32.b apresenta o comportamento espacial da temperatura para diferentes
tempos e pode-se observar o gradiente de temperatura que se forma ao longo da placa devido ao
aquecimento desigual ao longo do seu comprimento. Para posi¢des situadas proximas a x=Lx,
opostas a regido do aquecimento (x=0 a x=xconr), @ placa permanece praticamente a temperatura
ambiente.

Antese de proceder a andlise do problema inverso, realizou-se um estudo de
convergéncia da solugdo direta via Tranformagao Integral, através da analise da convergéncia
da expansdo da temperatura. As tabelas 6.15.a-c apresentam as temperaturas obtidas com até
40 termos na expansdo para trés diferentes tempos (360s, 1200s e 3600s), respectivamente,
em trés diferentes posicdes da placa. Observando estas tabelas pode-se perceber uma
convergéncia de até¢ 4 digitos significativos nos valores das temperaturas, para as posicoes ¢
tempos analisados, com 40 termos na série.

Todavia, a utilizagdo desta ordem de truncamento no procedimento de solugado
do problema inverso levaria a um custo computacional desnecessariamente alto. Desta forma,

a ordem de truncamento empregada na solugdo do problema inverso foi escolhida de modo
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que este nimero fosse suficientemente grande para garantir a convergéncia da expansao com

um erro razoavelemente inferior ao das proprias medidas experimentais.

TC
70 r

60
50
40 |
30 |
20
10 -

—  x=Lx/3

— x=Lx

S U S S B R R Y B tS
0 500 1000 1500 2000 2500 3000 3500 .

Figura 6.32.a — Distribuicio de temperatura ao longo do tempo para diferentes posicoes da placa

T[x,t]
70j (]
L 0 — t=0
[ |
|
60: : —  t=300.s
5oL \ £=600.5
[ [}
' —  t=1200.s
40 1 0
i : —  t=3600.s
30 - :
r |
7‘ . . | . . N . . | . . . | . . . | . . . | X[m]
000 002 004 006 008 010 012

Figura 6.32.b — Distribuiciao de temperatura ao longo da placa para diferentes tempos

As figuras 6.33.a-c comparam graficamente a solu¢do via Transformagao
Integral com 10 termos na expansdo, com a solugdo obtida pela rotina do Mathematica,
NDSolve, para trés diferentes tempos, onde se percebe uma pequena oscilagdo da solucao
transformada para o tempos muito pequenos e uma melhor aderéncia entre as duas solugdes

para tempos maiores.
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Tabela 6.15.a — Analise da convergéncia da expansio da temperatura para t=360s

Ordem x=0 X = XCONT™ Lx/3 X= Lx
1 23.468 23.820 26.937
2 23.982 26.360 17.496
3 26.268 32.951 31.916
4 38.054 44.944 12.185
5 52.347 44.710 27.229
6 54.572 42.529 22.997
7 54.460 42.676 22.755
8 53.699 43.367 24.260
9 52.918 43.452 22.791
10 52.486 43.141 23.653
11 52.374 43.001 23.414
12 52.453 43.097 23.247
13 52.619 43.208 23.586
14 52.776 43.187 23.267
15 52.866 43.107 23.454
16 52.883 43.086 23.419
17 52.845 43.129 23.341
18 52.783 43.164 23.470
19 52.724 43.149 23.351
20 52.691 43.117 23.420
21 52.687 43.111 23411
22 52.705 43.131 23.373
23 52.734 43.145 23.433
24 52.761 43.136 23.379
25 52.776 43.121 23.409
26 52.776 43.120 23.407
27 52.765 43.132 23.388
28 52.748 43.138 23.414
29 52.733 43.131 23.394
30 52.726 43.123 23.401
31 52.729 43.127 23.404
32 52.740 43.134 23.396
33 52.752 43.130 23.403
34 52.757 43.124 23.401
35 52.752 43.130 23.398
36 52.742 43.132 23.402
37 52.736 43.125 23.400
38 52.740 43.129 23.399
39 52.747 43.130 23.401
40 52.750 43.126 23.400
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Tabela 6.15.b — Analise da convergéncia da expansio da temperatura para t=1200s

Ordem x=0 X = XCONT™ Lx/3 X= Lx
1 23.540 24.268 30.706
24.425 28.643 14.440

3 27.663 37.975 34.856
4 42.716 53.293 9.6546
5 60.282 53.006 28.143
6 62.935 50.406 23.098
7 62.804 50.578 22.814
8 61.923 51.378 24.558
9 61.024 51.476 22.867
10 60.528 51.119 23.855
11 60.399 50.959 23.582
12 60.490 51.069 23.391
13 60.679 51.196 23.777
14 60.858 51.171 23.415
15 60.960 51.081 23.627
16 60.979 51.057 23.588
17 60.936 51.106 23.499
18 60.865 51.145 23.646
19 60.799 51.128 23.510
20 60.762 51.092 23.589
21 60.756 51.085 23.578
22 60.777 51.108 23.536
23 60.810 51.124 23.603
24 60.840 51.113 23.542
25 60.857 51.096 23.575
26 60.858 51.095 23.574
27 60.846 51.109 23.552
28 60.826 51.116 23.581
29 60.809 51.107 23.558
30 60.801 51.098 23.567
31 60.804 51.103 23.570
32 60.817 51.111 23.561
33 60.831 51.107 23.569
34 60.836 51.100 23.566
35 60.831 51.106 23.564
36 60.819 51.109 23.568
37 60.812 51.101 23.566
38 60.817 51.106 23.565
39 60.825 51.107 23.567
40 60.829 51.102 23.566
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Tabela 6.15.c — Analise da convergéncia da expansdo da temperatura para t=3600s

Ordem x=0 X = XCONT™ Lx/3 X= Lx
1 23.550 24.329 31.224
24.457 28.809 14.570

3 27.714 38.200 35.114
4 42.820 53.571 9.8255
5 60.436 53.283 28.367
6 63.095 50.676 23.309
7 62.964 50.849 23.025
8 62.081 51.650 24.772
9 61.180 51.749 23.078
10 60.684 51.391 24.068
11 60.555 51.231 23.794
12 60.645 51.341 23.603
13 60.835 51.468 23.990
14 61.014 51.444 23.627
15 61.116 51.353 23.840
16 61.135 51.329 23.800
17 61.093 51.378 23.711
18 61.021 51417 23.858
19 60.955 51.400 23.722
20 60.917 51.364 23.801
21 60.912 51.357 23.791
22 60.933 51.380 23.748
23 60.966 51.396 23.815
24 60.996 51.386 23.754
25 61.013 51.368 23.788
26 61.014 51.367 23.786
27 61.002 51.381 23.764
28 60.982 51.388 23.794
29 60.965 51.380 23.771
30 60.957 51.370 23.780
31 60.960 51.375 23.783
32 60.973 51.383 23.774
33 60.987 51.379 23.782
34 60.992 51.372 23.779
35 60.987 51.379 23.776
36 60.975 51.381 23.780
37 60.968 51.373 23.778
38 60.973 51.378 23.777
39 60.981 51.379 23.779
40 60.985 51.375 23.778
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Figura 6.33— Analise da convergéncia da temperatura via Transformacao Integral e Método das Linhas
(NDSolve) para (a) t=36s;  (b) t=360s; (c) t=3600s
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Como discutido nas analises inversas apresentadas nas subsecdes anteriores, a
ordem de truncamento assim como a escolha da func¢ao filtro na expansao das funcdes a serem
estimadas, determinam por sua vez o numero de parametros a serem estimados. A Tabela 6.16
abaixo sumariza a abordagem adotada no tratamento de cada func¢do e o numero de

parametros que estdo envolvidos na estimativa de cada propriedade k(x), w(x), do termo de
dissipagdo linear d(x)= "”f(% e do comportamento temporal do fluxo de calor f{z). Logo, o

numero total de parametros “NP” ¢ dado pela soma do numero de parametros empregados em

cada expansao e nos seus respectivos filtros:

P' =P UP! UP] UP/

(6.32)
Np=Np +Np,+Np, + N,
Np=(Np+N)+Nyp + N )+ Ny +NH+N,

A Tabela 6.17 apresenta a fungdo filtro escolhida para ser empregada no
processo de expansdo de cada um destes coeficientes da equagdo de energia, onde os valores

nos contornos (k .k, ,w,,w, €d,,d, ), presentes nos filtros, sio desconhecidos, de modo

que devem ser estimados juntamente com os coeficientes das expansodes. Para as propriedades
k(x) e w(x) optou-se por empregar um filtro linear na expansao das propriedades, uma vez que
este seria o filtro mais simples que homogeniza as duas condigdes de contorno referentes as
expansdes em autofungdes para uma variacdo qualquer das propriedades, de modo que a
expansdao em autofungdes seja uniformemente convergente. Ja para o termo de dissipagao
linear d(x), optou-se por usar um filtro mais informativo, na forma de uma fun¢do degrau,
considerando que se teria, numa situa¢do experimental real, a informagdo a priori de que o
fluxo de calor aplicado tem a forma de uma funcdo degrau, e que conseqiientemente o
coeficiente de transferéncia de calor tende a aproximar-se deste comportamento para o caso
de uma parede termicamente fina. O argumento “y”, presente na defini¢do desta funcao filtro

fornece a informagdo sobre o comportamento da fungdo na regido de transi¢do, e no caso do

presente estudo considerou-se um variagao bastante abrupta fazendo-se “y =500".
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Tabela 6.16 — Funcdes e parimetros a serem estimados

Funcdo Abordagem Adotada No. Parametros
Expansdo em P =[N,..k.k,,....k, ]
k(x) Autofungdes ) e i
Expansdo em P' =[N ., w,w,,..,w, ]
wx) Autofungdes T -
Expansdo em P/ =[N,.d, d,,...d, |
d(x) Autofungdes ’ oo "
1) Parametrizacdo P/ =[a, b]
Tabela 6.17 — Filtros utilizados nas expansodes das funcoes
Funcao Filtro Forma Funcional do Filtro W Parz}metros
no Filtro
k,—k
k(x) Linear —( . 7 ) x+k, N, =2
. (W\'L - WxO )
w(x) Linear 3 X+wy, N,=2
d . + de — de
d(g) | Degrau | " Exp[_ﬂx—:cow)] Nop =2

Realizou-se também uma analise de convergéncia das expansdes das fungdes
k(x), w(x) e d(x), de forma a identificar o nimero minimo de termos na série que garantisse a
convergéncia das mesmas. As figuras 6.34.a-c abaixo e as tabelas 6.18.a-c apresentam uma
andlise grafica e quantitativa da convergéncia para a condutividade térmica k(x) com 10
termos na série, para a capacidade térmica w(x), também com 10 termos na sua série, € para o
termo de dissipacdo linear d(x), com apenas 5 termos na série. Pode-se observar que para as
trés expansdes tem-se uma convergéncia de pelo menos 2 digitos significativos mesmo para
apenas 2 termos na série no caso de k(x) e w(x) ¢ uma convergéncia completa para d(x)

mesmo para um unico termo na série, isso porque seu filtro, a depender dos valores dos dois

patamares do degrau, carrega toda informacao sobre a propria fungao.
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Figura 6.34.a — Analise qualitativa da convergéncia da expansdo da Condutividade Térmica k(x);

Tabela 6.18.a — Analise quantitativa da convergéncia da expansiao da Condutividade Térmica k(x);

Ordem deTruncamento N, k[x=0.04] k[x=0.08]
1 3.873 1.029
2 3.480 1.421
3 3.480 1.421
4 3.536 1.365
5 3.569 1.398
6 3.569 1.398
7 3.557 1.386
8 3.550 1.393
9 3.550 1.393
10 3.554 1.390
exato 3.555 1.392

wilx]
28 x100 ¢

27 %100
26x100 F
25x100
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22x100
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Figura 6.34.b — Analise qualitativa da convergéncia da expansao da Capacidade Térmica w(x);

Tabela 6.18.b — Analise quantitativa da convergéncia da expansio da Capacidade Térmica w (x);

Ordem deTruncamento N, w[x=0.04] w[x=0.08]
1 2.5325x 10° 2.3743 x 10°
2 2.5324x 10° 2.3744 x 10°
3 2.5324x 10° 2.3744 x 10°
4 2.5324x 10° 2.3744 x 10°
5 2.5325x 10° 23745 x 10°
6 2.5325x 10° 2.3745 x 10°
7 2.5324 x 10° 2.3745 x 10°
8 2.5324 x 10° 2.3745x 10°
9 2.5324 x 10° 2.3745x 10°
10 2.5324 x 10° 2.3745x 10°
exato 2.5324 x 10° 2.3745x 10°
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Figura 6.34.c — Analise qualitativa da convergéncia da expansao de d(x);

Tabela 6.18.c — Analise quantitativa da convergéncia da expansio de d(x);

Ordem deTruncamento N, d[x=0.04] d[x=0.08]
1 16174.5 5728.61
2 16174.5 5728.61
3 16174.5 5728.61
4 16174.5 5728.61
5 16174.5 5728.61
exato 16174.5 5728.61

Antes de se iniciar o procedimento de estimativa realizou-se ainda a analise do
determinante da matriz de informagdo para diferentes numeros de sensores e parametros
envolvidos na estimativa.

As Tabelas 6.19.a-c abaixo apresentam resultados para diferentes nimeros de
sensores que poderiam ser considerados em um procedimento experimental real, usando por
exemplo termografia por infravermelho como técnica de medida de temperatura. Logo, a
depender da capacidade do equipamento disponivel poderia se ter um grande volume de
informacao espacial, chegando a mais de 500 mil dados experimentais para um experimento
com 3 000 segundos de duragao.

Neste contexto, a abordagem proposta nesta subsec¢do, de realizar a estimativa
dos parametros no campo transformado, torna-se mais evidentemente desejavel, a partir da
colapsacdo da informagdo espacial através do processo de transformacao integral dos dados
experimentais, levando a uma significativa redug¢ao de custo computacional a medida que se
almeje utilizar toda a informacao espacial disponivel no procedimento de estimativa.

Para uma avaliacio do numero de parametros que estariam envolvidos nas
estimativas, realizou-se a analise do determinante da matriz de informagao para trés diferentes

numeros de parametros, Np=11, 15 e 19, sendo que esta variagdo no numero total de
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parametros deve-se somente a variagdo do nimero de parametros utilizados nas expansdes de
k(x) e w(x), uma vez que como apresentado anteriormente, para d(x) ¢ necessario apenas um

termo na sua série para garantir a convergéncia deste coeficiente.

A Tabela 6.20, resume as escolhas do nimeros de pardmetros que foram
tratados nesta analise de sensibilidade e as figuras 6.35.a-c ilustram graficamente o
comportamento das expansdes dos coeficientes a estimar quando comparadas as fungdes

exatas para as diferentes ordens de truncamento das séries.

Tabela 6.19.a — Nimero de sensores e freqiiéncia de medidas no tempo

No. Sensores Ax
61 2 mm
121 Imm
241 500 um
481 250 um
961 125 pm
1921 62.5 um
Tempo final Exp. At
3600s 10s

Tabela 6.19.b — Niimero de Dados Experimentais

No. Medidas no tempo
300
No. Sensores No. Dados Experimentais
61 18 300
121 36 300
241 72 300
481 144 300
961 288 300
1921 576 300

Tabela 6.20 — Nimero de parametros avaliados na analise de sensibilidade do problema

Funcio No. Parametros
k(x) Np=2+1 Npi =243 Npi =2+5
w(x) Np,=2+1 Np,, =243 Np,, =2+5
d(x) di:2+1 di =2+1 di =2+1
ft) NF=2 Ny=2 Ny=2
No. Total de Parametros
Np= \ 11 \ 15 19

153




kIx]

—  Exato
Npk:2+1
—  Expandido
X
000 002 004 006 008 010 012
wix]
28 x100
6
27 %10 wix]
26 %100
25 %100 —  Bxato
NPW_2+ 1 24 x10° )
23106 —  Expandido
22 x100
000 002 004 006 008 010 012"
(a)
kiIx]
—  Exato
N, Pk:2+3
—  Expandido
. . . . , -
000 002 004 006 008 010 012
wix]
28 x100
6
27 x10 Wikl
26 x 100
25 %100 —  Exato
Np,=2+3 24 x100
—  Expandido
23 x100 B
22 x100
X
000 002 004 006 008 010 012
(b)
kix]
— Exato
N pk:2+5
—  Expandido
. . . . , -
000 002 004 006 008 010 012
wix]
28 x100
6
27 %10 wix]
26 x 108
25 %100 —  Exato
]\]Pw:2+5 24 x108 .
—  Expandido
23 x108 Xp
22 x100

X
000 002 004 006 008 010 012

(©)
Figura 6.35.a-c — Comportamento dos coeficientes em fung¢io do niimero de parimetros adotados na
analise de sensibilidade
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A figura 6.36.a e a tabela 6.21.a apresentados a seguir ilustram o
comportamento do determinante da matriz de informagio J'J, para o caso de uma estimativa
envolvendo 15 parametros, ou seja, 3 termos na expansdes de w(x) e k(x) e 1 termo apenas na
expansao de d(x), somados aos 6 parametros dos trés filtros e os 2 parametros de f{?), para
diferentes quantidades de dados experimentais. Como esperado, tem-se um aumento do
determinante a medida que se tem mais informagdo disponivel, ou seja, mais dados
experimentais, sendo a curva com valores mais altos (azul marinho) aquela correspondente a
481 sensores ¢ a curva com valores mais baixos (vermelha) a situacdo com apenas 61
sensores, onde percebe-se o ganho de mais de 10 ordens de grandeza no valor do
determinante para um experimento com 300 medidas temporais com uma freqiiéncia fixa de
10 segundos.

A figura 6.36.b ¢ a tabela 6.21.b apresentam o comportamento do determinante
da matriz de sensibilidade, quando varia-se o nimero de parametros envolvidos na estimativa,
para um numero fixo de medidas e sensores disponiveis. A curva com valores mais baixos
(cyan) representa uma estimativa com 19 parametros enquanto que a curva mais acima (azul
marinho) diz respeito a estimativa com 11 parametros. Pode-se perceber que para um
experimento com 300 medidas tem-se um decréscimo de mais de 20 ordens de grandeza

quando aumenta-se a estimativa de 11 para 19 parametros.

detts71)

10-39F

10759

T R L e 0 Medidas
50 100 150 200 250 300

Figura 6.36.a — Analise grafica do determinante da matriz de informacao
Curva azul: 481 sensores; Curva cyan: 241 sensores; Curva preta: 121 sensores;
Curva vermelha: 61 sensores
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Tabela 6.21.a — Analise quantitativa do determinante da matriz de informacio

NT=10 Np=15

No. Sensores Determinante
120 medidas 200 medidas 300 medidas
61 5.108 180 2. 6.661 x 10’
121 665 9 6.041 x 10° 1.113 x 10"
241 1.983 x 10 1.794 x 10™ 3.353x 10'°
481 6.087 x 10™ 5.626 x 10™ 1.044 x 10

detts 71
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Figura 6.36.b — Analise grafica do determinante da matriz de informacéo
Curva azul: 11 parametros; Curva vermelha: 15 parimetros;

Curva cyan: 19 parametros

Tabela 6.21.b — Anilise quantitativa do determinante da matriz de informacio

No. Sensores = 241 NT=10
No. Parametros TR erstiink il
120 medidas 200 medidas 300 medidas
11 3.743 x 10" 3.356 x 10% 1.589 x 10**
15 1.983 x 10 1.794 x 10" 3.353x 10'°
19 0.000147 8.455 4377.5

Na geracdo dos dados experimentais simulados utilizou-se 50 termos na

expansao da temperatura e 10 termos nas expansdes de k(x), w(x) e d(x) e considerou-se a
geragdo de 86760 dados de temperaturas aquisitadas por 241 sensores, distribuidos
igualmente espagados ao logo do comprimento da placa, e tomadas a uma freqiiéncia de 10
segundos ao longo de uma hora de experimento, considerando-se dois possiveis erros

experimentais, 0.1° ¢ 0.5°C. Como critério de validacao do cddigo computacional construido e
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da abordagem inversa aqui proposta, analisou-se inicialmente as estimativas para um caso
com um erro reduzido de 0.01°C e ordens mais baixas e iguais nas expansdes dos dados
experimentais gerados e na solucdo inversa, N7T=10, N;=3, N,,=3, e N/~1 termos na expansao,
respectivamente, para 7(x,t), k(x), w(x) e d(x).

Depois de geradas as temperaturas experimentais, iniciou-se entdo o
procedimento de transformagdo integral destes dados, definindo-se um par transformada-
inversa (egs.6.33.a,b), e integrando-se espacialmente os dados experimentais ao longo de todo
o dominio a cada tempo. Como os dados a serem integrados sdo discretos, realizou-se uma

interpolagdo que apresenta-se como uma aproximacao do seu comportamento espacial.

Par Transformada-Inversa:
L

Transformada Kp,i(z) = J' WO, (x) [Texp (x,)-T,. ] dx (6.33.2)
0
Ni -
Inversa T,,(x,0)=T,, + Z (0T, () (6.33.b)
i=0

A tabela 6.22 abaixo apresenta a andlise realizada para investigar o erro
relativo em conseqiliéncia do procedimento de interpolagdo por segmentos, para o caso de
validacdo onde a incerteza padrao experimental ¢ de 0.01°C e se tem 10 termos na expansao
da temperatura. Analisou-se para este caso a influéncia da ordem da interpolagdo: ordem 1
(reta) e ordem 3 (cubica), usando diferentes nimeros de sensores. Para tanto, determina-se o
maximo erro relativo encontrado em todas as medidas ao longo do tempo (200 medidas), para
cada campo transformado (10 campos), em fun¢do das escolhas de ordem de interpolagdo e
numero de sensores empregado. Observa-se entdo que o nimero de sensores empregado pode
reduzir este erro maximo de cerca de 4% a 0.3%, com o aumento do numero de sensores de
61 para 241 para a interpolagdo de primeira ordem, enquanto o erro maximo cai de 0.2% até
menos que 0.007% , quando se aumenta o niumero de sensores na interpolagdo de terceira
ordem. Claramente, a utilizagdo da aproximagdo por cubicas oferece uma aproximagao muito
melhor, com resultados comparaveis quando se utiliza apenas 61 sensores, em relagdo ao
resultado com 241 sensores para a aproximagao de primeira ordem. Também na Tabela 6.22

ilustra-se que o ganho de precisdo ¢ insignificante ao se aumentar o numero de iteracdes de 20
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para 40 no procedimento de integracdo numérica, bem como requerendo-se maior precisdao
relativa, de 6 para 8 digitos significativos, na funcao Nintegrate do Mathematica.

Nas solugdes inversas que serdo apresentadas a seguir, os dados experimentais
foram transformados integralmente utilizando 241 sensores, uma interpolagdo de terceira
ordem, um nimero maximo de 20 iteragdes na integragdo numérica, € uma precisdo de 6
digitos significativos. Estes resultados foram também covalidados com o procedimento de

integragdo semi-analitica de expansdes em autofungdes [Cotta et al., 2009].

Tabela 6.22 — Analise do Erro Relativo na Integracio Numérica dos Dados Experimentais

No. Medidas = 200
7::xp,i (t) - T::alc,i (t)
7::alc,i (t)

Erro relativo = Abs(

No. Iteracoes =40
Precisdo = Default = 6 digitos

Ordem da No. Sensores
Interpolagao 61 121 241
Espacial
1 0.0443 0.0112 0.00280
3 0.00198 0.000201 0.0000653

No. Sensores = 241

Sl di‘ No. Iteracoes 20 No. Iteracoes 40 No. Iteracoes 40
Interpolacao gy Aar R - e -
. Precisao: 6 digitos Precisiao: 6 digitos | Precisao: 8 digitos
Espacial
1 0.00280 0.00280 0.00279
3 0.0000653 0.0000653 0.0000654

Uma vez realizada a transformacgdo integral das temperaturas experimentais
(considerando 241 sensores disponiveis espacialmente) tem-se uma reducao consideravel do
numero de dados experimentais a serem utilizados na solugdo inversa. As Tabelas 6.23.a,b
apresentam de forma resumida uma comparagdo da redugdo deste volume de dados. A Tabela
6.23.a mostra para a estimativa no campo de temperatura, com um numero fixo de 241
medidas espaciais, o numero de dados experimentais relativamente alto, de acordo com o
niumero de medidas no tempo. A Tabela 6.23.b mostra a redugdo conseguida no numero de

dados experimentais totais com a transformagdo integral, utilizando temperaturas fornecidas

158



por 241 sensores, para trés ordens de truncamento diferentes na expansdo da temperatura.
Tem-se por exemplo, uma reducdo de mais de 95% ao se trocar a estimativa no campo da
temperatura usando 200 medidas no tempo (48200 dados experimentais) por uma estimativa
no campo transformado com 10 termos na série para as mesmas 200 medidas temporais (2000

dados experimentais).

Tabela 6.23.a — Anadlise do nimero de dados experimentais na estimativa no campo de temperaturas

No. Sensores No. Medidas No. Dados Experimentais
no tempo
120 25 680
241 200 48 200
300 72 300

Tabela 6.23.b — Analise do niimero de dados experimentais na estimativa no campo transformado
No. Termos na Expansiao | No. Medidas

No. Dados Experimentais

da Temperatura no tempo
120 1200
NT=10 200 2 000
300 3000
120 2400
NT=20 200 4 000
300 8 000
120 4 800
NT=40 200 8 000
300 12 000

Através da andlise do determinante da matriz de informagao para as estimativas
no campo transformado ilustrada na figura 6.37 e na tabela 6.24 abaixo, tem-se que o aumento
do numero de termos na série leva a um aumento no valor do determinante. Com o aumento
do numero de termos na série de 10(curva vermelha) para 20 (curva preta) e para 40 (curva
azul) tem-se que o numero de dados a serem tratados na solug¢do inversa vai tendo seu valor
dobrado; todavia, este aumento, para um numero fixo de medidas no tempo, representa um
aumento consideravel do custo computacional mas nao representa um aumento significativo
do valor do determinante. Sendo assim, a escolha do nimero de termos na série deve ser feita
de maneira a ser minima, garantindo apenas que o erro da expansao seja menor do que o erro

experimental.
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Figura 6.37 — Analise de sensibilidade para a estimativa no campo transformado
Curva azul: NT=40; Curva preta: NT=20; Curva vermelha: N7T=10

Tabela 6.24 — Analise quantitativa do determinante da matriz de informacao
no campo transformado

No. Sensores usados na Transformacio Integral = 241
Np=15
No. Medidas Determinante
no tempo NT=10 NT=20 NT=40
120 9.34x10" 3.50x10"° 2.17x10"
200 4.19x10" 1.69x10* 1.09x10*
300 8.35x10" 3.63x10* 2.80x10*

Neste contexto, as estimativas que se seguiram foram realizadas com 10 termos
na expansao da temperatura, 3 termos nas expansoes de k(x) e w(x), e 1 termo na expansao de
d(x). A tabela 6.25 abaixo resume essas informacdes sobre o numero de termos empregados

nas expansoes da geragao dos dados experimentais simulados.

160



Tabela 6.25. — Geracio dos dados experimentais simulados

Dados Experimentais Simulados No. Termos na Expansao
T(x,t) 50
k(x) 10
w(X) 10
d(x) 10

Estimativa no Caso de Validacao
NT=10 ‘ Incerteza Temp.= 0.01°C

Estimativas com Erro Experimental
Incerteza Exp.= 0.5°C

NT =10
Funcao No. Parametros No. Total de Parametros
k(x) N=2+3
w(X) N,=2+3 B
d(x) N2t Np=15
f(t) N=2
No. Medidas No. Sensores No. Dados Experimentais
360 241 86 760

As figuras 6.38 e 6.39 ilustram a distribui¢do de temperatura experimental ao
longo do tempo para diferentes posi¢des (a) e ao longo da placa para diferentes tempos (b),
para as duas incertezas padrao experimentais citadas anteriormente.

No contexto da estimativa Bayesiana que ¢ adotada na presente proposta de
solugdo de problema inverso, tem-se entdo a reformulagdo da verossimilhanga uma vez que os
dados experimentais sdo agora tratados como temperaturas transformadas, como apresentado
nas equacgdes (6.34.a,b) a seguir. Neste processo de estimativa no campo transformado tem-se
a comparacao das temperaturas experimentais ¢ calculadas transformadas, para cada campo
transformado, ao longo de todas as medidas temporais, ponderadas por um desvio padrao

experimental que varia para cada campo transformado.

Verossimilhanga l No.Sensores No.Medidas 2
no campo de * EXP[_E Z Z ?(Tcxp(xs,tm)_Tcalc(xs,tm)) I (6.34.a)
Temperatura ’ " s
Verossimilhanga | L No-Mledidas ] 2
no campo < Expl _EZ 2 ;(Texp,i (tm)_Tcalc,i(tm)) ] (6.34.b)
Transformado ' " !
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Figura 6.38.a — incerteza 0.01°C
Distribuiciio de temperatura ao longo do tempo para diferentes posi¢des da placa
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Figura 6.38.b — incerteza 0.01°C
Distribuiciio de temperatura ao longo da placa para diferentes tempos
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Figura 6.39.a — incerteza 0.5°C
Distribuicao de temperatura ao longo do tempo para diferentes posicoes da placa
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Figura 6.39.b — incerteza 0.5°C
Distribuicio de temperatura ao longo da placa para diferentes tempos

As figuras 6.40 ¢ 6.41 ilustram a distribui¢do de temperatura experimental
transformada ao longo do tempo para cada campo transformado, para as duas incertezas
padrao experimentais analisados 0.01°C, 0.5°C, respectivamente. Percebe-se por estas figuras

a importancia mais significativa dos primeiros cinco campos da expansdo. As tabelas 6.26 ¢
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6.27 apresentam os valores das temperaturas transformadas médias para o regime permanente,
os desvios padrao das temperaturas experimentais transformadas e os desvios percentuais com
relacdo as respectivas temperaturas transformadas médias. Tais desvios foram calculados
como sendo os desvios médios das temperaturas para as ultimas 50 medidas no tempo (entre

3100s e 3600s) para cada campo transformado, ja em regime permanente.

Texp
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:égl.?a—-v@_-!_‘!!m_g!_!!s__ 0N WAV 7 AT A YWNE ) AWGYOYL!q 00 Y 2 .
o 05-+0-b-H-CHO—---SHBOHH-HE0-S0IB56—H)  No Medidas
L O\:N 250 o Q o 0ol 0@ QQ QQ b5 (0o Q Q Q 0
—2000 - M 6—6—66—66—06—h6—0666

Figura 6.40 — incerteza experimental 0.01°C
Distribuiciio de temperatura transformada ao longo do tempo para as diferentes ordens da série

Tabela 6.26. — Analise da Temperatura Experimental Transformada para o incerteza experimental 0.01°C

Ordem i exp.i o, o, %
1 32432 0.833 0.0257
2 6293.3 0.474 0.00754
3 8151.7 0.658 0.00808
4 11995.1 0.540 0.00451
5 9540.8 0.572 0.00600
6 -1790.7 0.604 0.0337
7 458.79 0.553 0.120
8 -1071.4 0.572 0.0534
9 47.823 0.546 1.141
10 136.94 0.557 0.407
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Figura 6.41- incerteza experimental 0.5°C

Distribuiciio de temperatura Transformada ao longo do tempo para as diferentes ordens da série

Tabela 6.27. — Analise da Temperatura Experimental Transformada para o incerteza experimental 0.5°C
Ordem i (i o, o, %
1 3244 4 28.43 0.876
2 6305.8 25.82 0.409
3 8174.3 25.08 0.307
4 11998.3 26.22 0.219
5 9506.5 27.86 0.293
6 -1800.2 23.75 1.320
7 460.42 22.84 4.961
8 -1037.4 25.48 2.457
9 70.128 25.25 36.00
10 157.64 26.73 16.95

Cinco casos teste, sumarizados na tabela 6.28, foram estudados de modo a

validar e demonstrar a metodologia de solugdo apresentada pelo presente trabalho. Os casos 1,

2 e 3 foram escolhidos para validagdo do algoritmo implementado, uma vez que o erro

experimental considerado nestes casos foi de 0.01°C e o numero de termos nas expansdes na

geragdo dos dados experimentais e na solu¢ao do problema inverso para estes trés casos foram

escolhidos iguais: 10 termos na expansao da temperatura, 3 termos nas expansdes de w(x) e

k(x), e 1 termo na expansdo de d(x), sendo que para o caso | a estimativa se da no campo de

temperatura e para os casos 2 € 3 as estimativas se ddo no campo transformado. Para os

demais casos as estimativas foram feitas no campo transformado e os dados experimentais
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simulados foram gerados com 50 termos na expansao da temperatura e 10 termos nas
expansoes de w(x), k(x) e d(x), enquanto a solugdo do problema inverso foi construida com 10
termos na expansao da temperatura, 3 termos nas expansdes de w(x) € k(x) e 1 termo na
expansao de d(x).Como discutido nas analises inversas apresentadas anteriormente, a ordem
de truncamento determina o numero de parametros envolvidos na estimativa. Logo, o nimero
total de parametros “Np” € dado pela soma do numero de termos empregados na expansao de
cada coeficiente, seus respectivos filtros e os coefiencietes presentes na parametrizagdo da

funcao temporal do fluxo de calor.

P =(kygs kg ok ey e sl )o(Wegs Wog s W s 3 Wy )o(oodyodyodssnnndsnndy ), (a,B)

xL >

Em todos os casos utilizou-se de priori ndo-informativa (Uniforme) na
estimativa do parametro “a e b”’; para os demais parametros analisou-se através dos casos, a
influéncia na escolha de uma priori Gaussiana centrada nos valores esperados para cada um
dos parametros com um desvio padrao de até 34% do valor da sua respectiva média. A tabela
6.28 traz a informacdo da escolha das prioris para cada caso, onde a escolha por prioris

normais ¢ representada pela letra “N” e as prioris uniformes pela letra “U”.

Tabela 6.28- Estimativas Realizadas

Casos de Validacao: Incerteza Experimental de 0.01°C
No. No. Priori
LHE LR W Medidas Sensores kxo,ka,k = Wegs Wy, W, —d, g, dead —a,b
1 Temperatura | 10 120 61 N,N,U- N,N,U- NN, U -U,U
Transfomado | 10 200 241 N,N,U- N,N,U- N,N,U -U,U
3 Transfomado | 10 200 241 U,U,U- U, U, U- N,N,U -U,U
Casos com Incerteza Experimental de 0.5°C
No. No. 3 Priori 3
LH e W Medidas Sensores Kk .k .k, —w,,w,,w, —d.d, ,d, —ab
4 Transfomado | 10 200 241 N,N,U- NN, U- NN, U -U,U
5 Transfomado | 10 200 241 U,U,U-U,U,U- N,N,U -U,U

A seguir apresenta-se nas tabelas 6.29 a 6.33 os resultados encontrados nas
estimativas para os casos da tabela 6.28 acima. Os trés casos de validagdo recuperam, como
esperado, o comportamento dos coeficientes originais. Todavia percebe-se uma melhor

estimativa dos parametros para os casos 2 ¢ 3 que ocorrem no campo transformado. Estes
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resultados confirmam a colapsagdo da informagao espacial nos campos transformados como
uma alternativa interessante nos procedimentos de solugdo de problemas inversos,
principalmente nos casos em que se tem disponivel uma grande quantidade de medidas
espaciais, como no caso das técnicas de medi¢do por camera de infravermelho.Para cada um
dos casos analisados, tem-se nas tabelas de 6.29 a 6.330 as informagdes sobre os dados de
entrada das estimativas, como o valor exato dos parametros, o intervalos de maximo ¢ minimo
de procura para cada parametro, assim como os valores iniciais utilizados no procedimento de
solucdo inversa. As tabelas 6.29 a 6.33 apresentam em seguida os valores estimados para cada
caso, assim como os respectivos intervalos com 99% de confianga para cada parametro.

As figuras 6.42.a-e a 6.45.a-¢ que se seguem apresentam para os Cinco casos
uma comparagdo entre as fungdes exatas (curva cyan) e as fungdes estimadas, reconstruidas a
partir dos parametros estimados por cada caso (curva preta), assim como 0s seus respectivos
intervalos de 99% de confianga (curvas azul e vermelha) e em pontilhado os limites adotados
como maximos e minimos no procedimento de estimativa destas fun¢des. As figuras 6.46.a-f
a 6.50.a-f apresentam uma comparagao entre as temperaturas experimentais e as temperaturas
calculadas a partir das estimativas encontradas para cada caso. E logo em seguida, tem-se as
figuras que ilustram os respectivos residuos encontrados em cada uma dessas comparagdes
(Figs. 6.51 a 6.55), onde pode-se observar, para diferentes posicdes e diferentes tempos
residuos menores que 1°C. Para todos os casos analisados percebe-se uma excelente
concordancia entre as temperaturas estimadas e as temperaturas experimentais resultando nos
baixos residuos que sdo apresentados.

Comparando os casos 4 ¢ 5 com erro experimental de 0.5C, observa-se que se
tem melhores estimativas para o caso do emprego das prioris normais, hipdtese essa que
apresenta-se bastante razoavel na maioria das situagdes reais uma vez que quase sempre se
tem alguma informagdo disponivel a priori sobre as propriedades do material em questdo
através de algum método de medida diretamente da propria propriedade ou de maneira
indireta como no caso da concentragdo de particulas, por exemplo. Todavia, os resultados
apresentados para o caso 5 para uma priori uniforme demonstram que mesmo para uma
situacdo onde pouco ou nada se sabe sobre as propriedades de um material, pode-se ainda
obter uma estimativa razoavel do seu comportamento espacial e dos seus valores numéricos

com o emprego da metodologia proposta pelo presente trabalho.
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Tabela 6.29 - CASO 1

Dados de Entrada das Estimativas

P Priori Exato Min Max Inicial
k. Normal 9.078 0.218 14.525 9.986
k, Normal 0.545 0.218 14.525 0.5995
k, Uniforme -0.6677 -4.462 4.462 -0.7345
k, Uniforme -0.1111 -1.1155 1.1155 -0.12212
k, Uniforme -0.04091 -1.4873 1.4873 -0.04500
W, Normal 2.701 x10° 890560. 4.321x10° 2.971 x10°
w, Normal 2.226x10° 890560. 4.321x10° 2.449 x10°
W, Uniforme -2894.7 -1.070 x10° 1.070x10° -3184.1
, Uniforme -34.942 -267502. 267502. -38.436
W, Uniforme -107.57 -356669. 356669. -118.33
h, Normal 26.620 13.310 53.2406 29.282
h, Normal 5.7286 2.8643 11.457 6.3015
h, Uniforme 0. -3.x10"? 3.x107"2 0.

a Uniforme 721.65 0 1237.1 793.81
b Uniforme 0.005 0 0.1 0.0055

Dados de Saida das Estimativas

P Exato Estimado ICmin-99% ICmax-99%
k., 9.078 10.281 10.240 10.322
k, 0.545 0.592 0.591 0.593

k, -0.668 -0.804 -0.807 -0.801

k, -0.111 -0.147 -0.149 -0.146

k, -0.0409 -0.0494 -0.0508 -0.0479
W, 2.7009 x10° 2.872 x10° 2.856 x10° 2.889 x10°
w, 2.2264 x10° 2.308 x10° 2.292x10° 2.323 x10°
, -2894.7 -3025.4 -3055.5 -2995.4

W, -34.942 -38.779 -39.201 -38.357
i -107.57 -124.94 -125.45 -124.43
h, 26.620 26.503 26.491 26.516

h, 5.7286 6.023 5.992 6.053

h, 0. -1.31 x10™" -1.77x107 -8.51 x107™
a 721.65 701.08 698.91 703.25

b 0.005 0.00510 0.00508 0.00511
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Tabela 6.30 - CASO 2

Dados de Entrada das Estimativas

P Priori Exato Min Max Inicial

k. Normal 9.078 0.463 10.440 8.616

k, Normal 0.545 0.463 10.440 0.503

k, Uniforme -0.668 -3.111 3.111 -0.726

k, Uniforme -0.111 -0.778 0.778 -0.108

k, Uniforme -0.0409 -1.037 1.037 -0.0443
W, Normal | 2.701x10° 1.892x10° | 3.106 x10° 2.686 x10°
w, Normal 2.226x10° 1.892x10° 3.106 x10° 2.282 x10°
W, Uniforme -2894.7 -378487.0 378487.0 -2810.4

, Uniforme -34.94 -94621.8 94621.8 -33.04

W, Uniforme -107.57 -126162.0 126162.0 -104.67

h, Normal 26.62 13.31 53.24 26.60

h, Normal 5.729 2.864 11.457 6.232

h, Uniforme 0. -3.x107"2 3.x107"? 0.

a Uniforme 721.65 0 1237.1 700.89

b Uniforme 0.005 0 0.1 0.00521

Dados de Saida das Estimativas
P Exato Estimado ICmin-99% ICmax-99%

k., 9.0780 9.1639 9.1503 9.1776
k, 0.545 0.5068 0.5058 0.5078

k, -0.6677 -0.6663 -0.6680 -0.6646
k, -0.1111 -0.1122 -0.1134 -0.1111
k, -0.04091 -0.03869 -0.03918 -0.03819
W, 2.7009 x10° 2.7199 x10° 2.7172 x10° 2.7226 x10°
w, 2.2264 x10° 2.2637 x10° 2.2581 x10° 2.2693 x10°
w, -2894.68 -2706.4 -2746.6 -2666.2
W, -34.942 -33.943 -34.148 -33.739
, -107.57 -104.30 -104.87 -103.74
h, 26.620 26.595 26.588 26.603
h, 5.7286 5.7903 5.7743 5.8063

h, 0. 6.494 x10™° -2.392x10™ 3.691 x10™"
a 721.65 718.71 717.90 719.52

b 0.005 0.00501 0.005007 0.005022
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Tabela 6.31 - CASO 3

Dados de Entrada das Estimativas

P Priori Exato Min Max Inicial
k. Uniforme 9.0780 0.218 14.525 9.9858
k, Uniforme 0.545 0.218 14.525 0.5995
k, Uniforme -0.6677 -4.462 4.462 -0.7345
k, Uniforme -0.1111 -1.115 1.115 -0.122
k, Uniforme -0.04091 -1.487 1.487 -0.0450
W, Uniforme 2.701 x10° 890560. 4.321x10° 2.971 x10°
w, Uniforme 2.226x10° 890560. 4.321x10° 2.449x10°
W Uniforme -2894.68 -1.070 x10° 1.070x10° -3184.15
, Uniforme -34.942 -267502. 267502. -38.436
W, Uniforme -107.57 -356669. 356669. -118.33
h, Normal 26.620 13.310 53.241 29.282
h, Normal 5.7286 2.8643 11.457 6.3015
h, Uniforme 0. -3.x10"? 3.x10"? 0.

a Uniforme 721.65 0 1237.1 793.81
b Uniforme 0.005 0 0.1 0.0055

Dados de Saida das Estimativas

P Exato Estimado ICmin-99% ICmax-99%
k., 9.0780 9.1212 9.0536 9.1888
k, 0.545 0.5717 0.5655 0.5779

k, -0.6677 -0.6756 -0.6840 -0.6673

k, -0.1111 -0.1113 -0.1132 -0.1093
k, -0.04091 -0.04078 -0.04118 -0.04038
W, 2.701 x10° 2.701x10° 2.692 x10° 2.710 x10°
w, 2.226 x10° 2.252 x10° 2.244 x10° 2.259 x10°
w -2894.68 -3130.3 -3140.6 -3120.1
, -34.942 -38.947 -39.102 -38.792
, -107.57 -120.98 -121.47 -120.50
h, 26.620 26.615 26.607 26.624
h, 5.7286 5.7642 5.7227 5.8057

h, 0. 43274 x10™ | -6.9097 x10™* -1.74509 x10™
a 721.65 720.12 718.81 721.42

b 0.005 0.00500 0.00499 0.00501
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Tabela 6.32 - CASO 4

Dados de Entrada das Estimativas

P Priori Exato Min Max Inicial
k. Normal 9.0780 0.463 10.440 8.6157
k, Normal 0.545 0.463 10.440 0.5028
k, Uniforme -0.6677 -3.111 3.111 -0.7256
k, Uniforme -0.1111 -0.778 0.778 -0.1082
k, Uniforme | -0.04091 -1.037 1.037 -0.04433
W, Normal 2.701x10° 1.892 x10° 3.106 x10° 2.686 x10°
w, Normal 2.226x10° 1.892x10° 3.106 x10° 2.282 x10°
W Uniforme | -2894.68 -378487.0 378487.0 -2810.39
w, | Uniforme -34.942 -94621.8 94621.8 -33.045
W, Uniforme -107.57 -126162.0 126162.0 -104.67
h., Normal 26.620 13.310 53.241 26.601
h, Normal 5.7286 2.8643 11.457 6.2323
h, Uniforme 0. -3.x10™"2 3.x10"? 0.
a Uniforme 721.65 0 1237.1 700.89
b Uniforme 0.005 0 0.1 0.00521
Dados de Saida das Estimativas
P Exato Estimado ICmin-99% ICmax-99%
k., 9.0780 9.3645 9.3143 9.4147
k, 0.545 0.5186 0.5165 0.5206
k, -0.6677 -0.6742 -0.6783 -0.6701
k, -0.1111 -0.1015 -0.1024 -0.1006
k, -0.04091 -0.02804 -0.02962 -0.02647
W, 2.701 x10° 2.791x10° 2.771 x10° 2.812 x10°
w, 2.226 x10° 2.290 x10° 2.284 x10° 2.296 x10°
w, -2894.68 -2789.49 -2823.22 -2755.76
, -34.942 -31.272 -31.595 -30.950
, -107.57 -107.78 -111.17 -104.39
h, 26.620 26.551 26.540 26.562
h, 5.7286 5.9186 5.8944 5.9429
h, 0. 1316 x10"° 9.167 x10™* 9.4302 x10™*
a 721.65 710.44 707.54 713.34
b 0.005 0.00505 0.00503 0.00506
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Tabela 6.33 - CASO 5

Dados de Entrada das Estimativas

P Priori Exato Min Max Inicial
k., Normal 9.0780 0.463 10.440 8.6157
k, Normal 0.545 0.463 10.440 0.5028
k, Uniforme -0.6677 3111 3.111 -0.7256
k, Uniforme -0.1111 -0.778 0.778 -0.1082
k, Uniforme -0.04091 -1.037 1.037 -0.04433
W, Normal 2.701 x10° 1.892 x10° 3.106 x10° 2.686x10°
w, Normal 2.226x10° 1.892x10° 3.106 x10° 2.282 x10°
w, Uniforme -2894.68 -378487.0 378487.0 -2810.39
W, Uniforme -34.942 -94621.8 94621.8 -33.045
W, Uniforme -107.57 -126162.0 126162.0 -104.67
h, Normal 26.620 13.310 53.241 26.601
h, Normal 5.7286 2.8643 11.457 6.2323
I Uniforme 0. -3.x10™"° 3.x10™"° 0.
a Uniforme 721.65 0 1237.1 700.89
b Uniforme 0.005 0 0.1 0.00521
Dados de Saida das Estimativas
P Exato Estimado ICmin-99% ICmax-99%
k., 9.0780 10.404 10.373 10.434
k, 0.545 0.7424 0.6844 0.8004
k, -0.6677 -0.8135 -0.8204 -0.8065
k, -0.1111 -0.1197 -0.1239 -0.1155
k, -0.04091 -0.03674 -0.03803 -0.03544
W, 2.701x10° 3.093 x10° 3.066 x10° 3.119 x10°
w, 2.226 x10° 2.258 x10° 2.232x10° 2.284 x10°
W, -2894.68 -2823.6 -2868.9 -2778.3
W, -34.942 -32.303 -33.446 -31.160
W, -107.57 -110.12 -111.94 -108.30
h, 26.620 26.434 26.430 26.439
h, 5.7286 6.2039 6.1981 6.2097
h, 0. -4.700 x10™ -1.397 x107"? 4574 x10™
a 721.65 677.37 674.51 680.23

b 0.005 0.00519 0.00517 0.00520
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Figura 6.51.a-d — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,
para 4 posicoes diferentes
Figura 6.51.e-h — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do
comprimento da placa, para 4 tempos diferentes
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Figura 6.52. CASO 2
Figura 6.52.a-d — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,
para 4 posicoes diferentes
Figura 6.52.e-h — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do
comprimento da placa, para 4 tempos diferentes

187



x = 1.45cm

residuos[°C]

0.01

-001

-0.02

(a)
x=5.95cm

residuos[°C]
0.04

003 |
002}

001}

M V | 500 1000 1500 2000
()
t=250.s
residuos[°C]
001 -
002
-001
-002
(e)
t =1000.s
residuos[°C]
003 |
002
001 |
M)\MN 1l ‘ ‘
*WW o] om ooe oo G Moz X!
(®

x=3.95cm
residuos[°C]
002
001

VW' 500 1000 1500 2000 ™
~001
(b)

x=12.cm
residuos[°C]
0A010:

.nl I “J d Hh“”l“nlﬂ“n‘,l.x.l‘ ) b
,l, e wr"”l' ” ”'

-0.005 |-

0010

(d)
t = 660.8
residuos[°C]
0.03
0.02
001

WW " 004 0.06 0.08 1 o Mm!
—001 F

t =2000.s
residuos[’C]
0.04 -
003
002

WWM Ll

=001

(h)

Figura 6.53. CASO 3
Figura 6.53.a-d — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,
para 4 posicoes diferentes
Figura 6.53.e-h — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do
comprimento da placa, para 4 tempos diferentes
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Figura 6.54. CASO 4
Figura 6.54.a-d — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,
para 4 posicoes diferentes
Figura 6.54.e-h — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do
comprimento da placa, para 4 tempos diferentes
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Figura 6.55. CASO 5

Figura 6.55.a-d — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do tempo,

para 4 posicoes diferentes

Figura 6.55.e-h — Residuos entre as Temperaturas Estimadas e as Experimentais ao longo do
comprimento da placa, para 4 tempos diferentes
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6.3. Experimentos com Termografia por Camera de

Infravermelho

Os resultados experimentais apresentados nesta secdo demonstram a utilizagao da
técnica nao-intrusiva de medicdo de temperaturas por termografia de infravermelho, e sua
utilizagdao na andlise de problemas inversos, através da realizacdo de dois experimentos em
conducdo de calor, utilizando a bancada e o procedimento experimental apresentados no
capitulo 5 deste trabalho.

Os primeiros resultados experimentais aqui relatados tém o objetivo de
demonstrar a identificacdo da capacidade térmica e das condigdes de contorno em um
experimento de placas em sanduiche com variagdo desprezivel da temperatura nas
coordenadas espaciais, empregando-se placas de aluminio (alta condutividade térmica) de
mesmo tamanho que a resisténcia elétrica. Os resultados experimentais aquisitados pela
camera de infravermelho s3o entdo tratados e empregados na solugdo do problema inverso
correspondente, via inferéncia Bayesiana, a partir da solu¢do numérica do modelo em
parametros concentrados para o problema direto associado.

O segundo experimento aborda um problema com variagdo espacial significativa
das temperaturas, utilizando-se placas de baquelite (baixa condutividade térmica) de 4x8 cm,
portanto mais longas que a resisténcia elétrica empregada. Trés experimentos distintos sao
realizados, variando-se a configuragdao (horizontal ou vertical) e a posicdo relativa da
resisténcia elétrica (aquecimento superior e inferior). Seleciona-se entdo um dos experimentos
para permitir a identificagdo das propriedades termofisicas e condigdes de contorno
simultaneamente, novamente via inferéncia Bayesiana, e desta feita empregando o método de

transformacao integral na solu¢ao do problema direto.
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6.3.1. Estimativa de Capacidade Térmica e Condicoes de

Contorno em Placas de Aluminio

Para o experimento com as placas de aluminio, utilizou-se duas placas quadradas
de espessura de 3mm e de 40 mm de lado. As imagens neste experimento foram feitas com as
placas na posi¢do vertical, de forma frontal. O aquecimento das placas foi feito com uma
resisténcia de 38.18Q, quadrada e de mesmas dimensdes das placas de aluminio, instalada
entre as duas placas. Para melhorar o contato entre a resisténcia e as placas utilizou-se uma
fina camada de pasta térmica. Seis termopares do tipo“K” foram fixados com epoxy nas
placas, sendo 1 termopar fixado na placa voltada para a camera e 5 termopares fixados na
placa de tras. Depois de feita a fixacdo dos 6 termopares, a placa voltada para a camera
recebeu uma pintura em grafite (€ =~ 0.97) em toda a sua superficie.

As figuras 6.56.a-b apresentam as placas de aluminio montadas na bancada
experimental e o posicionamento horizontal da camera com relagdo as placas. As figuras
6.57.c-d fazem a identificacdo dos termopares neste experimento. As aquisi¢des feitas tanto
pelo Agilent quanto pela camera foram efetuadas a cada 10 segundos. A descri¢do detalhada
do procedimento experimental foi apresentada no capitulo 5 deste trabalho.

As figuras 6.57.a-b apresentam as temperaturas medidas pelos 5 termopares da
placa de trds (sem pintura). Pode-se observar que todos os termopares apresentam
temperaturas em torno dos 55°C no regime permanente. Nota-se também que as variacdes de
temperatura entre os termopares sdo ligeiramente mais significativas na dire¢do horizontal
(tp2, tp4 e tp6) que na vertical (tp3, tpS e tp6). A figura 6.57.c compara as temperaturas
aquisitadas pelo termopar da placa da frente, ¢p/ comparado ao da placa de tras, p3, ambos
situados na mesma posi¢ao s6 que em placas diferentes. Como esperado, as temperaturas da
placa de tras (sem pintura € = 0.10) sd@o mais altas que as temperaturas da placa da frente (com
pintura de grafite, € = 0.97). Isso se da devido a diferenga entre as emissividades das duas

placas, levando a parti¢ao assimétrica do fluxo de calor gerado pela resisténcia elétrica.
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(a) (b)

Figura 6.56 — Experimento com as placas de aluminio, com detalhe do
dispositivo de posicionamento horizontal da cimera.

(@)

Figura 6.56 — Identificacdo dos termopares no experimento de placa vertical
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Figura 6.57.c — Comparagao entre as temperaturas do termopar do topo da placa de tras (p3 — curva
vermelha) e do topo da placa da frente (zpI — curva azul) no experimento com as placas de aluminio

A figura 6.58.a apresenta a variaca

camera. Ja a figura 6.58.b mostra a faixa estreita

digital level na regido do termopar de referéncia.

o de digital level da placa voltada para a

dos valores maximos, minimos ¢ médios do

pixels sdo usados na correlacdo com as temperaturas lidas no termopar.

As figuras 6.59.a,b apresentam as duas curvas que foram utilizadas na etapa de
correlacdo do digital level com a temperatura. A figura 6.59.b representa os valores médios de
digital level na regido proxima ao termopar de referéncia, tpl. A curva na figura 6.60.a
representa a variagao da temperatura em graus Celsius aquisitada pelo termopar de referéncia.

Depois de feita a correlagcdo para esta regido do termopar de referéncia, em matriz de 2x2

pixels, aplicou-se esta conversao em toda a placa.
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Figura 6.59.a — Temperaturas aquisitadas pelo Figura 6.59.b — Digital level médio na regido
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As figuras 6.60.a-¢ apresentam uma avaliagdo qualitativa das medidas de
temperatura aquisitadas pelos termopares da placa de tras tp2, tp3, tp4, tp5 e tp6 em graus
Celsius com as temperaturas aquisitadas pela camera, depois de realizada a conversdo, para
posi¢des referentes aos termopares na placa da frente. Pode-se observar, o comportamento
fisico coerente dos resultados encontrados pelos termopares e pela camera, lembrando que
neste caso as temperaturas ndo sao esperadas serem iguais, tendo em vista as diferentes

emissividades em cada face e a conseqiiente parti¢ao assimétrica do fluxo térmico.
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Observa-se que as temperaturas medidas com a camera estdo consistentemente
abaixo daquelas aquisitadas pelos termopares, como fisicamente esperado, uma vez que a face
onde estdo instalados os termopares tem uma emissividade menor. Nota-se também que o

desvio mais significativo ocorre na posi¢ao do termopar mais abaixo na placa (zp5).
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A formulacdo matematica para a temperatura média na superficie da placa para
este experimento com as placas de aluminio, apdés a aproximagdo por parametros

concentrados, ¢ apresentada nas equagdes abaixo:

pC, 1 2D (1, T, 0)+ 0 (T, ~TH ) + £ (0a.. (>0 (635.4)

p Tz d 1 a amb

1,0)=T,, (6.35.b)
onde a variacao temporal do fluxo de calor entre as duas placas € escrita como
S (#) = c(1- Exp[-bt]) (6.36)

Pela lei de resfriamento de Newton, e um coeficiente de transferéncia de calor
constante, tem-se que o comportamento temporal do fluxo deve ser semelhante ao da
temperatura. Por isto, assumiu-se a forma funcional exponencial para a variagao do fluxo de
calor entre as duas placas dada pela equagao (6.36). Nesta etapa os coeficientes da fungao f{z)
foram considerados desconhecidos e foram estimados através da solu¢ao do problema inverso
com os resultados experimentais, onde ¢, ¢ conhecido e dado pela poténcia dissipada na
resisténcia dividida pela area da face da resisténcia:

Sao apresentados a seguir os resultados das estimativas através do procedimento
inverso de inferéncia Bayesina via MCMC, utilizando como dados experimentais as
temperaturas obtidas pela técnica da termografia por infravermelho para o experimento com as
placas de aluminio. Para a estimativa em questio os pardmetros sdo poCp,h,b,c, ¢ |
apresentados na formulagdo matematica para o experimento de aluminio

Os resultados apresentados a seguir fazem uma analise comparativa entre seis
diferentes casos de estimativa de parametros a partir das temperaturas experimentais
aquisitadas com a camera de infravermelho. As tabelas 6.34 e 6.35 resumem os casos
estudados, os valores iniciais € o tipo de priori utilizados no procedimento de estimativa,
assim como os limites minimos € maximos de procura para cada parametro.

Para os quatro primeiros casos, tem-se a analise inversa sendo realizada na

estimativa de 5 parametros, sendo eles a capacidade térmica volumétrica do aluminio, o
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coeficiente de transferéncia de calor por convecgao, dois parametros referentes a fungdo que
controla a variacao do fluxo de calor no tempo, e por fim a emissividade da tinta de grafite
utilizada na pintura da placa de aluminio, ou seja ( PCp, h,b, ¢, € ). Para os dois Gltimos casos
analisou-se a influéncia na estimativa para o caso de adotarmos como conhecido o valor da
emissividade, com o valor fornecido pelo fabricante da tinta de grafite, e realizou-se a
estimativa dos quatro parametros restantes.

Em todos os casos utilizou-se de priori ndo-informativa (Uniforme) na
estimativa do parametro “b”; para os demais parametros analisou-se através dos casos, a
influéncia na escolha de uma priori Gaussiana centrada nos valores esperados para cada um
dos pardmetros com um desvio padrdo que variou até¢ 20% do valor da sua respectiva média.
A tabela 6.34 traz a informagdo da escolha das prioris para cada caso, onde a escolha por
prioris normais € representada pela letra “N” e por prioris uniformes representada pela letra
“U”.

Os valores esperados para cada parametro, € para alguns casos utilizados como
valores iniciais no procedimento de estimativa, sdo resultantes de: (i) medigdo pelo método
Flash (UNIMET/LTTC), no caso da capacidade térmica da placa ( oCp ); (ii) da analise de
correlagdes para conveccdao natural em placa plana vertical sujeita a um fluxo de calor
prescrito, para o caso do coeficiente de transferéncia de calor ( /2 ); (iii) da solucdo analitica da
equacao do calor para o regime permanente, para a constante “c¢ ” da varia¢do do fluxo; (iv)
do valor da emissividade fornecida pelo fabricante para a tinta de grafite utilizada na pintura
na face da placa de aluminio voltada para a camera ( ¢ ); e (v) da simples média no intervalo
de procura para o parametro “ 5 ”, sobre o qual ndo se tem a principio informagao disponivel.
Neste sentido, os casos 1 a 3 foram construidos de modo a analisar a influéncia da utilizacdo

de diferentes valores iniciais no procedimento de estimativa.
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Tabela 6.34 — Definiciio dos dados de entrada para a solugiio inversa.

P Inicial Priori
Caso 1 pCp, h,b, c, & P N,N,U,N,N
Caso 2 pCP: h:ba c, & Rnax N) N) U’ N)N
Caso 3 pCP, h,b, c, & Pesp + O'OI(Pmax - Pmin) N, N, U, N, N
Caso 4 PCPa haba c & Pesp U: U: U) U:N
Caso 5 pCp, h,b, ¢ Fep N,N,U,N
Caso 6 pCp, h,b, c Fegp U,U,0,U

Tabela 6.35 — Definicdo dos dados de entrada para a solu¢do do problema inverso.

P Valor Esperado Desvio Padrio Limite Minimo | Limite Maximo
S (caso priori Normal) P P...
G
[J/p 7 0l 2.9799x10° 349 249.0 2.0802x10° 3.8795x10°
m
W/ II:I 2o(] 12.322 2.4640 6.1610 24.644
b 0.05 - 0 0.1
c 0.5902 0.6040 0 1
£ 0.97 0.0291 0.94 1

Antes de iniciar o procedimento de solu¢do do problema inverso, realizou-se

uma analise de sensibilidade do problema inverso utilizando um total de 300 medidas

experimentais. A figura 6.61 apresenta os coeficientes de sensibilidade reduzidos do problema

de estimativa com relagdo a cada parametro, calculados por um esquema de diferengas

centradas como apresentado na equagdo (6.37) abaixo, para uma perturbagdo no parametro de

£=10" . Pode-se entdo perceber nesta figura uma menor sensibilidade do problema para o

parametro “b” e uma dependéncia linear entre # e € .

J

TR, Pyseces P+ EPycs Pyp 1= TP Py P = EP,, ., Pyp]

=7

Q|
o L’H

2£P,
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Figura 6.61 — Analise de sensibilidade dos parametros

A tabela 6.36 e as figuras 6.62 a 6.64 apresentam os resultados das estimativas para
os 6 diferentes casos. Na tabela 6.36 tem-se os valores estimados para cada pardmetro € o seus
respectivos intervalos com 99% de confianca. Pode-se perceber, pela analise desta tabela, uma boa
concordancia nas estimativas de todos os parametros pelos seis casos.

Nas figuras de 6.62 a 6.64 tem-se a comparagao da evolugdo das cadeias de Markov
para cada parametro entre os casos 1, 2 e 3, casos 1 € 4 e casos 5 e 6, respectivamente. Estas figuras
mostram a convergéncia das cadeias entre si, justificando assim as estimativas concordantes
apresentados na tabela 6.36. Na figura 6.62, por exemplo, mostra-se para todos os parametros o
comportamento convergente das cadeias mesmo para trés diferentes valores iniciais. As figura 6.63 ¢
6.64, mostram, respectivamente, para o casos de uma estimativa com 5 e 4 parametros, que mesmo
para o caso da escolha de prioris nao-informativas, tem-se ainda assim, bons resultados quando
comparados as estimativas usando prioris Normais.

A figura 6.65 vem complementar as analises dos resultados das estimativas para o
experimento com as placas de aluminio, confirmando as boas estimativas encontradas tendo em vista
que os residuos encontrados entre as temperaturas experimentais e as temperaturas calculadas com as

estimativas resultantes do caso 1, s3o menores que 1°C.
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Tabela 6.36 — Resultado das estimativas para os 6 diferentes casos.

P CASO 1 CASO 2 CASO 3
PCp 2.423x10° 2.461 x10° 2.450x10°
[J/m*°C] | [2.08x10°, 2.81x10%] [2.09x10°, 2.83x10°] [2.08x10°, 2.865x10°]
h 14.341 14.680 14.383
[W/m?°C] [10.89, 17.79] [11.49, 17.88] [10.79 , 17.98]
) 0.03533 0.03511 0.03795
[0.0226 , 0.0481] [0.0231 , 0.0471] [0.0315, 0.0444]
. 0.6045 0.6141 0.6063
[0.506, 0.703] [0.522 , 0.706] [0.502, 0.711]
i 0.9670 0.9659 0.9694
[0.94 , 1.00] [0.94 , 1.00] [0.94, 1.00]
P CASO 4 CASO 5 CASO 6
pCp 2.189 x10° 2.477 x10° 2.552 x10°
[J/m*°C] | [2.08x10°,2.339x10°] [2.115x10°, 2.839x10°] [2.200x10° , 2.904x10°%]
h 12.215 14.803 15.506
[W/m?°C] [10.865 , 13.566] [11.670 , 17.934] [12.454 , 18.558]
) 0.03596 0.03519 0.03491
[0.0230 , 0.0489] [0.02305 , 0.0474] [0.0218 , 0.0480]
. 0.5441 0.6183 0.6386
[0.505 , 0.584] [0.528 , 0.709] [0.5505 , 0.7267]
. 0.9727 ] ]
[0.933, 1.00]
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Figura 6.62.a-e — Comparacao entre a evoluciao das cadeias para diferentes valores iniciais:
Casos 1 (linha preta); Caso2 (linha vermelha) e Caso 3 (linha azul)
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Na etapa de analise da capacidade térmica das placas de aluminio, foram
extraidas 3 amostras do mesmo material para analise na Unidade de Metrologia Térmica Prof.
Roberto de Souza, do LTTC, PEM/COPPE/UFRJ. O equipamento utilizado para a
determinacdo das propriedades termofisicas das amostras de materiais aqui ensaiados ¢
baseado no método Flash, o Netzsch LFA 447/1, disponivel na UNIMET do LTTC. O LFA
447/1 ¢ um instrumento utilizado para medir difusividade térmica, calor especifico e
condutividade térmica de metais, revestimentos, compdsitos, ceramicas, polimeros, liquidos e
outros materiais, numa faixa de temperatura de 25 a 200°C. A fonte de energia para gerar o
aumento de temperatura na amostra ¢ uma lampada de Xenonio de alta poténcia. Ela ¢
envolvida por um espelho parabolico (refletor) que direciona o feixe de luz para a amostra.

O LFA 447/1 usa um detetor de InSb-IR na faixa de comprimento de onda de
2000 a 5000 nm, resfriado por nitrogénio liquido, que permite uma leitura de temperatura
rapida e sem contato direto com a amostra. A conexdo proxima com o sistema pré-
amplificador permite uma aquisi¢do de dados rapida (500 kHz, 12 Bit) e uma medida de 2000
pontos por teste. Um forno integrado (aquecedor) mantém a temperatura da amostra estavel
durante a medida. O aquecedor ¢ integrado ao suporte da amostra, que tem uma massa térmica
baixa, permitindo altas taxas de aquecimento / resfriamento. As medidas de temperatura da
amostra sdo feitas no suporte por um temopar. Um chiller Julabo ¢ usado para auxiliar o
controle de temperatura do forno.

A lampada de Xendnio pode prover uma energia de pulso at¢ 10 J (até 5
J/cm?), controlada pelo usudrio através de um software fornecido com o equipamento, na
faixa de comprimento de onda de 150 nm a 2000 nm. O software também permite que o
comprimento do pulso de energia seja ajustado em 0.1, 0.2 ou 0.4 ms. A figura 6.66 mostra
um esquema do equipamento. A figura 6.67 mostra o equipamento operando na UNIMET

(Unidade de Metrologia Térmica do LTTC/PEM/COPPE).
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Figura. 6.67. Netzsch Nanoflash LFA 447/1 operando no UNIMET, LTTC/PEM, COPPE/UFRJ

A seguir, na Tabela 6.37, apresenta-se a consolidagdo dos resultados
experimentais para a difusividade térmica, condutividade térmica e calor especifico, obtidas
com o Nanoflash, nas temperaturas selecionadas de 25, 35, 45 e 55 °C, condizentes com a
faixa de temperatura dos experimentos aqui realizados. Além das médias para cada amostra, a
cada temperatura, apresenta-se as médias das trés amostras para cada temperatura. Apresenta-
se também, na tltima coluna, os valores de literatura para aluminio puro, a 20 °C, extraidos de

[Bejan (1993)].
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Tabela 6.37 — Propriedades termofisicas das amostras de aluminio das placas ensaiadas, em funciio da
temperatura, obtidas com o Nanoflash Netzsch LFA 447/1 e comparadas com valores da literatura a 20 C
para aluminio puro [Bejan (1993)].

Bejan(1993)
Amostras
Propriedade Médias alum. Puro
1 2 3 (20°C)
o [mm2/s] 84.450 83.594 83.163
83.736 84.18
25°C (0.727)* (0.151)* (1.009)*
o [mm2/s] 84.822 83.753 82.406
83.660 -
35°C (0.812) (0.530) (0.843)
o [mm2/s] 84.322 82.881 82.431
83.211 -
45 °C (0.302) (0.224) (0.510)
o [mm2/s] 83.837 83.037 83.118
83.327 -
55°C (0.253) (0.704) (0.207)
k [W/mC] 185.85 192.78 205.80
194.81 204.
25°C (1.60) (0.361) (2.50)
k [W/mC] 199.51 205.63 208.35
204.50 -
35°C (2.29) (1.43) (2.13)
k [W/mC] 231.83 229.36 229.67
230.29 -
45 °C (2.03) (0.612) (1.38)
k [W/mC] 239.79 229.32 219.60
229.57 -
55°C (0.715) (1.94) (0.546)
C,[1/gC] 0.816 0.855 0918
0.863 0.896
25°C (0.010) (0.013) (0.030)
C, [J/gC 0.876 0.910 0.937
Vet 0.908 -
35°C (0.030) (0.016) (0.002)
C, [J/gC] 1.026 1.026 1.033 L 008
45 °C (0.005) (0.028) (0.012) '
C, [J/gC] 1.061 1.024 0.979 L0a1
55°C (0.008) (0.012) (0.014) '

(*) desvio padrao das medidas
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Os resultados acima sdo entdo diretamente comparados aos valores estimados
da capacidade térmica (pC,) pela presente andlise, destacando-se os casos 1 e 6 que
representam os dois casos extremos analisados. Para o caso 1, todos os parametros possuem
informacgdo a priori na forma de distribuicdes normais, enquanto no caso 6 todos os
parametros sdo estimados sem nenhuma informacdo restritiva (distribuigdes uniformes).
Destaca-se também o valor médio de todas as estimativas (casos 1 a 6), e observa-se que
todos os trés resultados encontram-se em excelente concordancia com as medidas do

Nanoflash e os valores da literatura, como mostrado na Tabela 6.38.

Tabela 6.38 — Capacidades térmicas do aluminio estimadas, comparadas com as obtidas pelo Nanoflash
Netzsch LFA 447/1 e com valores da literatura a 20 °C para aluminio puro [Bejan (1993)].

NanoFlash | Bejan(1993) Média
Caso 1 Caso 6
(25-55°C) @ 20 °C Casos1a6
P CP 6 6 6 6 6
2.573 x10 2.425 x10 2.423x10 2.552x10 2.425x10
[J/m’*°C]

6.3.2. Estimativa Simultinea de Propriedades Termofisicas e

Condic¢oes de Contorno com Placas de Baquelite

Nos resultados experimentais apresentados nesta subsecdo aborda-se um
problema com variacdo espacial significativa das temperaturas, utilizando-se placas de
baquelite (baixa condutividade térmica) de espessura 1.58mm e de dimensdes 40mm de
largura por 80mm de comprimento. No aquecimento das placas foi empregado uma resisténcia
elétrica de 38.18Q), quadrada e de dimensdes 40mm de largura por 40mm de comprimento,
instalada entre as duas placas, ligada a uma fonte de corrente continua com voltagem
aquisitada automaticamente. Para melhorar o contato entre a resisténcia e as placas utilizou-se
uma fina camada de pasta térmica. Trés experimentos distintos foram realizados, variando-se a
configuracao (horizontal ou vertical) e a posi¢do relativa da resisténcia elétrica (aquecimento
superior e inferior). Para ilustrar o emprego da metodologia de solu¢do de problema inverso

aqui proposta, em uma sitagdo com resultados experimentais reais, escolheu-se uma das
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configuragdes experimentais acima citadas, para tratamento dos seus dados visando a
estimativa simultanea das propriedades termofisicas e demais parametros desconhecidos no
problema fisico. Para tal, em fungdo do excelente comportamento observado na sec¢ao 6.2.3,
empregou-se a metodologia de estimativa a partir do campo transformado, e permitindo-se a
principio variagdes espacias nos coeficientes a determinar, mesmo sabendo-se tratar de um
meio homogéneo. Serdo apresentados a seguir os resultados experimentais encontrados para os
trés experimentos envolvendo as placas de baquelite. As figuras 6.68 abaixo apresentam de
forma esquematica o modelo fisico referente a cada configuragdo experimental, placa vertical

com aquecimento superior, placa vertical com aquecimento inferior e placa horizontal.

_____ Xo mo .
% —\)
= |
701 —> | —_ g
—>
— || T
7CCONT_ e '—‘i;' - qconv.natural + qradiacﬁo
Ta.mb
—\)
4,=0
\
_____ x 7]

1"~ "~"- qconv.natural + qradiagéo

T

amb

Figura 6.68.b — Modelo fisico da configuracio de placa vertical com aquecimento inferior
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Figura 6.68.c — Modelo fisico da configuragao de placa horizontal
A formulagdo matematica foi adotada de forma a ser geral para as trés

configuragdes, variando apenas os valores de g; € ¢», h; € h,, de modo a ser representativa da

situacdo fisica em questao.

OT,[xt] _ 0 oT, ) helx] g.[x.]
il o | kx| - (T, [ ] - T )+ e
wla = ax( (]! j (e -T) b
(6.38.a-d)
oT [x,t
Tm[x,O]ZTOO L =0 a]—;n[xﬂt] =0
Oox =0 ax L
q,[x,t]=q[x]fT¢]
(6.38.e-g2)
O<x<x
o :{ql fl=c-ae™
q, XCONT <x< Lx
h,[x]= {hl 0 <x < Xconr
h, Xeony <X <L,

Dois termopares do tipo-“K” foram fixados com adesivo especial Loctite no

centro das placas a 10mm da borda, sendo 1 termopar fixado na placa voltada para a camera e
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o outro termopar fixado simetricamente na placa de tras (Fig. 5.5.a). Nas trés configuragdes
experimentais a distancia entre a placa e a camera foi de cerca de 250mm e a voltagem
especificada na fonte ligada a resisténcia foi de 8V. Todavia, vale lembrar, que a voltagem foi
aquisitada automaticamente durante todo o experimento pelo sistema de aquisicdo de dados
Agilent, simultaneamente a aquisi¢do das temperaturas pelos termopares.

Depois de feita a fixacdo dos termopares, as duas placas receberam uma pintura
em grafite (¢ = 0.97) em suas superficies externas. Na figura 6.69.a-c tem-se a comparagao
entre o comportamento temporal das temperaturas aquisitadas pelos dois termopares, sendo
em azul as temperaturas referentes ao termopar fixado no lado da camera e em vermelho o
termopar fixado na placa de tras, para os trés experimentos, placa na vertical com aquecimento
superior (figura 6.69.a), placa na vertical com aquecimento inferior (figura 6.69.b) e placa na
horizontal (figura 6.69.c).

Como esperado, pode-se observar a boa concordancia entre as temperaturas
apresentadas pelos termopares nas configuragdes verticais tanto para o aquecimento superior
quanto para o aquecimento inferior. Para a placa horizontal, a concordancia entre as
temperaturas indicadas pelos dois termopares pode ser explicada pelas pequenas diferencgas do
coeficiente de transferéncia de calor para a placa superior e inferior nesta diferenca de
temperaturas entre a placa e o ambiente externo.

Para cada configurac¢ao experimental realizou-se um total de trés experimentos de
modo a verificar as suas repetibilidades. As figuras 6.70.a-c apresentam as comparagdes das
temperaturas aquisitadas pelo termopar voltado para a cAmera nos trés experimentos para cada
uma das trés configuragdes, onde percebe-se uma excelente concordancia entre as repeti¢des

de cada experimento.
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Figura 6.69.a — Comparacio dos termopares nas duas placas: Experimento de placa na vertical com
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Figura 6.69.c. - Comparacio dos termopares nas duas placas: Experimento de placa na horizontal
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Figura 6.70.b. — Repetibilidade experimental: Experimento de placa na vertical com aquecimento inferior
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Figura 6.70.c. — Repetibilidade experimental: Experimento de placa na horizontal
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As figuras 6.71.a-b, 6.72.a-b e 6.73.a-b apresentam as duas curvas que foram
utilizadas na etapa de conversdo do digital level para temperatura, para cada uma das

configuragdes experimentais. A forma em que se dé a correlagdo entre estas duas grandezas foi

detalhadamente apresentada no capitulo anterior.
A figura 6.71.b, 6.72.b e 6.73.b representam os valores médios de digital level na

regido proxima ao termopar de referéncia, voltado para a camera. As curvas na figura 6.71.a,
6.72.a e 6.73.a representam as variagdes da temperatura em graus Celsius aquisitada pelo

termopar de referéncia. Depois de feita a correlagdo para esta regido do termopar de

referéncia, em matriz de 3x3 pixels, aplica-se esta conversdao em toda a placa.

DLcorrigido da Regido de Referéncia

Temperatura do Termopar de Referencia
T°C] DL
°r M’" SIS 250
45
200 - PN RO O et AN 0O NStp SO AL N SIS LN,
i Rl
40 H &
S 150 &
spf :
[ 100f <
of ¢
. s,
250
[ I I I I L {s]
‘ ‘ 5] 500 1000 1500 2000 2500 3000
0 500 1000 1500 2000 2500 3000
(a) (b)
Figura 6.71 — Correlagao de digital level e temperatura: Experimento placa na vertical aquecimento
superior
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Figura 6.72 — Correlacio de digital level e temperatura: Experimento placa na vertical aquecimento

inferior
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Figura 6.73 — Correlacao de digital leve e temperatura: Experimento placa na horizontal

As figuras 6.74 mostram a posi¢do deslocada, evitando-se capturar a imagem do
fio do termopar de referéncia, e as regides retangulares demarcadas onde foram computados os

valores médios das temperaturas para cada altura ao longo de todo o comprimento da placa.

t[s]

As regides demarcadas onde se operam as médias na dire¢do transversal, s6 se fizeram

necessarias em um lado da placa, uma vez que os perfis se apresentaram razoavelmente

simétricos ao longo da largura da placa nas trés configuragdes experimentais. O numero de

posicdes para cada experimento refere-se ao numero de sensores. Para o experimento da placa

na posicao vertical com aquecimento superior (figura 6.74.a) obteve-se 65 sensores, para o

experimento da placa vertical com aquecimento inferior (figura 6.74.b) obteve-se 60 sensores,

e por fim, para o experimento horizontal (figura 6.74.c), obteve-se 65 sensores. Essas

diferencas no nimero de sensores sao devidas a pequenas diferengas entre as distancias da

placa a lente da camera, apds o reposicionamento para cada experimento.

215



[1ox1d ] [eonyroa

(114

01

0t

0¢

08

09

horizontal[ pixel] horizontal[ pixel] horizontal[ pixel]

soredouLis | Sop 0B3ISOg

—_ —_— 3% [\ w = — 553 58] 2 [y —_ [ (S8 o
[ e T N =) o u o »u S & S S L o »n S K S
R R e AARSAR RS Ry R SRS AR, A AP P S s B R AP Y
°
- "57 i 57 B
a~] 1= B | 1
49 N | ,8 i
7] S .
Z. M
0 o
18 s 10 s
i g ’8— g | i
’8 8 w 1z 8 <
5 3 ° g =
la & § o [
g - B2 — & i
10 o
o~
ER i
18 13
12 , ol 1
S
i ol ]
Sl ° °
r =N
L =N g
1 2 he- = * el 4
\\\\.
(@) (b) (c)

Figura 6.74 — Posicoes ao longo do comprimento da placa para
exportacio das temperaturas experimentais

As figuras 6.75.a-c, 6.76.a-c e 6.77.a-c, apresentam as temperaturas aquisitadas
pela camera, depois de realizada a conversdo, para diferentes posi¢cdes na placa da frente. A
linha vertical presente nas figuras 6.75.a, 6.76.a ¢ 6.77.a, indica a posi¢ao de término da
resisténcia.

As figuras 6.75.a, 6.76.a ¢ 6.77.a apresentam a variagdo espacial da temperatura
ao longo do comprimento da placa, onde o inicio do eixo das abscissas, nestes graficos, sao
referentes as posigdes na parte superior da placa.

Pela analise das figuras 6.75.b, 6.76.b e 6.77.b pode-se observar o
comportamento simétrico ao longo da largura da placa, de modo que a variagdo espacial da
temperatura pode ser considerada unidimensional, ou seja, como sendo essencialmente na
dire¢do do comprimento da placa.

As figuras 6.75.c, 6.76.c e 6.77.c apresentam o comportamento temporal da
temperatura nos trés experimentos, de modo que se pode observar por estas trés figuras que o
tempo final considerado nestes experimentos, em torno de lhora, foi suficientemente grande

para que as temperaturas fossem consideradas em regime permanente.
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ao longo do comprimento da placa - Placa Vertical com Aquecimento Superior
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Figura 6.76.a — Temperatura ao longo do comprimento da placa para diferentes tempos:
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Antes de iniciar o procedimento de solucdo inversa, analisou-se o determinante

da matriz de informacdo J'J, para o caso de se variar o niimero de termos na expansio da
temperatura envolvida na estimativa para um nimero fixo de pardmetros e uma freqiiéncia
fixa de medidas no tempo, uma vez que o procedimento de estimativa proposto ¢ baseado no
campo transformado. Os resultados sdo apresentados nas figuras 6.78.a-c e tabelas 6.39.a-c,
para as trés configuragdes experimentais, respectivamente, isto €, posicao vertical com
aquecimento superior, posi¢do vertical com aquecimento inferior e para a placa na posigao
horizontal. Lembra-se que, como se trata de estimativas no campo transformado, o numero
total de dados experimentais ¢ dado pelo produto entre o nimero de termos na expansao da
temperatura ¢ o numero de medidas no tempo. Logo, nestas analises de sensibilidade utilizou-
se no procedimento de integracao espacial (inerente ao processo de transformacao integral dos
dados experimentais) toda a informacao espacial disponivel, respectivamente 65, 60 e 65
sensores, em cada configuragdo experimental. Em seguida, comparou-se o comportamento do
determinante entre as configuragdes experimentais no caso de se fixar 10 termos na expansao
da temperatura (figura 6.79).

As figuras 6.78.a-c mostram que para as trés configuracdes experimentais tem—se
um pequeno aumento do valor do determinante com o aumento do nimero de termos na série
de 10 para 15 termos. Pela figura 6.79, pode-se observar que o comportamento do
determinante para as trés configuragdes experimentais ¢ praticamente coincidente (curva
vermelha: placa vertical com aquecimento superior; curva verde: placa vertical com
aquecimento inferior; curva azul: aquecimento horizontal) para 10 termos na expansdo da
temperatura, nao indicando assim uma diferenga de sensibilidade do problema com relagdo ao

posicionamento da placa e/ou da resisténcia
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Figura 6.78.a — Placa Vertical Aquecimento Superior:
Analise do determinante da matriz de informacgao com 10 termos na expansio da temperatura (curva
vermelha) e com 15 termos (curva preta)

Tabela 6.39.a — Analise do determinante da matriz de informacio com 10 e 15 termos na expansio da
temperatura, Placa Vertical Aquecimento Superior

Placa Vertical Aquecimento Superior
Np=10
No. Termos na Expansao Determinante
da Temperatura Nmedidas=50 Nmedidas=100 Nmedidas=200
10 3.42053 x 10t 1.03048 % 10% 1.29922% 10
15 2.23932% 107 3.6009 % 10 4,26257 % 10
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Figura 6.78.b — Placa Vertical Aquecimento Inferior:
Analise do determinante da matriz de informacio com 10 termos na expansiao da temperatura (curva
vermelha) e com 15 termos (curva preta).

Tabela 6.39.b — Analise do determinante da matriz de informacio com 10 e 15 termos na expansao da
temperatura, Placa Vertical Aquecimento Inferior

Placa Vertical Aquecimento Inferior
Np=10
No. Termos na Expansao Determinante
da Temperatura Nmedidas=50 Nmedidas=100 Nmedidas=200
10 1.12783 % 10" 6.79626 % 100 4.6650 % 10"
15 9.87516 x 10" 2.92071 % 10" 1.91342%10°°
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Figura 6.78.c — Placa com Aquecimento Horizontal:
Analise do determinante da matriz de informacio com 10 termos na expansao da temperatura (curva
vermelha) e com 15 termos (curva preta).

Tabela 6.39.c — Analise do determinante da matriz de informacio com 10 e 15 termos na expansio da
temperatura, Placa com Aquecimento Horizontal

Placa com Aquecimento Horizontal
Np=10
No. Termos na Expansao Determinante
da Temperatura Nmedidas=50 Nmedidas=100 Nmedidas=200
10 9.32187 % 107 5.47893 = 10% 4.05543 % 10
15 6.25812 % 10% 2.16185 = 10" 1.52845%10°°
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Figura 6.79 — Analise do determinante da matriz de informacio com 10 termos na expansao da
temperatura para as trés configuragdes experimentais: Placa vertical com aquecimento superior
(curva vermelha); Placa vertical com aquecimento inferior (curva verde); Placa horizontal (curva

azul);
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A figura 6.80 apresenta o comportamento do determinante da matriz de

informagao para 4 situagoes diferentes, estimando 10 parametros
(kgos ki, Weo.Wy,d g dyp dy,dy,dy,b ), 12 parAmetros (acrescentando Ky ,w, ), 14 pardmetros
(gosky kg by, o, Wy, 9, W3, d g, dy ,dy,dy,d3,b ) ¢ estimando 16 pardmetros (acrescentando

k., »wy ). Pode-se observar que acrescentar termos na expansdo das propriedades leva a um
aumento do numero de parametros e a diminuicdo da sensibilidade do problema (curva
vermelha e curva verde). Todavia, ao se acrescentar os parametros dos contornos mantendo-se
o numero de termos na expansao das propriedades fixo, tem-se um significativo aumento do
determinante (curva preta e curva vermelha), uma vez que seus valores sdo bem maiores do

que os valores esperados para os termos da expansao.
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Figura 6.80 — Analise do determinante da matriz de informac¢io com 10 termos na expansio da
temperatura para a placa vertical com aquecimento superior;

Curva Vermelha—szlo(kXOak]aWXOaW]adx()adx[‘a(j]a(jz’g}ab );
Curva preta—Np= 12(kx09kx[,3];lnwx03WxLawladx09de967lnd_25d_39b );
Curva Verde—NP= 14 (kx0’]?]9]?2’]%’WXO’W]’w2aw3adx()yde33]’('72333’b );

Curva aZul—NP= 16 (k'xO,kan];]:];Zn];;an():WxL,W]aW29w39dx09dx[‘9('713529('733b );

Em seguida sdo apresentados os resultados da identificagdo simultanea no campo
transformado das propriedades termofisicas e condigdes de contorno. Sdo utilizadas as
temperaturas aquisitadas pela camera para o experimento com as placas na configuracao
vertical e com o aquecimento na parte superior da placa, empregando o método de

transformacao integral na solucgdo direta e a abordagem de inferéncia Bayesiana via método de
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MCMC na solu¢do do problema inverso, oferecendo portanto o emprego simultaneo das
metodologias tedrico-experimentais aqui avangadas. A tabela 6.40 abaixo apresenta os valores
iniciais e os limites maximos e minimos considerados na procura dos parametros. A escolha
dos valores iniciais foi baseada nos valores das medidas de propriedades termofisicas feitas na
UNIMET/LTTC com o método FLASH para as propriedades e em valores de correlagdes de
conveccao natural para os coeficientes de transferéncia de calor de placa plana vertical com
fluxo prescrito. Todavia, tais valores sdo tidos como valores de referéncia para as distribuicdes
a priori. Os valores iniciais nao sdo necessariamente os valores esperados como solugao das
estimativas, uma vez que observou-se que o campo de temperatura quando calculado com esse
valores nao representa de forma precisa os perfis de temperatura experimentais, Figs. 6.81. A
figura 6.81 apresenta uma comparagdo entre as temperaturas calculadas com os valores iniciais
apresentados na tabela 6.40 (curva preta), as temperaturas experimentais aquisitadas pela
camera (curva cyan) e a temperatura ambiente (curva azul), ao longo do comprimento da placa

para diferentes tempos.

Tabela 6.40 - Valores iniciais, minimos e maximos para cada parametro nas estimativas

P Inicial Min Max
k., 0.2789 0.2 0.4
k, 0.2789 0.2 0.4
k, 1x10°° 1x10™ 1x107
k, 1x10° 1x107™" 1x107
k, 1x10° 1x107™ 1x107
W, 1.768x10° 1.44 x10° 2.55x10°
w, 1.768x10° 1.44 x10° 2.55x10°
W, 1x10° 1x10™ 1x107
W, 1x10° 1x107™ 1x107
A 1x10°° 1x10™ 1x107
h, 16.518 8.259 41.294
h, 5.902 0. 11.804
h 1x10°° -10.515 10.515
h, 1x10°° -2.6289 2.6289
h, 1x10° -3.5052 3.5052
b 0.001 0 0.1
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Figura 6.81 — Comparacio entre as temperaturas experimentais (curva cyan) e as temperaturas
calculadas com os valores iniciais da Tabela 6.40 (curva preta), para diferentes tempos experimentais:
(a) t=0s; (b) t=580s; (c)2900s;
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A tabela 6.41 apresenta os parametros € o tipo de priori envolvidos na estimativa
deste experimento. O caso 1, leva em consideragdo a informagao a priori de que se trata de um
experimento com um material homogéneo de modo que o filtro utilizado para este primeiro
caso foi uma constante. Deste modo, tem-se que apenas k,p ou kyz € Wy ou Wy, sa0 necessarios
na estimativa. Para ambos os casos utilizou-se de prioris normais centradas nas medicoes de
propriedade feitas no LTTC com 5% de desvio padrdo para kyy €/ou k. € wyy €/ou wyy € priori
normal centrada em correlagdo de conveccdo natural [Bejan (1993)] de placa plana vertical
com fluxo prescrito para o coeficiente de transferéncia de calor, para 4,y € h,;. Para os demais
parametros ( ky,w,, hy,hy, hs,b ) considerou-se prioris nao informativas.

Para o caso 2, o filtro considerado foi uma reta de modo que sem tem no vetor de
parametros a serem estimados dois parametros a mais do que no caso 1, permitindo-se assim
identificar variagdes espaciais das propriedades. Para este segundo caso espera-se estimar
valores de k,; € wy; iguais ou muito proximos aos de kyp wyy, respectivamente, uma vez que se

trata de um experimento de material homogéneo e de espessura uniforme.

Tabela 6.41 — Definicio dos dados de entrada para a solu¢ao do problema inverso.

Caso P Priori

1 o Nes0 N,U,N,U,N, N, U, U, U, U
(Kyo> Ky Wegs Wi s B sy Iy By by

2 o Nz N,N,U,N,N,U,N,N, U, U, U, U
(kvoskor s ks Wogs Wop s Wi g By s by by s by

A figura 6.82 apresenta a incerteza padrao da temperatura experimental ao
longo do comprimento da placa, onde percebe-se claramente uma incerteza praticamente
constante para a parte aquecida proxima de 0.4°C e uma maior incerteza para a regido nao

aquecida, chegando a valores maiores que 0.6°C.
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Figura 6.82 —Incerteza padriao da temperatura experimental ao longo do comprimento da placa para o
experimento com placa vertical e aquecimento superior

A figura 6.83 ilustra a distribui¢do dos campos transformados da temperatura
experimental ao longo do tempo para cada ordem. Percebe-se por estas figuras a importancia

mais significativa dos primeiros quatro campos transformados da expansao.

Texp
10000 -
L7 D D
5000 - /

No.Medidas

-5000

Figura 6.83 —Distribuicdo de temperatura transformada ao longo do tempo para as diferentes ordens da
série experimento com placa vertical e aquecimento superior
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A tabela 6.42 apresenta os valores das temperaturas transformadas médias para

o regime permanente, os desvios padrdo das temperaturas experimentais transformadas e os

desvios percentuais com relagdo as respectivas temperaturas experimentais transformadas

médias. Tais desvios foram calculados como sendo os desvios médios das temperaturas para

as ultimas 50 medidas no tempo (entre 2410s e 2910s) para cada campo transformado, ja em

regime permanente. A figura 6.84 apresenta o desvio padrdo da temperatura experimental

transformada para cada campo transformado. onde percebe-se graficamente o decaimento do

seu valor com o aumento do nimero de termos na série

Tabela 6.42. — Analise das incertezas da temperatura experimental transformada

Ordem i - o, o, %
1 -4001.95 290.99 7.27
2 7091.07 133.74 1.89
3 13873. 209.00 1.51
4 -4724.33 100.02 2.12
5 -2410.02 51.515 2.14
6 -436.347 35.404 8.11
7 -629.758 33.108 5.26
8 -218.287 34.948 16.01
9 311.161 30.442 9.78
10 -198.154 21.501 10.85
o
300
250
200
150 |
100}
501
| | | | | Ofdem

2

10

Figura 6.84 —Desvio padrio da temperatura experimental transformada para cada campo
transformado, para o experimento com placa vertical e aquecimento superior
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A tabela 6.43 e as figuras 6.85 a 6.89 apresentam os resultados das estimativas
para o caso 1. Na tabela 6.43 tem-se os valores estimados para cada parametro € os seus
respectivos intervalos com 99% de confianca. Pode-se perceber, pela analise desta tabela 6.43,
uma boa concordancia nas estimativas das propriedades com os valores iniciais referente as
medidas com o método Flash.

As figuras 6.85 a 6.88 apresentam, em preto, a curva reconstruida com os
parametros estimados através da técnica de transformagao integral (curva preta), enquanto as
curvas azul e vermelha representam os intervalos com 99% de confianga, inferior e superior, a
curva cyan representa a fungdo construida com os parametros iniciais e as linhas pontilhadas
dizem respeito aos intervalos méximos e minimos de procura dos coeficientes.

A figura 6.87 mostra que na regido nao aquecida, o coeficiente de
transferéncia de calor estimado ¢ praticamente nulo, uma vez que pelas analises dos perfis de
temperatura experimentais tem-se a parcela final da placa praticamente a temperatura ambiente
durante boa parte do processo transiente.

A falta de aderéncia ainda apresentada nas figuras 6.89, entre as temperaturas
calculadas com os parametros estimados e as temperaturas experimentais na regido de
temperaturas mais baixas e proximas a temperatura ambiente, pode ser resultado da nao-
linearidade do coeficiente de transferéncia de calor por convecg¢ao natural nessa regido, nao
retratada pelo presente modelo de coeficientes variaveis apenas espacialmente.

A figura 6.90, apresenta os residuos entre a temperatura experimental e a
temperatura calculada com os parametros estimados, onde percebe-se que os residuos
resultantes ainda sdo relativamente altos principalmente na parte ndo aquecida da placa,
chegando a valores proximos a 6 °C na regido mais extrema para o caso 1.

A Tabela 6.44 apresenta as estimativas encontradas para o caso 2. Para este caso
foram incluidas as estimativas dos valores das propriedades A(x) € w(x) em x=L,, uma vez que
a analise de sensibilidade apresentada anteriormente indicou uma maior sensibilidade da
solugdo do problema inverso no caso de se incluir estes parametros nas estimativas. Sendo
assim, para este caso utilizou-se um filtro linear de modo que os parametros k9 € k,; presentes
no filtro fossem estimados juntamente com os demais parametros. Para o caso anterior, havia-
se assumido um filtro constante uma vez que este experimento trata de uma amostra de um

material a principio homogéneo.
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Os resultados apresentados para o caso 2 através da Tabela 6.44 e das figuras
6.91 a 6.96 mostram a boa concordancia nas estimativas de kg € k.. , wyg € Wy, como esperado,
confirmando se tratar de uma amostra de material homogéneo. Todavia, também para este
segundo caso tem-se ainda uma falta de aderéncia entre as temperaturas calculadas com os
parametros estimados e as temperaturas experimentais na regiao nao-aquecida, de modo que os
residuos também para este caso continuam atingindo valores maiores que 5°C nesta regido da

placa, como no caso 1.

Tabela 6.43 - Estimativas e intervalos de confian¢a para o CASO 1

Dados de Saida das Estimativas
P Inicial Estimado ICmin-99% ICmax-99%
k., 0.2789 0.2823 0.2812 0.2834
k, 1x10° -5.840 x107" -7.878 x10™" 6.710 x10™"
W, 1.7683 x10° 1.761x10° 1.759 x10° 1.763 x10°
w, 1x10° -1.945 x10™° -2.576 x107™° -1.315x10™°
h, 16.518 23.067 23.037 23.097
h, 5.9020 0.0005205 -0.001048 0.002089
h, 1x10° 0.01002 0.00549 0.0145
h, 1x10° -0.0340 -0.0388 -0.0292
h, 1x10°® -0.1316 -0.1356 -0.1276
b 0.01 0.00878 0.00870 0.00886
k[x],W/nfC

0o m o oo e

03k

[ L EE L LR e R LT P PP L L P

01F

0.00 o 0.62 . 0.64 . 0.66 . 0.68 X
CASO 1

Figura 6.85 - Condutividade térmica estimada k(x)
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hix],W/m2°C
46;- --------------------------------------
30|
20|
10}
- A 1 L — —_ o L ue — —_ o L Xl'm‘l
0.00 0.02 0.04 0.06 0.08

CASO 1

Figura 6.87 - Coef. transferéncia de calor estimado — h(x)
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Figura 6.88 - Variacao do fluxo de calor no tempo — f{1)
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Figura 6.89 — Comparacio entre as temperatura experimental (curva cyan)
e a temperatura estimada (curva preta) para trés diferentes posi¢ées: (a) 1.15cm; (b) 4cm; (c¢) 7.68cm;
para trés diferentes tempos: (d) 580s; (e) 990s; (f) 2900s;
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Figura 6.90. CASO 1
Figura 6.90a-d — Residuos entre as temperaturas estimadas e as experimentais ao longo do tempo,
para 4 posicoes diferentes
Figura 6.90.e-h — Residuos entre as temperaturas estimadas e as experimentais ao longo do comprimento
da placa, para 4 tempos diferentes
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Tabela 6.44 - Estimativas e intervalos de confianca para o CASO 2

Dados de Saida das Estimativas

P Inicial Estimado ICmin-99% ICmax-99%
k., 0.2789 0.2808 0.2804 0.2813
k, 0.2789 0.2807 0.2802 0.2813
k, 0.0005088 -3.680 x10™"° -4.201 x107° -3.158 x107"°
W, 1.7683 x10° 1.7595 x10° 1.7571 x10° 1.7619 x10°
w, 1.7683 x10° 1.7741 x10° 1.7722 x10° 1.7760 x10°
w, 0.000509 -3.593 x10™"! -9.238 x10™" 2.051 x10™"
h, 16.518 23.044 23.012 23.077
h, 5.902 0.000552 -0.000856 0.00196
h, 8.039 x107 0.0101 0.00510 0.0151
h, 8.039 x107 -0.0290 -0.0336 -0.02448
h, 8.039 x107 -0.136 -0.141 -0.131
b 0.01 0.00881 0.00868 0.00894
k[x],W/nfC

O f oo oo e e
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Figura 6.91 - Condutividade térmica estimada k(x)
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Figura 6.95 — Comparacio entre as temperatura experimental (curva cyan)
e a temperatura estimada (curva preta) para trés diferentes posicdes: (a) 1.15c¢m; (b) 4cm; (c) 7.68cm;
para trés diferentes tempos: (d) 580s; (e) 990s; (f) 2900s;
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Figura 6.96. CASO 2

Figura 6.96.a-d — Residuos entre as temperaturas estimadas e as experimentais ao longo do tempo,
para 4 posicoes diferentes
Figura 6.96.e-h — Residuos entre as temperaturas estimadas e as experimentais ao longo
do comprimento da placa, para 4 tempos diferentes

238



Percebe-se pela analise das figuras 6.90 e 6.96, que em ambos os casos, 1 € 2, 0s
residuos apresentam um pico bem no inicio do transiente para os primeiros centimetros da
placa, mas ¢ na parte ndo aquecida que ele apresenta os desvios mais significativos,
principalmente para tempos grandes. Como uma tentativa de se reduzir os residuos para esta
regido ndo aquecida considerou-se um terceiro caso onde estimativas foram realizadas com um
nimero reduzido de medidas no tempo (150 medidas das 291 medidas disponiveis),
privilegiando-se a informagao ao longo do periodo de fato transiente e assim reduzindo-se a
importancia da informacgao sobre o comportamento ndo-linear dos coeficientes de transferéncia
de calor na regido nao-aquecida.

A tabela 6.45 apresenta os parametros considerados neste terceiro caso assim

como as prioris adotadas para cada um.

Tabela 6.45 — Definicio dos dados de entrada para a solu¢ao do problema inverso.

Caso P Priori

3 _ Np=12. N,N,U,N,N,U,N, N, U, U, U, U
(Kxo> ks kys Wegs W s Wi Bgs by By by By Dy

A tabela 6.46 e as figuras 6.97 a 6.102 apresentam os resultados das estimativas
para este terceiro caso.

Para este caso pode-se observar, através das figuras 6.101.a-f, uma melhor
aderéncia entre as temperaturas calculadas com os parametros estimados e as temperaturas
experimentais de modo que os residuos também diminuiram, quando comparados aos residuos
encontrados para os casos 1 ¢ 2, como apresentado nas figuras 6.102.a-h, atingindo valores

maximos de 4°C na parcela ndo aquecida da placa.

239



Tabela 6.46 - Estimativas e intervalos de confianca para o CASO 3

Dados de Saida das Estimativas

P Inicial Estimado ICmin-99% ICmax-99%
k., 0.2789 0.2856 0.2833 0.2880
k, 0.2789 0.2889 0.2837 0.2941
k, 0.0005088 -1.260 x10™° -3.722x107™° 1.203 x10™°
W, 1.7683 x10° 1.7487 x10° 1.7373 x10° 1.7601 x10°
w, 1.7683 x10° 1.7570 x10° 1.752 x10° 1.7620 x10°
w, 0.000509 4.928 x107"° 3.856 x10"° 5.999 x107?
h, 16.518 23.902 23.847 23.958
h, 5.902 0.00135 -0.00210 0.00480
h, 8.039 x107 0.0372 0.0284 0.0461
h, 8.039 x107 -0.00211 -0.00863 0.00441
h, 8.0398 x107’ -0.231 -0.236 -0.227
b 0.01 0.0103 0.0102 0.0104
k[x1,W/nfC
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Figura 6.97 - Condutividade térmica estimada k(x)

240




WL °C

25x10FF "= mTmmmmsssssssoosossosossosoosoo-oooo

20100 F
15105
1.0x100 F

500000 F

0.00 0.02 0.04 0.06 0.8
CASO 3

Figura 6.98 - Capacidade térmica estimada — w(x)
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Figura 6.99 - Coef. transferéncia de calor estimado — h(x)
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longo do comprimento da placa, para 4 tempos diferentes
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A seguir, na Tabela 6.47, apresenta-se a consolidagdo dos resultados
experimentais para a difusividade térmica, condutividade térmica e calor especifico, obtidas
com o equipamento Nanoflash da UNIMET/LTTC, nas temperaturas selecionadas de 25, 30,
35, 40, 45 e 50°C, condizentes com a faixa de temperatura dos experimentos aqui realizados.
Apresenta-se também, na tultima coluna, os valores da condutividade térmica do baquelite
variando com a temperatura segundo Dashora et.al. (1992), em boa concordancia com aqueles
calculados a partir das medidas de difusividade térmica e calor especifico do Nanoflash, para

uma massa especifica medida de p=1392 kg/m’. Vale observar a excelente concordancia com

os valores aqui estimados, a partir do caso 3, com valor médio de 0.288 W/mC.

Tabela 6.47— Analise das propriedades termofisicas das amostras de baquelite das placas ensaiadas;

Propriedade Amostras 1 Amostras 2 Meédias Dashora et.al. (1992)
a[mm?/s] 25°C | 0.164 (0.001)* | 0.168 (0.001)* 0.166 -
a[mm?%/s] 30°C | 0.163 (0.002)* | 0.161 (0.008)* 0.162 -
a[mm?%/s] 35°C | 0.160 (0.001)* | 0.157 (0.014)* 0.159 -
a[mm?*/s] 40°C | 0.156 (0.001)* | 0.156 (0.013)* 0.156 -
a[mm?®/s] 45°C | 0.154(0.000)* | 0.163 (0.007)* 0.159 -
a[mm?/s] 50°C | 0.150 (0.001)* | 0.155 (0.001)* 0.153 -

k [W/mC] 25°C 0.282 0.274 0.278 0.295
k [W/mC] 30°C 0.243 0.292 0.268 0.296
k [W/mC] 35°C 0.264 0.278 0.271 0.298
k [W/mC] 40°C 0.266 0.274 0.270 0.299
k [W/mC] 45°C 0.291 0.278 0.284 0.300
k [W/mC] 50°C 0.289 0.278 0.283 0.301
C, [J/gC] 25°C 1.236 1.200 1.218 -
C, [J/gC] 30°C 1.073 1.287 1.180 -
C, [J/gC] 35°C 1.187 1.248 1.218 -
C, [J/gC] 40°C 1.226 1.260 1.243 -
C, [J/gC] 45°C 1.359 1.294 1.327 -
G, [1/gC] 50°C 1.383 1.331 1.357 -

(*) desvio padrdo das medidas
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Capitulo 7

7. Conclusées e Sugestdes

No presente trabalho, foram estabelecidas as bases fundamentais e construidas
as ferramentas para a andlise teorico-experimental da condugdo de calor em meios
heterogéneos. Especificamente, o presente trabalho apresentou o uso combinado da
transformacao integral, da inferéncia Bayesiana e da técnica experimental de medi¢ao de
temperatura por termografia de infravermelho em problemas inversos de estimativa
simultdnea de propriedades termofisicas e condicdes de contorno em problemas
unidimensionais. O problema direto foi abordado de forma analitica através do Método de
Transformagdo Integral Classica (C.I.T.T.), enquanto que o problema de autovalor
relacionado foi resolvido via Técnica da Transformada Integral Generalizada (G.I.T.T.). Os
coeficientes varidveis na formulagdo do problema direto sdo eles proprios expandidos em
autofungdes, o que permite a obtencdo totalmente analitica da matrix de coeficientes na
transformacao integral. Na solug@o do problema inverso adotou-se abordagem de inferéncia
Bayesiana empregando o Método de Monte Carlo via Cadeia de Marckov (MCMC),
através do uso do algoritmo de Metropolis-Hastings como procedimento de amostragem.
Para a solugdo do problema inverso as fungdes espaciais a estimar foram também
expandidas em termos de autofungdes, o que representou uma relevante contribuicdo do
presente trabalho, uma vez que os comportamentos funcionais representativos das
propridades termofisicas variaveis foram recuperados com um nimero bastante reduzido de
parametros, em comparagdo com técnicas mais usuais de parametrizagdo. Todas as
implementagdes computacionais empregada neste trabalho foram construidas na plataforma
de computagdo simbodlica Mathematica, o que reduziu bastante o esforco de manipulagao

algébrica e derivacao das etapas analiticas.
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Os resultados obtidos no presente trabalho revelaram que ambas as abordagens
de estimativa, na temperatura ¢ no campo transformado, sao robustas com relagdo aos erros
de medidas e capazes de prover resultados mesmo para distribuigdes a priori pouco
informativas. A analise inversa baseada no campo transformado mostrou-se particularmente
util e apropriada na reducdo de dados, em situacdes onde se tem um grande nimero de
medidas espaciais disponivel, como no caso de experimentos envolvendo a termografia por
infravermelho. Esta idéia aqui avancada se destaca como uma das principais contribuigdes
do presente estudo, tendo em vista o ganho significativo em robustez e custo computacional
obtido na solucdo do problema inverso de estimativa simultdnea das propriedades
termofisicas, em relagdo a estimativa tradicional a partir de medidas e simulagdes do campo
de temperatura, como destacado na se¢do 6.2.3.

Nao obstante, a propria realizacdo desses estudos gerou novas idéias e
possibilidades de refinamento dos desenvolvimentos, mesmo para as situagdes
unidimensionais aqui tratadas. Assim, como proposta para trabalhos futuros, tem-se a
modificagdo do problema fisico proposto de forma a estender o presente estudo a situagdes
multidimensionais e/ou ndo-lineares.

Na extensdo do método de solucdo direta para situacdes multidimensionais,
que seria requerido no tratamento combinado acima proposto, deve-se lembrar que a
solucdo formal geral ja foi nesta fase apresentada. Entretanto alguns novos aspectos
computacionais sao propostos como extensdo, relacionados ao reordenamento de termos
nas expansoes das autofungdes, tanto para a representacdo do problema original, quanto
para a representacdo dos coeficientes varidveis. Neste caso, técnicas de aceleragdo de
convergéncia de seqiiéncias ndo-lineares podem ter um papel relevante para a representacao
dos coeficientes com um numero reduzido de parametros, reduzindo entdo o esforco de
identificagdo finalmente pretendido.

Novas perspectivas foram também abertas na extensdo da presente
metodologia de analise de problemas inversos para outras caracterizacdes em meios
heterogéneos, envolvendo nanocompositos e "functionally graded materials", incluindo
estimativas de propriedades variaveis também na profundidade do material a partir de
medidas de temperatura na superficie apenas. Esse ¢ um grande desafio que passa

possivelmente pela combinagdo de metodologias, mas que em vista dos resultados aqui
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obtidos sugere a expansdo em autofungdes das propriedades desconhecidas abaixo da
fronteira onde se tomam as medidas. Por fim, tais objetivos so serdo factiveis a partir de um
equipamento termografico mais preciso e amigavel, para adequacdo da qualidade das
medidas a robustez e precisdo dos métodos de solugdo dos problems diretos e inversos aqui

desenvolvidos.
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