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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ROSS-ML: UM SOFTWARE ABERTO DE MACHINE LEARNING VOLTADO
À ROTODINÂMICA

Luan da Silva Prado

Julho/2021

Orientador: Thiago Gamboa Ritto

Programa: Engenharia Mecânica

Neste trabalho, desenvolve-se um ambiente de aprendizado de máquina voltado
à rotodinâmica baseado na biblioteca Keras. Este ambiente possui uma série de
recursos de pré-processamento, tais como a redução de recursos por meio de árvores
decisoras,diversos métodos de normalização dos dados e uma vasta quantidade de
funções de otimização, permitindo um amplo repertório para a obtenção do melhor
modelo possível. Além disso, o ambiente dispõe de um módulo de pós-processamento
que permite avaliar os resultados sob diferentes perspectivas, o que facilita a tomada
de decisão. Após apresentar todas as ferramentas disponíveis, treina-se uma rede
neural com dados de um modelo de mancal hidrodinâmico e comparam-se os resul-
tados entre a rede neural e o modelo físico.Esta comparação mostra que além de
rápida a rede neural é um excelente modelo substituto.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

ROSS-ML: A MACHINE LEARNING OPEN-SOURCE SOFTWARE FOR
ROTORDYNAMICS

Luan da Silva Prado

July/2021

Advisor: Thiago Gamboa Ritto

Department: Mechanical Engineering

This work develops a Keras-based machine learning environment for rotor dy-
namics. This environment has many pre-processing resources, as Decision-Trees
feature reduction, many scalers, and a vast number of optimizers, allowing a broad
repertoire to obtain the best model possible. Besides that, the environment has
a post-processing module that allows model evaluation from different perspectives.
After presenting all the available tools, a neural network is trained with data from
a hydrodynamic bearing model, and the aftermath is compared with the physi-
cal model. This comparison shows that besides computational performance, neural
networks are excellent surrogate models as well.
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Chapter 1

Introduction

1.1 Motivation

Rotor dynamics is a multidisciplinary area that involves Tribology, Strength of
Materials, Fluid, and Thermodynamics. Normally, the governing equations of the
complete problem do not have an analytical solution, which justifies the use of tech-
niques as Finite Differences and Finite Elements, often available in both commercial
and open-source software.

In general, most software of dynamic analysis uses Finite Element Method (FEM)
[1] and Computational Fluid Dynamics (CFD) [2] as its core. To run any analysis,
programs as ROMAC, XLTRC2, PERMAS, NASTRAN, ANSYS, and Dyrobes need
an underlying geometry, a structured mesh, boundary conditions, and the physical
parameters to build a model.

Those programs, however, still do not allow the user to import data-driven models
and use them combined with CFD or FEM analysis. Besides that, commercial
programs assume that all the variables in place are deterministic, making users who
want stochastic analysis need to implement their models.

In this work, a program will be developed to address those questions by using
machine learning methods, which allows the user to generate models with either
experimental data or computational simulations and use them at any other software
in Python environment or even in commercial programs by generating a tabular
output. Furthermore, this software can be combined with ROSS [3], an open-source
code for rotor dynamics, and produce even better results.

Machine Learning methods encompass many techniques and algorithms, from a
simple linear regression [4, 5] to intricate neural network structures [6, 7].In the
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past few years, artificial neural networks (ANNs) showed versatility, being able to
perform tasks as facial recognition[8] and autonomous vehicle control[9]. However,
to perform such feats, the training set must be huge since the error surface in neural
networks with large degrees of freedom tends to be highly non-convex and non-
smooth, which compromises the search of a reliable minimum [10].

The main advantage of machine learning techniques is the creation of reusable
and cheaper surrogate models with minimum codification, which allows the devel-
opment of new tools with an outstanding speed; However, machine learning models
rely heavily on data, fact that compromises the reliability of models in which noise is
predominant, the information is doubtful or must be guessed. Moreover, depending
on the model, the amount of data needed to obtain reliable results in high dimen-
sional data is prohibitive, and, because of that, users must know the problem to
choose only essential features to perform the training.

When this is not possible, the solution is data augmentation or feature reduction.
The first case looks to the big picture to unravel intrinsic patterns to generate new
points [11] while the second maps data into lower spaces trying to keep its structure
unchanged [12], searches for relevant directions in data [13] or attributes to each label
a score based on its performance in a simple model and choose the only highest ones
[5].

1.2 Objectives

The objectives of this work are threefold. The first is to create a pipeline that
systematically builds a neural network with design flexibility. The second is to
develop a post-processing procedure to interpret the results and aid in the decision
taking process and the last objective is to show the neural network in a simple
example of uncertainty quantification.

1.3 Organization

This work starts initially discussing the main topics of Rotor dynamics, Neural
Networks, and related work combining both in Chapter 2. After setting out the
fundamentals, Chapter 3 describes the methodology used to construct the software,
while Chapter 4 exemplifies the program usage in detail. Finally, Chapter 5 con-
cludes the work and proposes further implementations.
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Chapter 2

Bibliographic Review

2.1 Rotors

Rotating machinery is composed of shafts, disks, and bearings. To correctly oper-
ate, many metrological procedures must be carried out, from adjusting to alignment.
If all practical considerations are in a model, the computations become cumbersome
or even infeasible. This kind of issue is avoided by choosing only important param-
eters to compose the model.

The addition of an uncertainty layer to the mathematical model recovers the
real-world problem; however, the solution obtained is now in terms of confidence
intervals, whose size depends on the computational effort available to calculate it.

Rotor dynamics starts formally in 1869 [14] when it was discussed the relationship
between centrifugal and restoring forces. In that time, it was concluded that exists a
threshold of operation, which would be impossible to operate above. This conclusion
was refuted in 1924 [15] with a flexible rotor that worked about seven times the
critical speed; however the term "critical speed" is held until nowadays.

At the first glance, the researchers’ focus was predicting the critical speeds. In
1894, it was derived an empirical formula to the lowest critical speed of a multirotor
system and coined this term due to the abrupt change in the system behavior[16].
Then, in 1924, was created a diagram representing critical speed about the cross
points of natural frequency curves and the straight lines proportional to the rota-
tional speed, the so-called Campbell Diagram [17]. After the discoveries of 1894 [16],
in 1921 was proposed a method to calculate natural frequencies and mode shapes in
torsional vibrations [18].
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After empirical and heuristic developments, a fundamental theory was established
in 1919 [19] and considerably improved from 1924 to 1969 [15, 20–23]. Bearings
have been studied in problems as internal friction of shaft materials causing self-
excited vibration in 1924 [24], oil whip in 1925 [25], nonlinear resonances due to ball
bearings in 1955 [26], journal bearings in 1966 [27]. Seals have been studied due to
steam whirl, a self-excited vibration phenomenon, that has been already explained
in turbines in 1958 [28] and compressors [29] in 1965.

In terms of modeling, Finite Element Method [1], [30] is used to describe shaft,
disks, and standard roller bearings. When journal bearings and seals are present,
proper CFD schemes are used to determine the pressure field and with it determine
both stiffness and damping coefficients in order to assembly elements to obtain the
equation

[M ]ẍ(t) + [C(Ω)]ẋ(t) + [K(Ω)]x(t) = f(t),

where [M ], [C], [K], x(t) and f(t) are mass matrix, damping matrix, stiffness matrix,
displacement and force vector, respectively.

Concerning notation, terms in brackets are matrices, terms in keys are vectors,
and all the other terms can be either vectors or scalars, depending on the context
they are used. In statistics, the notation is the same as used in [5, 31, 32]. In
dynamics, vector fields are described in bold and scalars in usual font.

Besides classical modeling, uncertainty analysis is also carried out. Generally,
Monte Carlo [31] techniques are used in conjunction with a probabilistic model to
achieve this objective. However, this scheme imposes another loop in the computa-
tion, which increases greatly the computational effort required to obtain the results.
So a surrogate model is needed to turn the analysis less prohibitive.

2.2 Fluid Bearings and Seals

In turbomachinery, oil-lubricated fluid film bearings are often used due to ade-
quate load support, good damping characteristics, and absence of wear if correctly
designed. Its purpose is to produce a low friction motion between two solid surfaces
with relative motion. The lubricant or fluid between the surfaces can be a solid,
liquid, or gas [33, 34].

When correctly designed and operated, they can support both static and dynamic
loads and, thus, their effects on the performance are quite relevant. The bearings
reviewed here are the ones with a full film separating the mechanical surfaces. The
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term film refers to the fluid thickness, say gap or clearance, separating the surfaces
is several orders of magnitude smaller than the width and length [33].

In terms of operational principles, Fluid film bearings can be hydrodynamic, hy-
drostatic, or hybrid. In Hydrodynamic fluid film bearings, also called self-acting
bearings, there is relative motion between two mechanical surfaces with a wedge.
The fluid is drawn into the film generating hydrodynamic pressures able to withstand
an externally applied load [33, 35].

Hydrodynamic bearings have advantages as long life, high coefficients of damping
and stiffness, the ability to withstand heavy loads, the absence of an external source
of pressure, and fluid flow drag into the convergent gap in the direction of the surface
where relative motion happens. On the other hand, disadvantages include thermal
effects that can affect the performance when film thickness or available flow rate
is insufficient, the requirement of a surface with a relative motion to generate load
support, the potential to induce hydrodynamic instability, and the induction of large
drag torque, which brings power losses, and potential surface damage at start-up.

In Hydrostatic fluid film bearings, also named externally-pressurized bearings,
there is an external source of pressurized fluid that forces the lubricant or fluid
between the surfaces, providing their separation and the ability to withstand a load
without contact with the surface [33–35].

As advantages of this arrangement, one could cite the capacity to support massive
loads, long life, very large coefficients, and the load independence from both film
thickness and lubricant viscosity. However, due to the external source of pressure,
this type of bearing needs auxiliary equipment, larger installation, a fluid filtration
system, which impacts on costs, loss of performance with contamination, potential
to induce hydrodynamic instability, and pneumatic hammer instability for highly
compressible fluids, in other words, the loss of damping at low and high frequencies
of operation [33, 35].

Besides fluid film bearings, complementary mechanisms are used to improve rotor
performance, as Squeeze film dampers and radial seals. The first works effectively
under compression and are used to reduce the vibration amplitudes and to isolate
structural components, while the second separate regions of high and low pressure,
minimizing the leakage and improving the machine efficiency in the process of ex-
tracting or delivering power to a fluid [33].
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2.3 Neural Networks

To reduce the computational cost of cumbersome CFD calculations, one can use
surrogate models . As examples, one can cite response surfaces, kriging, gradient-
enhanced kriging (GEK) [36], radial basis function, support vector machines [37],
space mapping [38] , artificial neural networks [6] and Bayesian networks [39].

To properly build a surrogate model, f̂ , of a black-box expensive model, f , a
sampling plan X = (x1, x2, ..., xn) is required. The first step of the sampling plan
is the correct choice of X, which depends on which features affects the output
significantly when modified. With this information, the most relevant features are
sampled to represent the design space accurately. After this, f is learned from
data pairs [(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)], reason why this process is called
supervised learning. To sum up, this procedure is a search across the space of
conceivable functions f̂ that would replicate f at the specified design. The main
caveat in obtaining data pairs is the computational cost involved to calculate the yi
in each sample. As a good practice, to avoid further efforts is recommended to scale
the input into the unit cube [0, 1]k.

An adequate function must fit the data parsimoniously since it cannot be too
refined, capturing each detail of data, including noise, or too gross, being unable to
represent correctlyf at all. When the first issue occurs, the function f̂ is over-fitting
the data, which completely captures each detail at the design space, but as a trade-
off generalizes poorly. On the other hand, when f̂ cannot even capture the details
at the design space, it occurs under-fitting [5] (Fig 2.1 [40])
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Figure 2.1: Under-fit (left figure), Proper fit (center figure) and Over-fit (right
figure). Note that under-fitted model is unable to catch any characteristic of data,
while the overfitted one captures excessive detail in data, which can be misleading
due to the presence of noise.

By completing the first step, we obtained the data necessary to perform the learn-
ing process and a generic model ŷ(x,w). The next step is to choose the set of pa-
rameters w which best fits the data. The most common techniques are Maximum
Likelihood Estimation (MLE) [31] and Cross-Validation (CV) [37].

Given a set of parameters w and the model ŷ(x,w), is possible to compute data
set probability {(x1, y1 + ε), (x2, y2 + ε), (x3, y3 + ε), ..., (xn, yn + ε)} that resulted
from ŷ, with ε considered small and with a constant margin around each point. If
the error ε is considered independent and randomly distributed following a normal
distribution and the points are independent and identically distributed, the data set
can be modeled as:

f(y|ŷ(x,w)) =
1

(2πσ2)n/2

n∏
i=1

{
exp

[
−1

2

(
yi − ŷ(xi, w)

σ

)2
]}

In order to obtain the best w, one should maximize the above expression with respect
of w, or similarly:

min
w

n∑
i=1

(
yi − ŷ(xi, w)

σ

)2

.Being σ a constant, the expression reduces to:

min
w

n∑
i=1

(yi − ŷ(xi, w))2 ,
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which is the so-called ordinary least squares criterion. One of the weakness of
this approach is the fact of considering the error independent, what does not hold
when heteroscedasticity is present. This term refers to the phenomenon of variable
standard deviation across the data, which results in a non-optimum w obtained with
ordinary least squares.

To solve this question, methods as Weighted Least Squares and Generalized Least
Squares arise. The first supposes that each error has a variance, and the last goes
further and adds the hypothesis that the errors are correlated.To further details,
check [31].

To avoid using the least-squares strategy in heteroscedastic data, one must per-
form a hypothesis test to verify it. As examples of heteroscedasticity tests, one
can cite the White test [41] and Breusch-Pagan test [42] or even scatter plots or
standardized error plot.

Another procedure used is cross-validation, method that split data into q equal or
almost subsets, then perform the fit always removing one of the subsets. During the
training process, the model is evaluated by a loss function that is used to evaluate
the error between the values in data set and the predicted ones. In mathematical
terms, we have the following:

εcv =
1

n

n∑
i=1

L(yi, f̂
−ζ(i)(x,w)),

where f̂−ζ(i) is the function calculated in every point except the ones in the subset
ζ(i). By using the mean squared error, one obtains:

εcv =
1

n

n∑
i=1

(yi − f̂−ζ(i)(x,w))2.

Note that this expression and its results don’t depend on the hypothesis of homo-
cedasticity; however, the right choice of the loss function is of main concern, being
a good choice the one that takes into account the topology of the design space.

To validate the trained model, is it chosen a subset of say, 25% to 30% of the
data set, to be compared to the trained model [5] by using an adequate model. The
most common ones are mean squared error(MSE), mean absolute error (MAE), and
correlation coefficient (R2). Another alternative is to use graphic methods as q-q
plots or conduct a hypothesis test, as described in chapter 3.
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As stated before, neural networks are a type of surrogate model, so it inherits
all the considerations described above to achieve proper results. Besides being a
surrogate model, neural networks are a bio-inspired model that can acquire and
retain knowledge by using a set of processing units, artificial neurons, connected by
the means of several interconnections, implemented by vectors and matrices.

From a historical perspective, [43] composed a bio-inspired mathematical model
that resulted in the first conception of an artificial neuron. [44] proposed a train-
ing procedure that was based on hypothesis and observations of neuro-physiologic
nature. [45] proposed the first neurocomputer, the Mark I Perceptron, crafting
the basic model of perceptron. [46] proposed the ADALINE (adaptative linear el-
ement). [47] published a book concerning the perceptron theory and [48], [49] and
[50] proposed the use of reverse gradients, self-organizing maps, and adaptive res-
onance theory, respectively. As examples of modern application, we can cite facial
recognition[8] and autonomous vehicle control[9].

To obtain reliable results, a large amount of data is necessary to perform the
training, which is directly proportional to the task complexity. An example of this is
the autonomous car from Tesla, which involved 48 neural networks and 70000 hours
of GPU of training [51]. A very pertinent question arises in the neural network area:
Is it possible to train neural networks when data is insufficient? The answer is: it
depends. If the task has similarity with another, Transfer Learning techniques [52]
can be performed, but if the task is unique and data is scarce, Manifold Learning
[53] is recommended.

Before describing the methodology,it is worth to briefly discuss what is exactly
Manifold Learning and which areas it encompasses. Manifold Learning is a multidis-
ciplinary area that involves General Topology , Differential Geometry and Statistics.
Good references in Topology include [54–61], Differential Geometry include[62–65]
and Statistics include [66] and [32].

The main focus of Manifold Learning is the information extraction of Manifolds,
which are a generalization of vector spaces in two, three, or higher dimensions. To
properly develop the intuition behind the manifold, imagine an ant crawling on a
guitar body. From the ant perspective, due to its tiny size, the guitar seems flat and
featureless, although its shape is curved. A manifold is a topological space that lo-
cally looks flat and featureless and behaves like a Euclidean Space; however different
from Euclidean Spaces, topological spaces do not have the concept of distance.
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To clarify what is a locally Euclidean space, some definitions are necessary. A
topological space X is said to be locally Euclidean if there exists an integer d ≥ 0 such
that around every point in X, there is a local neighborhood that is homeomorphic,
that is, there is an invertible continuous map g : X → Y , to an open subset in
Euclidean space Rd.[53]

Besides Euclidean space, another space in Manifold learning is the Hausdorff
space. A topological space X is a Hausdorff space if every pair of distinct points has
a corresponding pair of disjoint neighborhoods. Almost all spaces are Hausdorff,
including the real line R with the standard metric topology. Also, subspaces and
products of Hausdorff spaces are Hausdorff. X is second-countable if its topology
has a countable basis of open sets[53].

In terms of techniques of Manifold Learning, one can cite Spectral Embed-
ding Methods, like Isomap[67] and Local Linear Embedding, LLE,[68], Laplacian
Eigenmaps[69], Diffusion Maps [12], Hessian Eigenmaps[70], Nonlinear PCA [71],
Manifold Sampling[72] and Normal Bundle Bootstrap [73]. With the aforemen-
tioned methods, it was possible to use manifold learning from image recognition [74]
to human motion[75].

2.4 Related work

The combination of neural networks with Rotor dynamics is a recent field in
engineering with a crescent number of publications. To cite a few, [76] used Neural
networks to diagnose rotating machines based on their orbit and [77] goes further
and develops automated fault detection based on the transient analysis. Recently,
[78] reviewed the machine learning techniques and showed how these tools use in
the context of rotor analysis. Concerning bearings, [79] focused on fault diagnosis
of ball bearings using artificial neural networks (ANN) and support vector machine
(SVM) and [80] used a Convoluted Neural Network and Dynamical Time Warping
to detect race faults in roller bearings.

The present work creates an environment that allows the creation of neural net-
works for regression and provides several tools to evaluate the results from different
perspectives, allowing a robust and reliable analysis of the model’s performance.
Chapter 3 resumes the theory behind the software and highlights complementary
literature for both theoretical and practical purposes.
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Chapter 3

Program Methodology

This chapter discusses the software itself. Its core is the Keras library, which
allows an all-purpose, fast and scalable solution. The software developed is focused
on regression, but it can also be used in classification, with just a few modifications.

To correctly use this code, theoretical key-concepts of neural networks must be
understood. To complete this task, books as [7],[6] and [81] should be used.[82] and
[83] are good practical references.

The first step to build an acceptable solution is the proper understanding of
inputs and outputs. To obtain acceptable results, one must avoid the aphorism:
"garbage in, garbage out". What does exactly this phrase mean in the context of
neural networks? In terms of output, "garbage" is an overfitted or an under fitted
result, and concerning inputs, "garbage" is a data set with high dimension(many
columns) and few samples ( few rows) that produces poor results, the so-called
curse of dimensionality, which can be troublesome to the optimization algorithm to
achieve a proper result.

To avoid it, two options are commonly used: obtaining more data or feature
reduction. The first option is not always feasible, since data can be expensive to get
or simply unavailable due to limited budget, and the second is to perform feature
reduction, by using techniques as Decision Trees [84][5], Adjusted Mutual Info-Score
[85] or F-test [86].

To build a proper solution, the instructions needed to solve this kind of problem
are structured in the form of a pipeline, which is shown in figure 3.1.

The first two steps, Set Labels and Set Features in Fig. 3.1, are straightforward
and encompasses the data set input and its divisions in labels and features. Feature
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Figure 3.1: A Pipeline to build a Neural Network based surrogate model
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reduction (lit. in Fig. 3.1) is an optional step recommended only when the number
of features is high and the number of samples is insufficient, which is discovered by
running a model with all the available features and checking the loss function at
training. If the loss function is too high and achieves saturation too fast, this means
that the samples given are unable to describe precisely the underlying topology and,
because of that, the optimizer stays stuck on a local minimum instead of continuing
the search of a global minimum.

The scaling process,referred as Data Scaling in Fig.3.1, is the most important
before the model construction since it is possible to encapsulate the weights on
the same scale, turning the algorithm more stable and increasing its performance.
There are several ways to scale data, being the most popular one the normalization,
which basically shifts the data by its mean and scaling it by its standard devia-
tion.Mathematically speaking, classical normalization performs the following:

Z =
X − µ
σ

,

where µ is the mean and σ is the standard deviation. This process keeps the trans-
formed data with the same distribution as the brute data; however, this kind of
transformation is insensitive to outliers, which could compromise the optimization
process. Another similar process of scaling is using the minimum and maximum to
keep the data set in interval [0,1], that is:

Z =
X −Xmin

Xmax −Xmin

.

Note that in this case, the scaling is also insensitive to outliers. To solve this issue
is possible to scale the data by shifting it with the median and dividing it by the
IQR range, the difference between the third and the first quartiles, that is

Z =
X −Q50

Q75 −Q25

,

being Q50 the median,Q75 and Q25the third and first quartiles, respectively. The
quartiles are robust to outliers since the calculations involve the value position, not
the values themselves. As an example, it suffices to note that both (1, 10, 500) and
(−100000, 10, 100000) has the same median but different means. Note that this
process of scaling only works well in normal distributions or in symmetric data.

Another form of scaling is to perform non-linear transformations, as Box-Cox or
Yeo-Johnson transformations that aims to stabilize the variance and to transform the
feature distribution into a normal-like distribution. With a normal-like distribution

13



in hands, is possible to perform all the above techniques to convert the interval to
a more appropriate one.

Besides all the techniques aforementioned, is also possible to perform quantile
transformation, which converts each feature in the data set on a Uniform distribu-
tion at the [0,1] interval by using the inverse of the Empirical Cumulative Density
Function (ECDF) to map the data distribution into a standard uniform with support
[0,1]. To be properly converted, a considerable amount of data needs to be provided,
in order to guarantee the transformation accuracy. With quantile transformation is
also possible to map the converted uniform in any other distribution by knowing its
CDF.

After scaling the data, the next step is to build an adequate Neural Network
(Build Neural Network in Fig. 3.1), which main ingredients are namely the activa-
tion functions, the number of neurons per layer, and the number of layers. In re-
gression problems, Rectified Linear Unit, ReLU in short, is the most used activation
function, due to its non-saturating gradient, which greatly increases the convergence
of stochastic gradient descent [87] compared to the sigmoid and hyperbolic tangent
functions [88]. As a reminder, the ReLU function is given by:

ReLU(x) = max(0, x).

Note that the ReLU function is easier to implement in comparison with other activa-
tion functions, which turns the computational cost cheaper. A comparison between
activation function and architectures can be found in [89].

The number of neurons can be determined in a straightforward way for both first
and the last layer. These layers must have the same number of neurons as features
and labels respectively. The hidden layers can be both single layers or multiple
layers since they are both universal approximations and can approximate arbitrarily
well any continuous function of n variables on a compact domain. The difference
between them is the number of neurons required to perform the task. In a shallow
network, is necessary a huge quantity of neurons since the abstraction must happen
in a single layer, while deep networks need fewer neurons but more layers to perform
the abstraction, which allows more versatile networks with fewer neurons and faster
computations [90],[91].

As a rule of thumb, when a hidden layer scheme is used it is recommended to use
a decreasing number of neurons per layer, decreasing from the number of inputs to
the number of outputs in the last layer. The optimal set-up actually is obtained

14



by trial-and-error by using as a compass the loss function per epoch, the moment
in which the weights are actualized. If a new set-up makes a relevant change, this
will be reflected on the loss per epoch, which also allows the analyst to verify the
presence of over-fitting in the algorithm.

After building the ANN model, the next step is to choose how the weights will be
actualized,referred as Run Neural Network in Fig. 3.1. To do so, a Loss function
and an optimizer must be chosen. A list of all the available loss functions can
be found at [92] and a comprehensible explanation can be found in [5]. The loss
function determines the underlying topology to be optimized, which also affects the
optimizer’s performance.

In Keras, several loss functions are implemented for both regression and clas-
sification. In regression problems, losses as Mean Squared Error, Mean Absolute
Error, Log-Cosh, among many others. In classification, loss functions as Binary
Cross-Entropy, KL-Divergence are available. The loss function choice depends on
the problem tackled and the user should choose it with care. In this work, the loss
function used will be always Mean Squared Error due to its interpretability.

The main idea behind the most common optimizers is the gradient descent. Gra-
dient Descent is an optimization scheme that aims to minimize a function by taking
the steepest descent, ie the gradient, in each iteration, that is

xk+1 = xk − αk∇f(xk),

where αk is the step size on iteration k and ∇f(xk) is the gradient at the same
iteration. The step size can be optimized at each iteration:

αk = argmin
α

(f(xk − α∇f(xk)).

Note, however, that optimizing the step size would require a bracket search, which
increases the computational process cost. In the machine learning community, the
step size is normally called the learning ratio and is a prescribed value.

Gradient descent is not a reliable method in any topology, since it has hard times
with narrow valleys because of the number of iterations required to achieve its floor.
To avoid this problem methods as Conjugate Gradient can be used and standard
Gradient Descent can be improved with the addition of momentum or Nesterov
momentum, an improvement of classical momentum method.
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Momentum methods surely reduce the iterations to achieve a minimum; however,
they have as the main issue the fact that all x components are updated with the
same learning rate, which is a problem when the gradients are sparse. To solve
these questions, several methods were developed as Adagrad, RMSProp, Adadelta,
Adam, and Nadam, which can be found in detail in [87]. Due to its ease to deal
with sparsity, which happens often in real problems, the aforementioned methods
are commonly used as optimizers in ANN regression.

Besides choosing an optimizer and a loss function, ANNs also requires a batch size
and many epochs to perform the training, since it uses Stochastic Gradient Descent.
Batch size is the number of samples used in each iteration, that will give ANN the
gradient information and an epoch is the number of passes of the entire training
data set that the machine learning algorithm has completed. Nowadays, a good
practice is to choose the batch size as an integer division of data and the number of
epochs chosen must be long enough to avoid under-fitting and sufficiently short to
prevent over-fitting, which is still figured out by trial-and-error and post-processing
heuristics.

Concerning post-processing, complementary procedures are created to explain as
many training aspects as possible. The first step is to evaluate Model History, which
will detail how was the procedure in terms of training loss and validation loss per
epoch. If the first is significantly less than the second, the model was over-fitted(Fig.
3.2[93]) and if both values are high the model was under-fitted (Fig. 3.3[94]).

Figure 3.2: Loss function per epoch suggesting overfiting.
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Figure 3.3: Loss function per epoch suggesting undefitting

To prevent over-fitting, some strategies could be used, as early stopping [95], reg-
ularization [37] or Dropout [96]. The first technique stops the optimization process
if the loss function stops decreasing after a defined number of epochs. Regulariza-
tion is a technique that adds to the loss function a regularizer term that penalizes
complex solutions. Dropout is a technique that at each iteration utilizes in some
layers a random fewer number of neurons than the total available, obtaining thus a
simpler model.

Besides the above strategies, regularization techniques as Lasso, Ridge, Elastic-
Net [5] and SR3 [97] arise to impose restrictions on the solution spaces and obtain
feasible solutions. Lasso, also called L1 regression, induces sparsity in the weights pa-
rameter space, Ridge, also called L2 regression, equalizes the weights, while Elastic-
Net is a compromise between L1 and L2. SR3 is an evolution of Elastic-Net, which
aims to improve its performance and has greater flexibility.

Underfit can be avoided by increasing the number of epochs necessary to training,
by denoising data or use a complex model by increasing the features or increasing
the number of layers, in the ANN context.
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Besides Model History, is possible to evaluate the model in a statistical fashion.
Consider that the data set is actually a sample from a unreachable population,
whose distribution must be at least bounded by a confidence interval. A good model
will reside inside the confidence band of each feature. To build a non-parametric
confidence band,first define the empirical distribution function, given by:

F̂n =

∑n
i=1 I(Xi ≤ x)

n
,

where

I(Xi ≤ x) =

1 ,Xi ≤ x

0 ,otherwise
(3.1)

with the distribution function, to obtain non-parametric 1 − α confidence band by
defining:

L(x) = max(F̂n(x)− εn, 0)

U(x) = min(F̂n(x) + εn, 1),

where

εn =

√
1

2n
log

(
2

α

)

To define a confidence bound, it suffices to use the DKW inequality which states
the following: "Let X1, ..., Xn F.Then, for any ε > 0, P

(
supx |F (x)− F̂n(x)|

)
≤

2e−2nε2". Thus, for any F :

P (L(x) ≤ F (x) ≤ U(x)) ≥ 1− α,

which is a 1−α confidence band. Is important to note that the greater the sample,
the narrower is the confidence band. With a few samples, the confidence band tends
to be too broader and thus is necessary to adopt another strategy.

To obtain a even more reliable result, further analysis must be performed. Besides
confidence bands, another approach is to verify if the distribution provided by the
Neural Networks is the same that the one that came from data set. Such task is done
with Kolmogorov Hypothesis Test, which uses the distance between the empirical
distribution functions of the train and test functions, in order to verify if the model
could also sample data from the population, which reflects the surrogate model
reliability. The test statistic of the Kolmogorov Test is

Dn,m = supx|F1,n(x)− F2,m(x)|.
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For large samples the null hypothesis of both distribution being equal is rejected
at level α if Dn,m > c(α)

√
n+m
nm

, being c(α) =
√

1
2

log
(

2
α

)
. If all features resides

on the confidence bands and all the Features pass the Kolmogorov Test, the results
are consistent. However, if all the features resides on the confidence bands but the
Features does not pass the Kolmogorov Test, a Welch Test should be conducted, in
order to verify if at least the distribution has the same mean. To perform a Welch
test, one needs to calculate both the t statistic and the degrees of freedom, given
respectively by:

t =
X̄1 − X̄2√

s2
1/N1 + s2

2/N2

ν =
(s2

1/N1 + s2
2/N2)2

s41
N2

1 ν1
+

s42
N2

2 ν2

,

where X̄,si,Ni,νi = Ni− 1 are respectively the sample mean, sample standard devi-
ation, number of samples and the number of degrees of freedom of the ith variable.
With these two parameter, namely t and ν, the null hypothesis of same mean is
checked by using the T-Student distribution.

Aside all the numerical techniques to check model reliability, is also possible to
perform graphical methods, such QQ plot and Standardized Error plot. QQ Plot
shows the surrogate model results plotted against the target-model ones. If the
surrogate model succeeds, its results will lie close the line with 45 degree slope (Fig.
3.4), else, the results will be distant from this line or even present a non-linear
behavior (Fig. 3.5).
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Figure 3.4: A example of a well-trained model. Note that QQ-plot shows that the
values are close enough of the target-model. Source: Wikipedia

Figure 3.5: A example of a poorly trained model. Note that in this case, the trained
values are distant from the target-model and present non-linear behavior. Source:
Wikipedia
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As a complement to the QQ-plot, is common to visualize also a standardized
residual plot(Fig.3.6[98]) that consists of plotting the standardized error,namely
y−ŷ
σ(y−ŷ)

, against the test values,y. The main characteristic of this plot is to exhibit the
dispersion at each point of the reference model, which helps to find how accurate
has the training across the training set range. If the variance is a function of the
values, this shows that the training does not have significance at this range, which
suggests that this region requires more samples.

Figure 3.6: A example of the plot of the standardized residuals. Note that the first
case shows a model hypothetically well trained at every range, while the second
model suggests an underestimation at the lower values and overestimation at higher
values. To solve this kind of problem, the model must be reviewed or a new data
set must be taken.

.

In cases when data is insufficient, the target model must be revisited with more
inputs. To obtain more of them, a copula strategy can be performed without any
greater risk. There are many approaches to obtain the marginals and it will depend
on how much information is known.
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The scenarios covered here are three:

• the user only has minimal knowledge about the subject, knowing very little
about the marginals;

• the user does not have complete data, but knows the marginals probability
density functions (pdfs) and supports;

• the user has a reasonable amount data, but do not know which distribution
to fit in each marginal;

To solve the first case, a solution is to use the available information to infer
what inputs should be. One approach is to use the principle of Maximum En-
tropy(MaxEnt), which states that the current state of knowledge is represented by
the probability distribution function (pdf) with the largest entropy [99]. Another
approach is using

When this strategy is used, new data can be generated from the discovered prob-
ability density functions by using rejection sampling; however, the generated data is
uncorrelated. A straightforward way to generate correlated data keeping as marginal
de pdfs of MaxEnt method is to generate data from a multivariate normal distribu-
tion, N(0, ρ), being ρ as a user-defined correlation matrix, map the marginals into
(0,1) Uniforms by using Cumulative Distribution Function and then remap these
marginals into those obtained with MaxEnt by using empirical percent point func-
tion (ppf), obtained from the inverse empirical cumulative distribution function [31]
from each one of the uncorrelated marginals. Schematically, we have this strategy
as described in figure 3.8.

The second case is quite straightforward since the user knows which distributions
to use, being his only concern on how to generate correlated samples of dependent
variables, if any. The suggestion is to initially use the same strategy as above;
however, the Achilles’ heel of this approach is the presence of asymmetry between
correlations, which was one of the Financial Crisis’(2007-2008) causes. Aside from
the coupling using normal distribution is possible to use other functions to do so, as
shown in figure 3.9[100, 101]. An extensive explanation of this topic can be found
in [102]

When a reasonable amount of data is available, the marginals can be obtained
with the aid of Kernel Density Estimation [31], a non-parametric method, or by fit-
ting beta distribution on continuous and unimodal data using Maximum Likelihood
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Estimation (MLE) [31] and by re-sampling the discrete data following the propor-
tion of each outcome. The main drawback of non-parametric is the tuning kernel
parameter. In literature, several procedures have been developed to solve this issue,
being the most prominent ones [103] and [104]. To by-pass this problem, the afore-
mentioned MLE strategy can work, due to the versatility of beta distribution (Fig.
3.7) and the ease to re-sample data from discrete distributions, if this were the case.
If there is a need of even more versatile distributions, one should use Generalized
Lambda Distributions [105].

Before coupling the marginals, one should quantify how good the fit was by cal-
culating the Kullback-Leibler divergence between data and the fitted samples, in
other words:

DKL(P ||Q) = −
∑
k

pk log

(
qk
pk

)
,

where P is the reference, Q is the proposed model and pk and qk their respective
samples. A good fit should result into a value close to zero, which implies that
Q ≈ P

Figure 3.7: Beta distributions.
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Figure 3.8: schematic showing how to generate correlated data using the Maximum
Entropy principle with just the information of marginals

Figure 3.9: Different functions that couple marginal distributions

24



Chapter 4

Program usage

This chapter shows how to use the program efficiently by showing examples of each
program’s functionalities. The first step is to subdivide the data set into features
and labels, the former being the inputs and the latter the outputs.

Before constructing the neural network itself, is possible to perform feature re-
duction, which is recommended when the number of features is considerably high
and optimization cannot achieve a reliable minimum, which compromises model’s
accuracy.

To exemplify the effects of feature reduction, a neural network with the architec-
ture 20:16:16:8 (Fig. 4.1) and is trained with a database with 20 features(Fig. 4.2)
and its results are compared with another network trained with 15 (Fig. 4.3) and
3 (Fig. 4.4) features,respectively. Is worth noting that the input layer have always
the number of neurons equivalent to the reduced number of features.
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Figure 4.1: Architecture used in example
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Figure 4.2: Loss function per epoch obtained using all the features available to train
the model

Figure 4.3: Loss function obtained using 15 features to train the model
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Figure 4.4: Loss function obtained using 3 features to train the model

Note that the use of fewer features does not change significantly the model per-
formance until 3 features. After that, it turns out that the optimization algorithm
gets stuck on a local minimum, making further learning impossible.

With the selected features, the next step is scaling. In this example, both inputs
and outputs were scaled by Scikit-Learn MinMaxScaler, which maps the data set
into the [0,1] interval based on data amplitude. Scaling reduces the computational
effort in obtaining a minimum in the optimization process. A comparison between
a scaled and unscaled set is shown in figure 4.5

The next step is to build the neural network by setting the number of hidden
layers used, as both input and output layers are defined by labels and features:
After building ANN, the next set is to run in by defining the number of division
of data set, namely batch size, and the number of iterations in which the weights
are updated, namely the epochs: By standard, the optimizer used is Adam and the
loss function to be minimized is the Mean Squared Error. Both can be changed
to any other optimizer or loss-function available in the Keras environment. To
choose properly the optimizer, [87] is a good reference and loss-functions are widely
discussed on [5, 31].
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(a)

(b)

Figure 4.5: Difference between a scaled model and a unscaled one. Note that scaling
allows a better minimization of loss function, while unscaled data has higher error
and a worst minimization.

After training, the results can be further analyzed by post-processing procedures.
In ROSS-ML, the available analysis is:

• Model History

• Metrics

• Hypothesis Tests
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• Confidence Bounds

• Q-Q Plot

• Standardized Residuals Plot

Model history, as stated before describes the evolution of loss function per epoch,
which allows us to diagnose the optimization process. Metrics describe the model’s
performance quantitatively, being the following ones implemented on ROSS-ML:

• MAE:
∑

i |Yi−Ŷi|
n

• MSE:
∑

i (Yi−Ŷi)2
n

• R2: 1−
∑

i (Yi−Ŷi)2∑
i (Yi−Ȳi)2

• R2 adjusted: 1− 1−R2 n−1
n−p−1

• Explained Variance:1− V ar(Y−Ŷ )
V ar(Y )

MSE is a measure of the quality of an estimator—it is always non-negative, and
values closer to zero are better. This measure is recommended when the overall
values are greater than one, since squaring values less than this threshold always
gives low values, which can be misleading.

This question is solved by using MAE. This metric looks only at the absolute error
and thus penalize points with a low order of magnitude more than MSE. However,
distant points are less penalized than closer ones when compared to the MSE, which
is troublesome since it induces a low risk, which is misleading in the decision process.

R2, adjusted R2, and explained variance aim to quantify the quality of fit. The
first aims to compare both the spread around the fitted curve and that around the
mean. A good model is the one that has significantly less variance in comparison to
the second centered moment of data itself. Adjusted R2 corrects its counterpart by
accounting the phenomenon of automatic increasing of R2 when extra explanatory
variables are added to the model and adjusted variance compares directly the second
centered moment of the error distribution and data distribution. So, The closest
these metrics are to one, the better.

The aforementioned metrics should be used with care since they cannot tell ob-
jectively if the model is accurate enough to a specific application. Due to that, MSE
and MAE are also called risk functions [31] and the use of R2-like metrics alone can
be also misleading. [106].
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To complement these metrics, graphics and statistical analysis are available in
ROSS-ML. As described in Chapter 3 KS-Test and Welch-test can be used. The
first, as described before, tests if the surrogate model could reproduce the same
distributions as the physical model, while the last only verifies the equality between
the first moments. To use the Welch test properly is recommended to have a nor-
mal distribution or at least a non-skewed distribution. If this condition cannot be
achieved, the test loses its power and to amend that the significance level should be
changed or the distribution should be transformed by using Box-Cox or Yeo-Johnson
transforms for example.

As stated on Chapter 3, the available graphics besides model history are:

• Q-Q plot (Fig. 4.6)

• Standardized Residuals Plot (Fig. 4.7)

• Confidence bounds (Fig. 4.8)

Figure 4.6: A quantile-quantile plot obtainable with ROSS-ML
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Figure 4.7: A standardized error plot obtainable with ROSS-ML

Figure 4.8: A 95% confidence interval obtainable with ROSS-ML

According to [107], the Q-Q plot is a graphical technique for determining if two
data sets come from populations with the same distribution. The closer the points
are from a 45-degree reference line, the more similar are the distributions. The
greater the distance from this reference line, the greater is the difference of the
underlying distributions.
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Q-Q plots are quite advantageous, since it can compare samples with different sizes
and also allows the analysis of many distributional aspects of the results, namely
shifts in location, scale, changes in symmetry, outlier detection and presence of
multimodality. In a Q-Q plot, if two data sets from populations whose distributions
are different just in location, the points will be shifted from the reference line (Fig.
4.9). If the difference lies on scale, the slope will be different from 45 degrees (Fig.
4.10). When the distributions are different, the scattered curve shows a non-linear
behavior (Fig. 4.11)

Figure 4.9: When the difference lies on location, the scattered points are shifted
from the reference line.

Figure 4.10: When the difference lies on scale, the scattered points has a different
slope from the reference line.

33



Figure 4.11: When the difference lies on distribution, the scattered points has a
non-linear pattern

A standardized residuals plot (SEP) is a tool to assess the sufficiency of the
functional part of the model. Normally, in regression the models follow the structure:

Y = f(X) + ε,

where f(X) is the adjusted model and ε is the associated error. When the model
fits data adequately, ε presents a random behavior towards zero, often supposed
normal. On the other hand, an inadequate model presents a systematic structure
in its error, which suggest that the model can be further improved or that ε has
complex structure. As an example of SEP use is shown in figures 4.12 and 4.13
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Figure 4.12: When the model is adequate, the residual behaves itself as a random
variable towards 0. In this example , the random points have been generated by
adding noise with the form N(0, 3) to the function y = 2x + 4, which has been
chosen as the model to fit data. Note that in this case the residuals shows clearly a
random behavior.
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Figure 4.13: When inadequate, the residuals shows a systematic behavior. This
case use as data the same set as before, differing only in the chosen model is now
y = 2x2 + 2x + 4. Thus, the residuals have the form ε = 2x2 + N(0, 3) and now
present a systematic behavior

Confidence intervals are tool to identify the range of values that is likely to include
a population value with a confidence level. In ROSS-ML, this tool generates a
confidence interval around each variable from the test set, which tells us the possible
whereabouts of another sample 95% of the time. So it is reasonable to think that if
a model generates good predictors, the predicted values should lie in the confidence
intervals since both test sets and the predicted values would come from the same
distribution.

With all ROSS-ML’s features explained, it is time for an example. Here, it will
be used the journal bearing equation [34, 108–111] available on ROSS, in which the
governing equation of the pressure field is a simplification from the Navier-Stokes:

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ , (4.1)

where v = (u, v, w) is the velocity field, ρ is the fluid density,σ is Cauchy’s tensor
and t is time variable. The usual hypotheses of Newtonian incompressible fluid
and laminar flow are considered. In cylindrical coordinates, considering a small gap
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Figure 4.14: Coefficients obtained by integrating the pressure field over the area

between to shaft and the bearing, we arrive at the system of differential equations
[110, 111]:

−∂p
∂z

+ µ

[
1

r

∂

∂r

(
r
∂u

∂r

)]
= 0 ,

−1

r

∂p

∂θ
+ µ

[
∂

∂r

(
1

r

∂rw

∂r

)]
= 0 ,

(4.2)

where p is the two-dimensional pressure field, u is the speed in the axial (z) direction,
w is the speed in the tangential (θ) direction, r is the radial direction, and µ is the
fluid viscosity. Adding the continuity equation, including the boundary conditions,
and discretizing the pressure field by means of the finite difference method, it is pos-
sible to obtain an approximation to the pressure distribution. All the development
can be found in [110, 111], and the codes are in ROSS [3].

By integrating the pressure field over the journal bearing area, the forces in the
x and y directions are obtained. The bearing coefficients (Fig.4.14 [112]) (stiffness-k
and damping-c) can then be computed:

kxx =
Fx − Fxx

∆x
, kxy =

Fx − Fxy
∆x

kyx =
Fy − Fyx

∆y
, kyy =

Fy − Fyy
∆y

cxx =
Fx − Fxx

∆ẋ
, cxy =

Fx − Fxy
∆ẋ

cyx =
Fy − Fyx

∆ẏ
, cyy =

Fy − Fyy
∆ẏ

(4.3)

Although accurate, this model is too slow for applications such as uncertainty
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analysis. To solve this issue, a surrogate model is build with aid of ROSS-ML. To
generate the data set, the strategy chosen is as it follows: let Par be the nominal
value of each input parameter of the physics-based model, and per a perturbation
factor of 0.01. To generate the data set, 100 independent samples has been sampled
from Uniform random variables with support Par[(1 − per), (1 + per)] were used to
all variables but the stator and the rotor radius, which respect Par[1, (1 + per)]

and Par[(1− per), 1], respectively, to guarantee geometrical compatibility. The four
nominal input parameters are: shaft rotational speed Ω = 523.6 RPM, viscosity
µ = 2.405 × 10−2 Pa.s, fluid density ρ = 860 kg/m3, rotor radius rr = 45 mm.
The stator radius is computed as rs = rr + c, and the eccentricity is computed
as ε = rs − rr. The clearance and load are considered constants, respectively,
194.6× 10−6 m and 622 N.

To achieve good results, one can use either shallow or deep neural networks [90].
In the first case, the architecture effectiveness is evaluated by gradually increase the
number of neurons and computing metrics as R2 or Akaike Information Criterion
(AIC). In the second case, this strategy turns to be infeasible since the number of
possible scenarios considerably increases. To address this problem techniques as
pruning [113] are used to reduce the architecture.

As an example of shallow neural networks architecture selection, the number of
neurons will be gradually increased and R2 is computed for each architecture 4.16.
Here, the best architecture for shallow networks is 6:7:8.

Figure 4.15: Checking the best architecture of a shallow network. Note that 7
neurons already give a good result

Even though the shallow arrangement presented a goodR2, the KS-Test has shown
inconsistencies in representing both damping and stiffness coefficients at a level of
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Figure 4.16: The best architecture a priori for a shallow arrangement

significance 5% (Tab. 4.1), which compromises the surrogate model.

Coefficient p-value status
kxx 0.024 Reject H0

kxy 0.094 Not Reject H0

kyx 0.008 Reject H0

kyy 0.282 Not Reject H0

cxx 0.024 Reject H0

cxy 0.046 Reject H0

cyx 0.105 Not Reject H0

cyy 0.024 Reject H0

Table 4.1: KS Test applied to model results.

As the shallow network fails in representing the model, a deep neural network with
architecture 6:8:8:8:8 (Fig.4.17) is chosen to substitute it. After training it without
dropout, it is time to check its performance. First, as usual, one should verify the
loss function graphic (Fig. 4.18):

As stated in Fig. 4.18, the model overfits; however, if one looks closely at epoch
150 to 200 the loss, the validation loss starts to approximate from training loss,
which suggests that increasing the number of epochs could solve the problem. Un-
fortunately, this is not the case, as stated in the figure 4.20.

As the number of epochs increasing did not solve the problem (Fig. 4.20), it is
time to change the approach. Now, we will reduce the number of features to just
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Figure 4.17: Deep Neural Network used to substitute the shallow model

Figure 4.18: Loss function of trained model. Note the presence of overfit after epoch
25

3 and add a dropout of 0.05 to each layer. By doing this, we solve the problem of
over-fitting (Fig. 4.20)

After removing overfit from the model, it is time to see how good this model is.
To do that, one should analyze the available metrics, since Hypothesis tests are not
recommended here, since the number of samples is too small. For this model, the
metrics are as presented in table 4.2:

40



Figure 4.19: Loss function of trained model. Note the presence of overfit after epoch
25 and the sudden change in function behavior from epoch 150 and beyond

Metric Value

MAE 0.024
MSE 0.001
R2 0.964

Adjusted R2 0.893
Explained Variance 0.966

Table 4.2: Database metrics. Note that in spite of good R2, its adjusted counterpart
presented bad results.

By observing the metrics, we note that the adjusted R2 returned a value less than
0.95, which suggests that this model despite solving the over-fitting problem still is
unable to be an adequate surrogate model. Now, one way to solve this problem is
to get more data; however, this procedure is very expensive due to the cumbersome
computations. In this case, we still can obtain more data, not from the physical
model, but from the underlying structure of present data, as stated by [11].
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Figure 4.20: Loss function of trained model with feature reduction and addition
of dropout layers. Note that overfit was removed from the model; however, as a
drawback, the loss function becomes noisy

With this data augmentation technique it is possible to sample as many new
samples as possible. Here, we will sample 10,000 new samples with the aid of this
technique and retrain the neural network. With this new data set, the ANN is
trained with the same architecture as before but without dropout layers. The result
is shown in figure 4.21

This model with expanded data has the results shown on table 4.3.

Metric Value
MAE 0.010
MSE <1× 10−3
R2 0.989

Adjusted R2 0.989
Explained Variance 0.990

Table 4.3: Expanded data set metrics. Note that the adjusted R2 improved in
comparison to the original data set
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Figure 4.21: new database’s loss function. Note that both training loss and valida-
tion loss have become less noisy than the architecture with dropout and a higher
loss was obtained

Note that the adjusted R2 improved considerably, this happens due to the num-
ber of samples being significantly higher than the number of variables, which implies
R2 ≈ adjusted R2. Those results allow us to carry out further analysis. The next
step is to evaluate graphically all the coefficients in terms of Q-Q Plots 4.22 and
4.23:

To complement the Q-Q plots, standardized error plots are used. This graph
shows the standardized residuals, that is ε = ytrain−ytest√

V ar(ytrain−ytest)
, in relation to each

point of the test set (Figs. 4.24 and 4.25) :
As the figures 4.24 and 4.25 shown, the ANN model tends to both overestimate

and underestimate the coefficients. To verify if this matter affects considerably
the performance, the results will be now analyzed in terms of non-parametric 99%
confidence intervals (CI) constructed over the Empirical Cumulative Density Func-
tion(Figs. 4.26 and 4.27). Those CI will be used to evaluate graphically if the ANN
result could be also considered a plausible output from the physical model.

Even though the surrogate model presented both underestimation of main coef-
ficients and overestimation of cross coefficients, the observation of confidence inter-
vals shows us that this model still can generate compatible results with the physical
model since the obtained result lied on the 99% confidence interval.
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Figure 4.22: Q-Q plots of stiffness coefficients

This graphical result can be verified also in terms of the Kolmogorov-Smirnov Hy-
pothesis Test, which null hypothesis, H0, is that both ANN and physical model are
samples from the same distribution. To test this statement, we choose a significance
level of 0.05 and run this test to each coefficient. The results are shown in table 4.4.

Coefficient p-value status
kxx 0.910 Not Reject H0

kxy 0.884 Not Reject H0

kyx 0.997 Not Reject H0

kyy 0.952 Not Reject H0

cxx 0.855 Not Reject H0

cxy 0.716 Not Reject H0

cyx 0.855 Not Reject H0

cyy 0.459 Not Reject H0

Table 4.4: KS Test applied to model results.
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Figure 4.23: Q-Q plots of damping coefficients

Observing the hypothesis test results it is noted that we cannot reject the null
hypothesis for any coefficient, which means that there is not any statistical evidence
against the considered hypothesis of both samples come from the same distribution.
This, however, is not a factual proof and further analysis must be carried out. To
do additional analysis, we generate a new 2000 more points from the physical model
and run the KS-Test again and the results are shown in table 4.5.
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Figure 4.24: Standardized residuals of the stiffness coefficients. Realize that the kii
coefficients are underestimated while the cross coefficients, kij, tend to be overesti-
mated. In addition, heteroscedasticity is also present

Coefficient p-value status

kxx 0.127 Not Reject H0

kxy 0.860 Not Reject H0

kyx 0.760 Not Reject H0

kyy 0.136 Not Reject H0

cxx 0.004 Reject H0

cxy 0.001 Reject H0

cyx 0.001 Reject H0

cyy < 0.001 Reject H0

Table 4.5: KS Test applied to model results with new data. Note that now none of
damping coefficients passed in the test
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Figure 4.25: Standardized residuals of the damping coefficients. Realize that this
case has the same behavior as before, underestimating cii and overestimating cij.
Note that as stiffness heteroscedasticity is also present

Even though damping coefficients did not pass by the null hypothesis, this not
means necessarily that the surrogate model should be disposed off since the Hypoth-
esis tests only tell that this result is statistically insignificant, but this does not mean
that it cannot be scientifically significant. To verify this last statement, both the
new database created from the physical model and the ANN one are used to obtain
the dynamic response of a rotor in terms of its FRF,Phase and Time response (Figs.
4.29,4.30,4.31). For this simulation, we use a rotor with a shaft diameter of 50 mm
and two disks with 280 mm of diameter each. The left disk is 625 mm far from the
left bearing while the right disk is 750 mm far from the right bearing. The frequency
response is extracted from node 4, which is in the y direction. Phase response is ex-
tracted from the same node and in time response is obtained by applying harmonic
forces to the node 4 in both directions x and y.

Note that even though the KS Test warnings about the quality of the generated
damping coefficients, the surrogate model presented a good result in comparison
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Figure 4.26: A 99% confidence interval to each stiffness coefficient. Note that all
the results distributions lies inside it

with its physical counterpart. The effect of a less precise damping was only missing
the amplitude by about 1% in natural frequency. This error is negligible since the
presented scale in Fig. 4.29 is log-scale, which means that this error is even smaller.

The analysis of Fig. 4.30 shows that the physical bearing model and neural net-
works bearing presented similar results, which suggests that the training procedure
was successful in producing accurate responses at the desired range. Time response
(4.31) presented results as good as the last two results, being almost impossible to
distinguish both responses by the naked eye.

Real-world rotors are not as simple as 4.28. An example of this complexity is
a rotor with overlapping shaft elements, as represented in 4.32. In this particular
case, uncertainty propagation starts to differ reasonably, both in FRF and Phase
as shown in Figs 4.29 and 4.30. Note that even though the last model presented a
worse performance if compared with the former, it still is quite accurate.
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Figure 4.27: A 99% confidence interval to each damping coefficient. Note that all
the results distributions lies inside it

The maintenance of the performance is due to the sampling plan choice. This
step is crucial to obtain a good surrogate since the selected points must cover the
parameter space well enough to get the best outputs possible. With both good
inputs and outputs, supervised learning is productive, and optimization achieves
reasonable results. To a broad discussion about sampling plans, please check [87].
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Figure 4.28: Rotor used to test the ANN model

Figure 4.29: FRF obtained from physical bearing model and from ANN bearing.
Note that despite of the damping coefficients were rejected on KS-Test, the error
due to them is negligible
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Figure 4.30: Phase obtained with the ANN bearing (up) and with the physical
model bearing (down). Note that both models present the same overall behavior,
with little differences
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Figure 4.31: Time response obtained with the ANN bearing (up) and with the
physical model bearing(down) . Note that both models present the same overall
behavior, being almost indistinguishable
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Figure 4.32: A rotor commonly found in the real world applications
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Figure 4.33: FRF of the real rotor. Here we note clearly discrepancies between both
intervals. Still, this model maintains a good accuracy.
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Figure 4.34: Phase obtained with the ANN bearing (dots) and with the physical
model bearing (solid line). Note that both models present the same overall behavior,
with more apparent differences than the former case
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Chapter 5

Conclusions and Future Works

This work presented a routine to systematic implement neural networks to gen-
erate surrogate models for regression and uncertainty quantification. The features
developed here allows the users to perform a robust analysis and obtain reliable
results inside the design space.

As a reminder, our first step was to gather data, which is obtainable by either
experiments, physical models, or artificially by using previous knowledge as leverage.
Next, we have subdivided data into features (inputs) and labels (outputs). If we have
an excessive number of features, its reduction is recommended to avoid parameters
excess and both over-fit and lack of performance. With the correct number of labels
and features, our next step was to scale data to ease the optimization process and
equalize the weights. With all data pre-processed, we have initially built a shallow
arrangement and verified by brute force the best one, which was insufficient for our
purposes, which obliged us to choose a deep neural networks architecture. In this
case, verify the best architecture is infeasible. So, the best approach is to check
the weights before the training and perform techniques as pruning. Then, we have
defined the loss function and the optimizers, directly tied to the learning process.
Next, we evaluated the model performance and improved its results by using a data
augmentation technique. Finally, the comparison between the neural network and
its physical counterpart has shown that the former outperformed the latter in speed
while keeping the accuracy.

Even obtaining good results,there are many questions still unanswered as the
number of neurons per layer of the number of layers to accomplish a task since
neural networks have advanced quicker in practice than theory. Recently, active
sub-spaces solutions show promise in answering those questions.[114–117].
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According to [118], the active subspace is a set of directions in a multivariate
function’s input space, in which the perturbation of the entries along these direc-
tions changes the function’s output more, on average, then perturbing the inputs
in orthogonal directions. This tool converts the entries in the most relevant dimen-
sionless quantities, enabling the neural network to tackle multiple related problems
with a single training.

Another application possible is architecture optimization [119]. After building
neural networks, active sub-spaces scan the architecture and suggest a new one
based on the active neurons to perform a testing task. The new architecture has the
first N layers of the original neural network, an active sub-space layer that mapped
the neurons into the reduced space with a linear combination and a polynomial
chaos expansion layer that maps the active subspace layer into the outputs.

With active sub-spaces is also possible to evaluate the neural network robustness
by creating a adversarial attack input that maximizes the output error [119]. The
most robust architecture is the one that has the minimum error produced from an
adversarial attack. Another strategy possible is to retrain the neural network with
an augmented data set [11] generated around input generated by adversarial attack.
With this tactics combined a even more robust architecture can be achieved.

Concerning Structures, is possible to impose physical restrictions on the loss func-
tion, in the so called Physics Inspired Neural Networks, shortly PINNs. This kind
of neural network is capable of solving both forward and inverse problems [120],
improving even more ROSS-ML performance.
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