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Origamis vêm inspirando novas estruturas adaptativas, como micro robôs, painéis 

solares e coletores de energia. Um dos desafios no projeto de estruturas origâmicas é o 

grande número de graus de liberdade (GdLs) associados a tais estruturas complexas, 

incluindo variáveis associadas às dobras vincadas e variáveis ocultas associadas à flexão 

e torção de painéis. As tesselações fechadas possuem um número reduzido de GdL 

quando comparadas às abertas, além de um comportamento periódico. Simetrias 

permitem a descrição da estrutura a partir de modelos de ordem reduzida. Este trabalho 

apresenta uma visão geral de estruturas origâmicas, em especial o padrão waterbomb e 

tesselações relacionadas. A ideia é estudar uma célula unitária estabelecendo uma  

comparação entre as formulações cinemática e mecânica. O estudo é expandido para 

tesselações, considerando casos abertos e fechados. Propõem-se modelos de ordem 

reduzida para descrever o comportamento mecânico dos origamis, verificando a sua 

validade a partir de uma comparação com modelos mais sofisticados. A dinâmica não 

linear de estruturas origâmicas é investigada considerando uma roda-origami, uma 

tesselação waterbomb fechada modificada. Finalmente, analisa-se um robô autônomo 

equipado com duas rodas-origami, investigando a manobrabilidade e capacidade de 

resposta a partir da deformação das rodas.  
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Origamis have been inspiring new adaptive structures, such as micro robots, solar 

panels and energy harvesting. One of the challenges of the design of origami structures is 

the large number of degrees of freedom (DoF) associated with such complex structures, 

including variables associated with creased folds and hidden variables associated with the 

bending and twisting of panels. Closed tessellations have a reduced number of DoF when 

compared to open ones. Symmetries allow the description of the structure from reduced-

order models. This work presents an overview of origami structures, with special interest 

on waterbomb pattern and related tessellations. A unit cell is studied establishing a 

comparison with kinematic and mechanical formulations. The study is expanded to 

tessellations, considering open and closed cases. Reduced-order models are proposed in 

order to describe the mechanical behavior of the origamis, verifying their validity from a 

comparison with more sophisticated models. Nonlinear dynamics of origamis is explored 

by investigating an origami wheel, a modified closed waterbomb tessellation. Finally, a 

two-wheel autonomous robot with origami wheel is analyzed, investigating the 

maneuverability and responsiveness from the deformation of the wheels. Numerical 

simulations related to operational conditions are performed for different thermal and 

mechanical loads, showing rich behaviors with periodic and chaotic responses. 
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1  Introduction 
 

Origami, from Japanese words Oru – fold and kami – paper, is the art of 

paperfolding that creates general 3D structures and forms from a flat sheet of paper (2D 

element) following a sequence of folding creases, without stretching, cutting, or gluing 

other pieces of paper to it. Since it can be flattened onto a plane without distortion (it has 

a zero Gaussian curvature) and the 3D form is generated by a bending process without 

stretching or shrinking (Struik, 1961), origami is a developable surface. Therefore, the 

concept of origami can be applied to the manufacturing of various complex 3D forms by 

out-of-plane deformation (bending and folding), from a watertight sheet of materials such 

as paper, fabric, plastic and metal. 

Engineering has an increasing need for reduced size mechanisms without reducing 

their ability to complete complex tasks. As a matter of fact, the need for more efficient 

yet smaller and weightless devices boost the study of origami structures and origami-like 

elements. One way to reach the performance requirements without losing sight on the size 

restriction is the use of “developable mechanisms”, a class of mechanism that address the 

origami concept, the theory of compliant mechanisms and the concept of developable 

surfaces. Shapes emerging from cylindrical or spherical configurations, as the 

combination of morphing capable elements, can be applied on architecture (Sorguç et al., 

2009), robotic (Felton et al., 2014), spatial systems (Nishiyama, 2012) and biomedical 

devices (Salerno et al., 2014). 

The description of origami structures can be made considering either kinematic or 

mechanical approaches. The kinematic approach considers the shape changing of an 

origami element neglecting any deformation on panels, focusing on the angle variation 

and the tridimensional configuration associated to a set of angles. The mechanical 

description of the folding process is essentially based on forces and movements, or work 

and energy, which captures the actual behavior of such slender structures. It mostly 

considers bending and torsion of panels and their effect on the origami behavior and 
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configuration. The folding process usually involves significant geometric nonlinearity, 

which promotes additional nonlinear behaviors related to the deformation of the panels. 

The combination of origami concepts with smart material elements, such as shape 

memory alloys (SMAs), piezoelectric, magnetostrictive and magnetorheological 

materials, allows the developing of complex and low-weight self-foldable structures, 

which can permeate between geometric configurations through the folding process 

promoted by the origami pattern. Since origami systems are slender structures, they are 

usually close to stability limits with important dynamical issues to be investigated. The 

combination of geometric and constitutive nonlinearities is responsible for a rich dynamic 

behavior and, therefore, external excitations and perturbations can be critical to the 

system response, being a problem in several applications. 

This work presents an analysis of the complex behavior of origami structures, with 

a focus on the waterbomb pattern and related tessellations. As can be observed through 

this work, the literature is mainly dedicated to analyzing symmetric behaviors, quasi-

static analysis and dynamic of folding, without considering the folding motion, distortion 

of panels and their influence to hidden variables and degrees of freedom (DoFs). 

Dynamical and nonlinear behaviors of the folding process are usually neglected.  

In this regard, this work fills this literature gap dealing with the nonlinear 

dynamics of origami structures. An analysis of asymmetries is of concern establishing a 

proper investigation about the reduction of the number of DoFs allowing to build reduced-

order models based on mechanical restrictions of the origami pattern. Kinematic and 

mechanical analyses are of concern. Concerning kinematic analysis, equivalent 

mechanisms are employed allowing the identification of symmetry planes. Besides, the 

spherical trigonometry is employed to develop reduced order models. Mechanical 

investigation is based on the finite element analysis (FEA).  

Kinematic analysis considers a unit cell based on the folding pattern defining an 

equivalent mechanism. Symmetry conditions are identified allowing to build a 1 DoF 

reduced-order model. Mechanical analysis allows one to explore the influence of hidden 

variables on the shape prediction. The rigidity hypothesis is evaluated and verified 

establishing a comparison between kinematic and mechanical formulations. The work 

evolves to the mechanical analysis of a waterbomb tessellation, investigating the 

influence of asymmetries on the tessellation. Thereafter, closed waterbomb tessellations 

are treated. A particular closed-form configuration, henceforth called origami-wheel, is 



3 

 

investigated from a reduced-order model. The dynamical behavior of the origami-wheel 

actuated by shape memory alloy (SMA) actuators is evaluated and, afterward, an origami-

robot with origami-wheels is investigated, evaluating the maneuverability and 

responsiveness due to deformable wheels. Numerical simulations related to operational 

conditions are carried out considering different thermal and mechanical loads, presenting 

periodic, quasi-periodic and chaotic dynamic behaviors. 

This work is organized as follows: the next chapter presents the general idea of 

origamis, with a brief description and explanation of the main topics and concepts on this 

work (sections 2.1 to 2.4) and some origami applications (section 2.5); chapter 3 brings 

the formulations considered for this work; chapter 4 contains the studies related to the 

waterbomb unit cell, including the kinematic formulation and mechanical analysis; the 

behavior analysis of the waterbomb tessellation, for both opened and closed cases, are 

undertaken in chapter 5; chapter 6 depicts the origami-wheel study, considering a 

mechanical analysis and finishing with a reduced-order formulation; chapter 7 brings the 

dynamical analysis of the origami-wheel actuated by shape memory alloys. In the 

sequence, the kinematic and dynamical formulations for the origami-car are presented in 

chapter 8, followed by the dynamical study; and chapter 9 summarizes this work 

conclusions and suggests future work. The references cited in this work are organized in 

chapter 10. At the end, there is an appendix with the constitutive models. 
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2  Theoretical Fundamentals 
 

One of the most traditional and classic origamis is the Orizuru or crane (Figure 

2-1-a), a tridimensional structure folded from a single flat sheet of paper. In Japanese 

culture, it is believed that these paper craft symbolize good health, luck and longevity 

being a representation of the red-crowded crane (Figure 2-1-b). Beyond arts, origami 

applications started to be employed on educational (Andreass, 2011) and mathematical 

(Alperin, 2000; Glassner, 1996; Xi & Lien, 2015) fields of knowledge. Besides, origami 

concept is already being widely applied on architecture and decoration (Sorguç et al., 

2009) due to the structure beauty.  

In addition, there is an increasing need on engineering reduced size mechanisms 

without reducing their ability to complete complex tasks. One example is the developable 

elements on minimally invasive surgery, where a highly precise and sophisticated 

mechanical function is essential for the procedure, allowing the reduction of the size of 

the incisions due to the smaller instruments. Another promising area is on electronic 

devices, where the demand of performance increases while the size and weight of the 

equipment must not enlarge with it. On this basis, it is important to highlight the growing 

research efforts on robotics (Felton et al., 2014), spatial systems (Nishiyama, 2012), 

biomedical devices (Salerno et al., 2014) and MEMS (microelectromechanical systems).   
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Figure 2-1: Traditional paper crane (Orizuru). (a) Simplified representation of the basic 

folding process; (b) Picture by 2006 Martin Bailey of the red-crowned crane, the 

inspiration for the Orizuru origami. 

 

The combination of origami concepts with smart material elements allows the 

developing of complex and low-weight self-foldable structures, that can permeate 

between geometric configurations through the folding process promoted by the origami 

pattern. Shape memory alloys (SMAs) are smart or responsive materials being applied in 

different situations and with special interest for origami structures (Savi et al., 2016). 

Dynamical applications of SMA systems constitute a rich research field that can be 

explored in different situations. Savi (2015) presented a review of dynamical applications 

of smart systems, or systems actuated by smart materials, including oscillators, adaptative 

tuned vibration absorbers (ATVA), adaptative structures and rotordynamic systems.  

Among the combined SMA-origami applications, it should be pointed out the 

minimally invasive surgery actuator with 4 degrees of freedom (DoF) (Salerno et al., 

2014); a NiTi stent generated by a closed origami tessellation (Kuribayashi et al., 2006); 

and an origami-wheel that has the inherent ability of radius variation (Lee et al., 2013). 

(a) 

(b) 
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A robot with a variable diameter wheel can drive through different soils, climb or deviate 

from different objects with a reduced number of actuators. Even though the engineering 

application of origami-inspired concepts is a growing field, there are few works related 

to the dynamics of these complex devices, as shown along this work. 

 

2.1. Origami concept 
 

Origami is a three-dimensional structure generated from a two-dimensional 

source by a sequence of folding. In general, origamis can be categorized in three major 

classes, widely known as origami, kirigami and modular origami. The definition of these 

classes is based on the required combination of actions to generate the desired structure 

and does not take into consideration the fold but the general process. 

The origami class is related to the simple folding process as popularly spread, 

corresponding to the continuously folding process of a flat and continuous paper sheet, 

and no cuts or glued elements are allowed. The kirigami class corresponds to the process 

of cutting the folded paper to generate the desired structure. Alternatively, it is possible 

to fold a pre-cut paper sheet, resulting in the well-known pop-up cards.  

The modular origami class corresponds to an assemble of a number of either the 

first or the second-class origamis. In this class, each part to be assembled is known as a 

module, and the structure is generated by gluing or simply connecting each module. 

Different folding patterns and strategies can be employed to obtain an origami 

element. Instead of being classified by the general process, the origami element can be 

classified according to the folding type. This classification allows an origami to be 

categorized in seven basic groups (Figure 2-2): action origami; modular origami; wet 

folding; purelanding origami; origami tessellation; kirigami; and strip folding. A brief 

description of each one of these groups is presented in the sequence. 
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Figure 2-2: Representations of the seven basic origami types. (a) Action Origami 

(Jumping frog); (b) Origami tessellation; (c) Wet-folded origami; (d) Pureland Origami 

(simple version of the Jumping frog); (e) General forms obtained from the same origami 

tessellation; (f) Kirigami; (g) Strip folding origami. 

 

Action Origami: once the folding sequence is complete, the origami has the 

capability of preset motion between the panels, around the creases. One example is the 

origami called jumping frog, where, at the final configuration, a group of folds take 

advantage of the material elasticity and low stiffness, which results in a jumping motion 

once a force is applied on those creases (Figure 2-2a). 

Modular Origami: this category relates to a 3D structure built from stacking 

identical pieces (modules) to form a complex shape. The module itself is usually simple, 

but the final structure may have a high complexity and the stacking process might be 

tricky (Figure 2-2b). 

(a) (b) (c) 

(d) (e) (f) 

(g) 
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Wet-folding: it is possible to generate origamis without hardly- folding the 

creases. In this technique, the paper sheet is damped to allow light curving, and the final 

shape is obtained once it is dry. This is a highly complex technique, and it is usually 

applied to the folding process of complex figures, such as the wet-folded Greater Kodu 

by Robert Lang (Figure 2-2c). 

Pureland Origami: it was developed by a British paper folding named John 

Smith with the purpose to help those with limited motor skills or inexperienced folders. 

In this technique, only simple mountain/valley folds are allowed, and the usual folding 

inversions present in most origami patterns are not allowed (Figure 2-2d). 

Origami Tessellations: this category has increasing its popularity among 

researchers on the last few years, due to some interesting aspects such as a negative 

Poisson and the high compaction allied to the morphing ability. Tessellations are also 

generated by a repetition of a single module or pattern but, differently from modular 

origami, they are obtained from a single paper sheet. This type of origami it will be further 

explored in section 2.3 (Figure 2-2e). 

Kirigami: as previously described, it is generated through cuts on paper sheet, 

and the final form is obtained by bending or slightly folding the cut paper (Figure 2-2f). 

Strip folding: it is the technique of generating an origami shape by using just 

strips of papers by weaving them. It is mostly artistic, but there are some applications as 

zigzag-folded strips generating tubes with increased stiffness and folding capability 

(Figure 2-2g). 

 

Origami nomenclature is based on artistic, mathematical and engineering terms 

(Lang, 2017; Greenberg et al., 2011; Tachi, 2010), where most of them are well defined 

and self-explanatory. However, it is interesting to clarify the origami terms employed in 

this work, their meanings and situations related to their use, which is presented in the 

sequence. In order to start the presentation, consider Figure 2-3 that presents the flapping 

bird origami, a variation of the Tsuru folding, showing some of the elements described in 

the sequence. 
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Figure 2-3: Flapping bird origami (top left) and the bottom view of the crease pattern 

(bottom right) 

 

A crease is a straight line along which a fold takes place, and this crease can be 

unfolded, partially folded or fully folded (Lang, 2017), and it is usually associated to a 

revolute joint. In this work, the unfolded state is associated to a revolute joint angle θ of 

0 degrees, while the fully folded state is associated to a revolute joint angle θ of 180 

degrees, and the partially folded state belongs to the range ]0,180[ degrees. 

A fold is the type of the origami crease, and it can be classified as mountain or 

valley, as can be seen at Figure 2-4-a. The crease type receives those names since it 

visually resembles a mountain or a valley. It is worth noticing that the definition of the 

fold type is dependent on the observer, since the same origami, when viewed from the 

bottom, presents an inversion on the crease type (Figure 2-4-b and Figure 2-4-c). 

A fold angle is the angular opening of a crease, and it is usually measured as the 

angle between the normal vectors of two consecutive faces connected through a crease. 

In this work, the fold angle has also an associated direction, meaning that the evaluation 

of this angle can be associated with either an opening or a closure motion of that fold. 

A panel or face is the closed area defined by a set of creases and boundaries, such 

that this set does not contain any crease or vertex. Triangular panels or faces, for origamis 

as the example in Figure 2-4, are defined by two creases and a boundary or three creases. 

Squared panels or faces are usually defined by three creases and a boundary or four 

creases, such as the example in Figure 2-2g. 

Mountain 

crease 

Valley 

crease 

Fold 

Panel 
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An origami pattern or simply pattern is a set of creases, among valley and 

mountain folds, that define an origami element. Different patterns generate different 

structures, and it can be formed by a set of different creases or by a repetition of a specific 

group of creases. This second case generates the tessellations, and this concept is further 

explained in section 2.3. 

A single vertex origami is an origami where all creases converge to the same 

vertex, and it is the case of the waterbomb pattern (Figure 2-4). 

A rigidly foldable origami is an origami pattern in which the panels remain flat 

and undeformed during all the folding/ unfolding process, and this concept is further 

explained in section 2.4. 

 

 

Figure 2-4: Fold state or definition as mountain or valley crease type. (a) Waterbomb 

cell with the fold definition; (b) Top view; (c) Bottom view. 

 

A crease pattern is defined as flat-foldable if, once all folds are activated, the final 

form can be considered as flat. A flat-foldable origami must at least attend to Maekawa’s 

and Kawasaki’s Theorems, as follow: 

Maekawa’s Theorem: At any given vertex of a flat-foldable origami pattern, the 

amount of mountain folds differs by two from the amount of valley folds. 

Kawasaki’s Theorem: At any given vertex of a flat-foldable origami pattern, the 

sum of every other angle about said vertex is always 180 degrees. 

Note that if an origami pattern is flat-foldable, then it attends to Kawasaki’s and 

Maekawa’s Theorems. The opposite is not necessarily true, as shown in Figure 2-5. This 

Mountain 

Valley 

(a) (b) (c) 
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pattern suffices both theorems, but it is not flat-foldable. This happens because extending 

globally the flat-foldability concept is not that easy and simple. In fact, identifying a flat-

foldability aspect is characterized as a Complete NP Problem (complete nondeterministic 

polynomial problem), meaning that the flat-foldability condition can be verified in a 

NDTM (nondeterministic Turing’s machine) but not solved. 

 

 

Figure 2-5: “An impossible fold”, presented first by Thomas Hull in the Congressus 

Numerantium, 1994. 

  

2.2. Developable surface 
 

A developable surface is defined as the one that can be flattened onto a plane 

without deformations or bending. In other words, it is a surface that has zero Gaussian 

curvature everywhere. Based on that, since the Gaussian curvature, 𝐾, is evaluated as the 

product between two principal curvatures, 𝜅1 and 𝜅2, at least one of them must be zero. 

On this basis, developable surfaces include planes (𝜅1 = 𝜅2 = 0), cylinders, elliptic cones 

or cones (𝜅1 > 0, 𝜅2 = 0), and hyperbolic cylinders (𝜅1 = 0, 𝜅2 < 0). An interesting 

property of these surfaces is that they can be made from a metal sheet, and therefore, they 

can be obtained by transformation from a plane. Figure 2-6 shows origami tessellations 

generating two developable surfaces. 
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Figure 2-6: Origami tessellations generating developable surfaces: (a) Whirlpool pattern 

(cone); (b) Huffman Stars-Triangles (cylinder). 

 

Origami tessellations generate developable surfaces allowing the design of 3D 

structures obtained through folding patterns of a 2D element such as a sheet of paper. 

Origami mechanisms are designed based on the developable behavior, which allows the 

compactness without losing range of action and effectiveness. 

 

2.3. Tessellation 
 

A tessellation is built from a repetition of a pattern or containing some identifiable 

periodicity, without gaps or holes, covering a flat surface. Tessellations generated with 

origami-based concepts are a complex developable structure composed by foldable 

shapes with the capability to map 3D structures onto 2D flat surfaces without stretching.  

This developable characteristic of origami tessellations has been widely studied. 

Tachi (2010; 2011; 2012; 2013) developed a kinematic analysis on waterbomb 

tessellations built from regular basis (6-creased squared waterbomb pattern) to achieve 

adaptative freeform surfaces using an open-source software. Kuribayashi et al. (2006) 

explored a closed form of the waterbomb tessellation in a biomechanical application, 

developing a shape memory alloy stent. The structure is self-developable and is capable 

(a) (b) 



13 

 

of achieving large deployable ratio. Rodrigues et al. (2017) performed a dynamical 

investigation of the stent, evaluating shape morphing and stability behavior for different 

external actuations, assuming a perfectly symmetric description. Lee et al. (2013) and 

Felton et al. (2014) fabricated a deformable wheel robot, exploring the shape changing of 

the closed form tessellation for the wheel radius variation. Fonseca et al. (2019) 

investigated the nonlinear dynamics of the origami wheel using mirror-symmetry, 

exploring the shape morphing and the influence of external loads over the structure 

behavior. Fonseca & Savi (2020) explored this shape morphing as a two wheeled robot 

with deformable wheels, dealing with its nonlinear dynamics. 

Part of the challenge in designing tessellations is the large number of variables 

and degrees of freedom (DoFs) associated with such complex structures. Zhao et al. 

(2018) explored this complexity, designing generalized waterbomb tessellations to 

describe several 3D shapes going from spherical and cylindrical elements to hyperbolic 

paraboloids and torus, exploring asymmetries on both the pattern design and its shape 

configuration. 

The tessellation is characterized by the identifiable repeated pattern over a 𝑚 × 𝑛  

sheet and the repetition directions 𝒗1 and 𝒗2 (Figure 2-7). The direction 𝒗1 provides the 

pattern repetition along the row (with dimension m) while the direction 𝒗2 provides the 

pattern repetition along the column (with dimension n). 

 

 

 

Figure 2-7: Directions for tessellation pattern Huffman Rect Wave and folded pattern 

 

𝒗1 

𝒗2 
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Tessellations can be classified as regular, semi-regular and demi-regular. The 

first group refers to tessellations generated by a repetition of a regular polygon, and it can 

be identified by looking into each vertex. In a regular tessellation, the pattern is identical 

on every vertex. There are only three regular tessellations: generated by triangles, squares 

or hexagons. 

The semi-regular group refers to tessellations generated by two or more regular 

polygons, where it is possible to identify sets of vertexes belonging to different groups, 

depending on the polygons that surround it. There are eight plane semi-regular 

tessellations, composed by a mix among triangles, squares, hexagons, octagons and 

dodecagons (Ghyka, 1977; Williams, 1979; Steinhaus, 1999; Wells, 1991). 

The definition of the demi-regular tessellations is controversial. Some authors 

define this group as composed by a mix of regular and semi-regular tessellations. More 

precisely, three regular and eight semi-regular. Other authors define demi-regular 

tessellations as a general tessellation presenting more than one transitivity class of vertex, 

which means more than one type of vertex. 

Origami tessellations have a visual similarity to the tessellations, not necessarily 

following the mathematical classification and description, but keeping the general 

repetition-like aspect. Yoshimura tessellation is a triangular origami tessellation 

generated by the repetition of the Yoshimura or diamond pattern (1995), which repetition 

directions and chosen base pattern are represented at Figure 2-8-a. A squared origami 

tessellation is generated by the repetition of the Miura-Ori pattern, represented at Figure 

2-8-b. Note that the repetition directions change depending on the tessellation. Besides, 

it might vary depending on the chosen base pattern. 
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Figure 2-8: Regular tessellation. (a) Yoshimura; (b) Miura-Ori 

 

The waterbomb tessellations are generated by a 6-creased waterbomb pattern, and 

further explanations of this tessellation are presented in chapter 5 . As an example of a 

general origami tessellation, the flower tower is represented at Figure 2-9. 

 

 

Figure 2-9: Flower tower tessellation based on the design by Chris K. Palmer. On the 

left, the pattern is in the fully opened state. On the right, the pattern is in a partially 

folded state. 

 

𝒗1 = 2𝐷𝒆1 

𝒗2 = 𝐷𝒆1 + 2𝑑𝒆2 

𝒗1 

𝒗2 

2d 

2D 
𝒗𝟏 

𝒗𝟐 

𝑙1 

𝑙2 𝛾 

𝒗1 = 𝑙1𝒆1  

𝒗2 = 2𝑙2 𝑠𝑖𝑛(𝛾) 𝒆2  

(a) (b) 
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2.4. Rigid foldability 
 

The mechanical description of the origami structure is essentially related to the 

fold rigidity. If the panels or faces are conceived by elements of high stiffness while the 

creases have a low stiffness, it is reasonable to assume that the deformation is prominent 

on the crease area and the origami is assumed to be rigid or rigidly foldable (Figure 

2-10a). If the ratio between the panels and the creases stiffness decreases, the deformation 

area increases, and the rigid foldability hypothesis fails (Figure 2-10b).  

The folding process description must be chosen according to the nonlinearity of 

the structure, related to both geometrical and mechanical parameters. If the origami is 

rigidly foldable, it can be evaluated through an equivalent mechanism, and its motion is 

fully described by purely geometric, arithmetic or kinematic models (Lang, 1996; 2011; 

Belcastro and Hull, 2002; Lee et al., 2013; Song et al., 2013; Chiang, 2000; Chen et al., 

2016; Pesenti et al., 2015). On the other hand, if the panel deformation is such that the 

origami cannot be assumed as rigidly foldable, mechanical properties must be taken into 

account, so these hidden degrees of freedom are considered and properly described (Lv, 

2014; Gattas and You, 2014; Liu & Paulino, 2017). 

 

 

Figure 2-10: Miura-Ori pattern with a high (a) and a low (b) ratio between panels and 

creases’ stiffness, with mechanical description provided by a displacement-based 

method, and panel flexibility represented by a virtual fold. 

 

2.5. Origami applications 
 

(a) (b) 
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Origami elements and concepts have inspired the design of self-foldable, compact 

and adaptive systems and devices for several science and technological fields of 

knowledge (Peraza-Hernandez et al., 2014; Fei & Sujan, 2013). Shapes such as spheres 

and cylinders or elements with morphing ability can be applied to architecture (Sorguç et 

al., 2009), robotics (Felton et al., 2014; Miyashita et al., 2015), aerospace systems 

(Nishiyama, 2012; Webb et al., 2016) and biomedical devices (Salerno et al., 2014; 

Miyashita et al., 2016).  

The compact inherent ability of origamis allows the development of structures 

such as the starshade, an external occulter with the purpose to detect and directly 

characterize exoplanets, by blocking the light emitted by nearby starts and focusing only 

the light emitted from orbiting planets onto a telescope (Webb et al., 2016). The structure 

is launched in a fully folded state, in the maximum compact capacity of the starshade 

(Figure 2-11) and, once it is in orbit, it is deployed and fully opened, until it reaches the 

maximum covered area in the fully unfolded state. 

 

 

Figure 2-11: Starshade deployment sequence, from the launch configuration (fully 

folded) to the deployed state (fully unfolded). (Image credit: www.nasa.gov) 

 

The self-foldability allows the development of structures that can have from 

millimeters to hundreds of meters, considering its largest dimension. The coupling 

between self-foldable structures and smart materials, such as Shape Memory Alloys 

file:///C:/Users/laris/AppData/Local/Packages/Microsoft.Office.Desktop_8wekyb3d8bbwe/LocalCache/Roaming/Microsoft/Word/www.nasa.gov


18 

 

(SMA), allow a wireless actuation of said devices using potential fields, such as electro-

magnetic, and thermal variations. 

Boyvat et al. (2017) developed a scalable self-folding multijoint robot actuated 

with SMA through the application of an external magnetic field. This device allows the 

development of micro-robotic arms with a tridimensional movement, low weight, low 

wiring and no-contact actuation and control (Figure 2-12). 

 

 

 

 

 

 

Figure 2-12: Self-folding wireless actuated robotic arm. a) Simplified illustration of the 

kinematic design and components. The natural spherical movement of the waterbomb 

pattern is represented by spherical joints; b) A micro-robotic arm prototype with a 

permanent magnet for anchoring, with a panel highlighting one SMA coil actuator 

attached at the side of the waterbomb pattern; c) On the left, a three-dimensional 

rendering of the folding laminate containing a rigid sheet -a-, and adhesive layer -b- and 

a flexure film -c-. On the right, a folding joint with a coil SMA actuator with a moment 

arm that also serves as a fold stop (Image credit: Boyvat et al., 2017). 
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Another interesting origami-inspired robot is proposed by Lee et al. (2020). Using 

a different origami pattern and a cable driven actuation, the device, named TWISTER, is 

an adaptive hand-like for grasping of objects in different shapes, weights, sizes, and 

textures. Each ‘finger’ is actuated by a cable passing through the entire structure and 

attached to servo motors located at the base (‘palm’). By pulling the cable, the structure 

folds in a twisting motion until it reaches the object. The major advantage of this device 

is its underactuated ability of grasping objects, which reduces considerably the weight 

and necessary devices to obtain a claw. 

 

 

Figure 2-13: CAD drawing and printed outcome. (a) CAD model of TWISTER with 

embedded holes for routing cables; (b) Printed structure with cables routed diagonally; 

(c) Structure with cables routed in a zigzag pattern; (d) Main chassis contains a 

microprocessor, battery, power switch, mini-USB port, XBee module, servo motor, 

pulley mechanism, and docks for the fingers and cables (Image credit: Lee et al., 2020) 

 

On a different approach, Zang et al. (2018) developed a direct‐write laser‐

patterning technology to make metal‐carbide–graphene (MCG) composites directly on 

paper substrates through engraving the surface (Figure 2-14). This technology allows the 

design of low cost, low weight, easily scalable and compactable electronic devices, such 

as supercapacitors, paper-based piezoelectric generator, electrochemical sensors, and 

actuators. 
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Figure 2-14: (a) Photo of a fabricated origami structure after the direct laser-write MCG 

patterning process (black color areas) on a paper substrate (white color areas); (b) 

Schematic illustration of the simplified MCG process from fibrous paper, soaked with 

the gelatin-mediated ink containing Mo5+ ions, laser conversion process, to the 

resulting MCG composites; (c) Two partially folded, four 2 × 2 cm2 electrodes on a 

paper substrate: (top) after the laser conversion process, and (bottom) before the 

conversion process. (inset) A fully folded device with two electrodes on top and two 

electrodes at the bottom for a two-capacitor in sandwich structure to be connected in 

series or parallel as supercapacitors; (d) Recorded relative conductivity of an electrical 

connector made of MCG composites during the 750 cycles of 180° mechanical folding 

tests. (inset) Use of the mechanical folding and touching of electrodes made of MCG 

composites as an electrical switch to turn on/off a red light-emitting diode (Image 

credit: Zang et al., 2018) 

 

The self-folding characteristic attributed to some origami patterns, combined to 

the compactness, allow the design of miniature origami robots that can complete complex 

tasks, such as swim, walk and carry particles or pieces many times heavier than its own 
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weight (Miyashita et al., 2015). The miniature robot (Figure 2-15a) is conceived with 

different materials, allowing its degradation on different solvents, such as acetone. A 

further development on the miniature robot led to the design of a miniature robot for 

patching stomach wounds (Miyashita et al., 2016). The origami is collapsed onto a 

cylindrical shape and inserted into an ice capsule to be swallowed (Figure 2-15b). Once 

that the capsule melts in the stomach, the robot is released and self-folds. The robot is 

controlled from the outside, and it can be used to patch stomach wounds or even for the 

retrieval of batteries and other small components swallowed by kids. 

 

 

Figure 2-15: Self-foldable miniature origami robot. (a) Miniature robot that walks, 

swims, carry loads and degrades; (b) Miniature robot for patching stomach wounds and 

retrieving swallowed batteries (Image credit: Miyashita et al., 2015;2016) 

 

Another biomedical application of origami structure is the Nitinol stent graft 

proposed by Kuribayashi et al. (2006), that has the purpose to reduce the occurrence of 

restenosis. The stent with a membrane cover avoids the accumulation of fat tissue on the 

stent area through the holes and spaces of the stent (Figure 2-16). 

 

(a) (b) 
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Figure 2-16: Stent graft developed with a Nitinol sheet, using waterbomb tessellation 

(Image credit: Kuribayashi, 2006). 

 

Besides, the stent graft is designed with a Nitinol sheet, different from the original 

stent produced with Nitinol wires, for shape recovery without permanent damage to the 

device. The origami pattern used on the stent graft is the waterbomb tessellation further 

exploited in Chapter 5 . 

Waterbomb pattern is employed to build the origami-wheel (Lee et al., 2013; Lee 

et al., 2016), a structure based on the magic-ball closed tessellation. The structure has 

degrees of freedom (DoFs) associated with the creases of the tessellation, allowing the 

shape changing from a flat circular tube to a cylindrical shape. This shape changing can 

be translated as a wheel’s radius variation, reducing the height of the robot, and allowing 

it to pass under obstacles. This shape changing also gives the robot an additional ability 

to bypass obstacles and to follow a curved path with a reduced number of required 

actuators (Figure 2-17). 
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Figure 2-17: Robot with an origami gripping arm and origami wheels. (Image credit: 

Lee et al., 2016). 

 

This closed tessellation can also be used as an easily controllable water landing 

gear for drones, that is inflated for landing (kept in an opened configuration) and deflated 

on cruise (kept in a closed configuration). This device, shown in Figure 2-18, allows a 

smooth water landing while keeping the flight stability (Le et al., 2014). 

 

 

Figure 2-18: Application of a waterbomb tessellation as an inflatable drone landing gear 

for water landing (Image credit: Le et al., 2014). 
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3  Origami Modeling 
 

This chapter presents the modeling alternatives to describe the origami structure 

behavior. The chapter starts with the kinematic formulation, where the origami is 

described by an equivalent mechanism and its kinematic behavior is evaluated through 

its workspace. It is followed by the trigonometric formulation employed for the 

description of the symmetric behaviors. Kinematic formulations define reduced-order 

models that can be employed for different purposes, and the trigonometric description 

allows a reduced-order algebraic formulation. Finally, a mechanical approach is carried 

out considering the finite element analysis (FEA). This approach allows one the analysis 

of panel deformation.  

 

3.1. Kinematic approach 
 

Origami description can be carried out by considering a unit cell, whose 

kinematics description uses an equivalent mechanism treated as a linkage mechanism. Its 

shape can be completely defined by a required number of inputs or angles between the 

links, and the number of inputs is defined by the mobility of the mechanism. Chebyschev-

Grübler-Kutzbach (C-G-K) equation can be employed for this aim as follows (Gogu, 

2004), 

 

𝑀𝑜𝑏 = 𝛬(𝑁𝐿 − 𝐽 − 1) + ∑ 𝑓𝑖
𝐽
𝑖=1        (3.1) 

 

The mobility, 𝑀𝑜𝑏, is a function of the number of links, 𝑁𝐿, the number of joints, 

J, and the joint type (planar, spherical, cylindrical). The joint type influences two 

variables: the generalized displacement of the ith joint, fi (i= 1 … J), and the constraint 

parameter related to the mechanism movement, 𝛬. A unit cell of the waterbomb pattern 
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is typically a spherical mechanism (𝛬 = 3) with 6 faces or links (𝑁𝐿 = 6) and 6 creases 

or joints (𝐽 = 6). Since all the joints are R-type (revolute joints), each one has only one 

DoF (fi=1), the rotation around its axis. Therefore, C-G-C equation establishes that 𝑀𝑜𝑏 =

3, which means that each cell is completely described by three angles, each angle defined 

between two consecutive links. 

The definition of joint type considers three basic forms described in the sequence. 

A planar mechanism has its motion restricted to the plane, allowing two translational 

movements and a rotation {𝑥, 𝑦, 𝜃𝑧} (Figure 3-1a), which provides a constraint parameter 

𝛬 = 3. A spherical mechanism has rigid connections with movements restricted to a 

sphere {𝜃𝑥, 𝜃𝑦, 𝜃𝑧} (Figure 3-1b), providing a constraint parameter 𝛬 = 3. Finally, a 

spatial mechanism can translate and rotate in any direction, leading to a constraint 

parameter 𝛬 = 6 (Figure 3-1c). 

 

 

Figure 3-1: Mechanism movement representation for joint type identification. (a) 

Planar; (b) Spherical and (c) Spatial. 

 

The objective of forward kinematic analysis is to determine the cumulative effect 

of the entire set of joint variables, while the objective of the inverse kinematics is to 

determine the individual values for each joint that result in a specific configuration. This 

work uses a forward kinematics formulation to evaluate the mechanism configuration. A 

proper formulation is chosen to avoid singularities that would cause the inverse problem 

to be ill-posed. One way to address the problem is the use of dual quaternion method 

(Figueredo et al., 2013), a robust technique that allows to unify the translation and the 
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rotation into one single invariant state. Another formulation involves the use of screw 

theory applied to the joints, or even the definition of screw polygons (Mavroidis et al., 

1997) and screw triangles (Huang & Chen, 1995). The screw triangles theory, applied by 

Huang & Chen (1995), is focused on the unification of finite and infinitesimal kinematics, 

which proved to be relevant since the motion of rigid bodies can be described as a serial 

chain of screws. 

In this work, the Denavit-Hartenberg (D-H) formulation is employed (Denavit & 

Hartenberg, 1955), and the transformation between two consecutive joints 𝑖 and 𝑖 + 1 is 

a consequence of two rotations and two translations, resulting in a 4 parameters 

description for each joint-link pair. Therefore, the transformation matrix from joint 𝑖 and 

to joint 𝑖 + 1 is given by 

 

𝑇𝑖+1 
𝑖 = [

cos(𝜃𝑖) − sin(𝜃𝑖) cos(𝛼𝑖)      sin(𝜃𝑖) sin(𝛼𝑖) 𝑎𝑖cos(𝜃𝑖)

sin(𝜃𝑖) cos(𝜃𝑖) cos(𝛼𝑖) − cos(𝜃𝑖) sin(𝛼𝑖) 𝑎𝑖 sin(𝜃𝑖)

0
0

sin(𝛼𝑖)
0

cos(𝛼𝑖)
0

              𝑅𝑖
              1

]  (3.2) 

 

where 𝛼𝑖 is the angular distance between two consecutive joints, from 𝑧𝑖 to 𝑧𝑖+1 axis 

about the 𝑥𝑖+1 axis; 𝜃𝑖 is the rotation of the i-th joint, from 𝑥𝑖 to 𝑥𝑖+1 axis about the 𝑧𝑖 

axis; 𝑎𝑖 is the offset distance measured from the origin 𝑂𝑖 to the intersection of axes 𝑧𝑖 

and 𝑥𝑖+1, along the 𝑥𝑖+1 axis; and 𝑅𝑖 is the joint offset, measured as the distance from the 

𝑖 frame to the intersection of axes 𝑧𝑖 and 𝑥𝑖+1, along the 𝑧𝑖 axis (Figure 3-2). 

 

 

Figure 3-2: D-H parameters’ setup. 

 

The D-H convention requires an additional restriction or constraint equation to 

accurately describe the end-effector, that is the last linkage. In the case of origami 
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patterns, the equivalent mechanism is usually a closed chain, which means that the last 

joint connects to the first one. In this regard, there is no sense in talking about the end-

effector, instead it is necessary to evaluate the loop closure equation that, for a chain with 

𝑛 joints, is given as follows 

 

𝑷(𝜽) = 𝑻2 
1 𝑻3 

2 … 𝑻𝑖+1 
𝑖 … 𝑻1 

𝑛        (3.3) 

 

where 𝜽 = [𝜃1 … 𝜃6]
𝑇 is the vector of 𝜃𝑖. Besides, once that the first and last joints 

are connected by a link, the loop-closure equation must satisfy 𝑷(𝜽) − 𝑰 = 𝟎 . 

The system (3.3) can be written as 𝑓𝑖(𝜽) = [𝑷(𝜽) − 𝑰]𝑚𝑛, where 𝑖 = 4(𝑚 − 1) +

𝑛, for 𝑚, 𝑛 = 1. .4. The parameters attributed to each origami case will dictate the number 

of degrees of freedom (DoF) for that case. In a general condition, the system results in 16 

equations in the form 𝑓𝑖(𝜽) = 0, 𝑖 = 1. .16. 

The system is solved in this work using nonlinear least-square solver, where the 

system solutions are obtained as the minimization of the vector 𝑭(𝜽), for a vector input 

𝜽, given by 

 

𝑭(𝜃) = [𝑓1(𝜽) 𝑓2(𝜽)…𝑓16(𝜽)]
𝑇

min
𝜽
‖𝑭(𝜽)‖2 = min

𝜽
(∑ 𝑓𝑖(𝜽)

216
𝑖=1 )       (3.4) 

 

The system is solved within the lower and upper boundaries that define each 𝜃𝑖 

range that, in a general case, is [−𝜋, 𝜋], with a central method to estimate gradients for 

the finite difference estimation. The boundaries are used here to avoid superposition or 

penetration of panels, because even though some configurations are allowed in the 

equivalent mechanism, they are not achievable by the origami itself, due to these 

superpositions/ penetrations. The solution is considered converged for a threshold of 

10−15 for both the function, satisfying 𝑓𝑖(𝜽) = [𝑷(𝜽) − 𝑰]𝑚𝑛 ≈ 0, and the variables (𝜃𝑖). 

 

3.2. Spherical trigonometry 
 

Spherical linkage mechanisms have the property that every link in the system 

rotates around the same fixed point. Based on that, it is possible to describe the 
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mechanism motion using spherical trigonometry. Therefore, an analysis is developed 

assuming that the waterbomb cell has a symmetric motion, and the spherical trigonometry 

formulation provides a reduced-form analytical description of the origami motion. 

This formulation is developed for a waterbomb unit cell, inscribed in a unitary 

radius sphere, where the waterbomb vertex O is located at the center of the sphere, as can 

be seen at Figure 3-3. 

 

 

Figure 3-3: Schematic of a waterbomb spherical mechanism. The links are projected 

onto the sphere surface, and the joints’ rotation axis intersect at the sphere center. 

 

It is possible to describe relations among the arcs and the angle arcs through 

trigonometric functions applied to the spherical triangles described on the sphere surface 

(Figure 3-4). Note that for spherical triangles, sides a, b and c are given in angular units. 

Besides, uppercase letters are related to inner angles or angles between the arcs, and 

lowercase letters are related to arcs length, and, by definition, the angle between arcs is 

the smaller one. Among the trigonometric spherical relations, cosine and sine rules are 

employed and, given the spherical triangle in Figure 3-4, the sides and the inner angles 

relate as follows: 

 

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos(𝐴)
sin(𝐴)

sin(𝑎)
=

sin(𝐵)

sin(𝑏)
=

sin(𝐶)

sin(𝑐)
 

    (3.5) 
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Figure 3-4: Spherical triangle on the sphere surface, formed through the connection of 

the arcs described on the sphere surface. 

 

3.3. Finite Element Method 
 

Liu & Paulino (2017) described non-rigid origamis using the formulation 

proposed by Schenk & Guest (2011), that employs a simplified bar-and-hinge structure. 

In this formulation, the creases act as rotational springs resisting the folding process, and 

the face edges are represented by bar elements, which allow some deformation on the 

panels (Figure 3-5).  

 

 

Figure 3-5: Bar-and-hinge description of an origami 

 

It is considered that the structure is in static equilibrium and the shape changing 

is due to a succession of static equilibrium configurations. Based on that, it is possible to 

write down the potential energy Φ of the system 
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Φ = 𝑈𝑏𝑎𝑟 + 𝑈𝑠𝑝𝑟 − 𝑉𝑒𝑥𝑡        (3.6) 

 

where 𝑈𝑏𝑎𝑟 is the strain energy stored in bars, 𝑈𝑠𝑝𝑟 is the strain energy stored in folding 

(torsional springs on the creases) and bending (torsional springs as virtual folds), and 𝑉𝑒𝑥𝑡 

is the work done by external loads. By assuming quasi-static equilibrium, 

 

∂Φ

𝜕𝒖
=

∂𝑈𝑏𝑎𝑟

𝜕𝒖
+
∂𝑈𝑠𝑝𝑟

𝜕𝒖
−
∂𝑉𝑒𝑥𝑡

𝜕𝒖
= 𝑻𝑏𝑎𝑟 + 𝑻𝑠𝑝𝑟 − 𝑭𝑒𝑥𝑡=0    (3.7) 

 

where 𝒖 is the nodal displacement vector, 𝑻𝑏𝑎𝑟 and 𝑻𝑠𝑝𝑟 are internal forces and 𝑭𝑒𝑥𝑡 is 

the external load. The analysis of internal forces needs to be evaluated considering a 

proper constitutive equation for both bars and springs. A small perturbation of the 

externally applied load corresponds to a perturbation in the nodal DoF displacements, 

such that  

 

𝑻𝑏𝑎𝑟(𝒖0) + 𝑻𝑠𝑝𝑟(𝒖0) +
𝜕(𝑻𝑏𝑎𝑟+𝑻𝑠𝑝𝑟)

𝜕𝒖
|
𝒖=𝒖0

𝑑𝒖 = 𝑭𝑒𝑥𝑡 + 𝑑𝑭𝑒𝑥𝑡   (3.8) 

 

Since Equation (3.7) is satisfied by the solution  𝒖0, Equation (3.8) reduces to 

 

𝑑𝑭𝑒𝑥𝑡 =
𝜕(𝑻𝑏𝑎𝑟+𝑻𝑠𝑝𝑟)

𝜕𝒖
|
𝒖=𝒖0

𝑑𝒖 = [𝑲𝑇(𝒖0)]𝑑𝒖 = [𝑲𝑏𝑎𝑟(𝒖0) + 𝑲𝑠𝑝𝑟(𝒖0)]𝑑𝒖 (3.9) 

where 𝑲𝑇 is the tangent stiffness matrix. 

Each bar element is assumed as one-dimensional and is modeled as a hyper elastic 

material which constitutive relation is governed by a strain energy density function 𝑊. 

The mechanical behavior of the bars is described by the hyperelastic constitutive relation 

presented at the appendix (A.3). Thus, for the i-th bar element showed in Figure 3-6, 

 

𝑻𝑏𝑎𝑟
𝑖 = 𝐴𝑖𝐿𝑖𝑆𝑥

𝜕𝐸𝑥

𝜕𝒖𝑖
                                

𝑲𝑏𝑎𝑟
𝑖 = 𝐴𝑖𝐿𝑖 [𝑆𝑥

𝜕2𝐸𝑥

𝜕𝒖𝑖
2 + 𝐶𝑡

𝜕𝐸𝑥

𝜕𝒖𝑖
(
𝜕𝐸𝑥

𝜕𝒖𝑖
)
𝑇

]
      (3.10) 

 

where 𝐸𝑥 is the Green-Lagrange one-dimensional strain along the bar axis, 𝑆𝑥 is the one-

dimensional component of the second Piola-Kirchhoff (P-K) tensor (A.7, A.8), 𝐴𝑖 is the 
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transversal section area of the bar element, 𝐿𝑖 is the length of the bar element and 𝐶𝑡 is 

the tangent modulus (A.6). 

 

 

Figure 3-6: Bar element and its local referential axis 

 

Now that the bar elements are fully described, we might develop the constitutive 

formulation of the torsional springs. The degree of freedom that describe the torsional 

spring (its rotation) is given by the dihedral angle between the panels and can be obtained 

straight from the displacements and the original coordinates of the vertices. Besides, the 

torsional spring has its behavior assumed as linear elastic. Thus, for the j-th torsional 

spring, 

 

𝑻𝑠𝑝𝑟
𝑗

= 𝐿𝑗
𝜕Ψ

𝜕𝜃

𝜕𝜃

𝜕𝒖𝑗
𝐿𝑗𝑀𝑟𝑒𝑠

𝜕𝜃

𝜕𝒖𝑗
              

𝑲𝑠𝑝𝑟
𝑗

= 𝐿𝑗 [𝑀𝑟𝑒𝑠
𝜕2𝜃

𝜕𝒖𝑗
2 + 𝑘

𝜕𝜃

𝜕𝒖𝑗
(
𝜕𝜃

𝜕𝒖𝑗
)
𝑇

]
      (3.11) 

 

Where 𝑀𝑟𝑒𝑠 is the resisting moment per unit length, 𝑘 is the rotational stiffness 

modulus per unit length and 𝜃 is the dihedral angle. The linear formulation of the moment 

𝑀𝑟𝑒𝑠 does not detect local penetration of origami panels and, to avoid that, additional 

kinematic constraints are considered. The constitutive model is presented at the appendix 

(A.4). 
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This formulation is a nonlinear analysis of the origami, and the solution scheme 

can be summarized as shown in Figure 3-7.  

 

 

Figure 3-7: Unified incremental-iterative scheme to solve nonlinear problems for N+1 

dimensional space.  

 

There are multiple algorithms to solve nonlinear problems and the difference 

among these approaches is on the computation of the load factor (𝛿𝜆𝑗
𝑖) showed in Figure 

3-7. This load factor is computed differently for each nonlinear solution scheme based on 

Step i 

𝑲0
𝑖 ← 𝑲(𝒖𝑖−1)  

𝑗 ← 𝑖 

𝛿𝒖𝐼𝐼𝑗 
𝑖 ← 0 𝑗 = 1 
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ฮΔ𝜆𝐼
𝑖𝒑ഥฮ

< 𝑇𝑂𝐿  

𝜆𝑖 ← 𝜆𝑖 + 𝛿𝜆𝑗
𝑖

𝒖𝑖 ← 𝒖𝑖 + (𝛿𝜆𝑗
𝑖𝛿𝒖𝐼𝑗

𝑖 + 𝛿𝒖𝐼𝐼𝑗
𝑖 )

 

𝛿𝒖𝐼𝐼𝑗 
𝑖 ← (𝑲𝑗−1

𝑖 )
−1
𝒓𝑗−1
𝑖   

𝛿𝒖𝐼𝑗 
𝑖 ← (𝑲𝑗−1

𝑖 )
−1
𝒑ഥ  

Compute 

𝛿𝜆𝑗
𝑖  
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𝑖 ← 𝒑𝑖 − 𝒒(𝒖𝑖) 
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its unique characteristics (Leon et al., 2011). The displacement-based method from this 

work uses a modified generalized displacement control method (MGDCM), a robust and 

powerful solution method that avoids singularities, present in methods like load (LCM) 

and regular displacement (DCM) control method. This method was proposed by Leon et 

al. (2014), and its main feature is to converge the solution even for high values of initial 

load factor. The load factor on the MGDCM is modified such that instead of relying on 

previous values of the increment to define its magnitude, it only considers their sign. This 

way, for large load factor values and for regions of high gradients near load limit points, 

the generalized stiffness parameter (GSP) of the MGDCM will correctly reflect the 

stiffness of the structure.  

The load factor for the method is evaluated as follows 

 

Δ𝜆𝑗
𝑖 =

{
 
 
 
 

 
 
 
 
         

Δ𝜆̅̅̅̅

−
Δ𝒖𝑝1

1 ⋅Δ𝒖𝑟𝑗
1

Δ𝒖𝑝1
1 ⋅Δ𝒖𝑝𝑗

1

           

𝑗 = 1
  

𝑗 > 1
 

    𝑖 = 1

±Δ𝜆̅̅̅̅ √|
Δ𝒖𝒑𝟏

𝟏 ⋅Δ𝒖𝑝1
1

Δ𝒖𝑝1
𝑖 ⋅Δ𝒖𝑝1

𝑖 |

−
Δ𝒖𝑝1

𝑖 ⋅Δ𝒖𝑟𝑗
𝑖

Δ𝒖𝑝1
𝑖 ⋅Δ𝒖𝑝𝑗

𝑖

         

𝑗 = 1
 

 
𝑗 > 1

   𝑖 > 1

           (3.12) 

 

 

3.3.1. Modified displacement-based method 

 

 The original formulation of Input used by the displacement-based method 

proposed by Liu & Paulino (2017) assumes that the Input is applied to the undeformed 

configuration, and at every step the initial Input is kept (Figure 3-8-a). A modification is 

proposed here on the Input description, where the Input now follows the deformed 

configuration (Figure 3-8-b). This approach allows a proper description of the origami 

that does not present any incorrect extra stretching. 
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Figure 3-8: (a) Original Input method, with the Input being applied to the Referential 

Frame (x, y, z)// (X, Y, Z); (b) Modification proposed, where the Input is applied to the 

Referential frame (x, y, z) that follows the Node movement. In the example shown, axis 

𝑧 ⊥ 𝐹𝑎𝑐𝑒237 and plane 𝑥𝑦 is contained within 𝐹𝑎𝑐𝑒237. 

 

A workflow for the modified FEA is presented in Figure 3-9, illustrated by a single 

cell. The XYZ coordinates of each node of the origami is used as input, being reshaped 

as a combination of nodes and panels, and the creases are properly identified and stored 

as bars in a trussed-like structure. Additionally, the boundary conditions and the actuation 

are defined as inputs, being either force or displacement type. This set of inputs are fed 

to the solver that, using an iteration method and with the formulation previously 

presented, converge the solution through a quasi-static analysis of the unbalanced system, 

until it reaches the equilibrium. When the Input is of Force type, for example, the 

modification is applied as an adaptative load that keeps its norm but change the direction 

at each iteration, following the node movement. 
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Figure 3-9: Overview of simulation framework. The initial configuration is inserted in a 

combination of Nodes and Bars, and the external forces and constraints are carefully 

considered. At each iteration, a convergence is performed on each node displacement 

using MGDCM, and, after converging, a new input is generated with the revaluation of 

the forces based on the new Nodes (Nodes considering the displacement). 
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4  Waterbomb Cell 
 

The waterbomb base is a well-known single vertex bi-stable origami pattern 

(Hanna et al., 2014; Ma and You, 2014) that has some interesting properties, such as a 

negative Poisson ration. It also has a natural mirror-symmetry behavior that is thoroughly 

explored in this chapter. The crease pattern for a typical waterbomb base is shown at 

Figure 4-1a. Typically, this origami is conceived with 8 creases, intercepting each other 

at their middle points, equally spaced by a 45 degrees angle. Some variations can be 

observed such as the 6-creased pattern (Figure 4-1b), where 2 folds are inactive, and the 

triangle waterbomb unit (Figure 4-1c), where a 6-creased pattern has its folds alternated 

and separated by a 60 degrees angle. This chapter starts with the kinematic analysis of the 

6-creased origami pattern, followed by a study through its equivalent mechanism 

workspace. A plane-symmetry study is developed in sequence, and a closed-form reduced 

order is presented for the symmetric case. Section 4.5 brings the mechanical analysis of 

the pattern considering the displacement-based method. 

 

 

Figure 4-1: Typical waterbomb base crease pattern, where full line means a mountain 

fold and dashed line means a valley fold. 

 

 

(a) (b) (c) 
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4.1. Kinematic analysis 
 

The kinematic analysis of a 6-creased waterbomb starts with the equivalent 

mechanism definition. This pattern is composed by 2 mountain folds and 4 valley folds. 

In a bi-stable configuration, the pattern presents 2 valley folds and 4 mountain folds. The 

equivalent mechanism for the waterbomb unit cell is showed in Figure 4-2.  

 

 

Figure 4-2: Equivalent mechanism for the 6-creased waterbomb pattern.  

 

Waterbomb pattern has a characteristic that all joints intercept at a common point, 

resulting in 𝑎𝑖 = 𝑅𝑖 = 0 (𝑖 = 1…6). In addition, 𝛼𝑖 is fixed for each pair of consecutive 

joints, being associated with the angle λ that defines the shape of the waterbomb cell. For 

a squared waterbomb cell, 𝜆 = 𝜋 4⁄ .  

Note that the waterbomb cell is a closed-loop mechanism. For the formulation, it 

is assumed that the first linkage (𝑖 = 1) is associated with the crease 𝑂𝐵, being numbered 

counterclockwise. Therefore, the last linkage (𝑖 = 6) is associated to the crease 𝑂𝐴 (see 

Figure 4-2). The frame definition is summarized as: 

 

1. The first frame (𝑖 = 1) is defined as the crease 𝑂𝐵. 

2. Frames are disposed following a counterclockwise sequence, following 

the vertex order 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝐴, starting from (𝑖 = 1) at vertex 𝐵 and 

ending at (𝑖 = 6) at vertex 𝐴. 

Waterbomb cell 
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3. The 𝑧𝑖 axis of each 𝑖 frame is aligned with the crease, with its origin at 𝑂 

(see Figure 4-2). 

4. The 𝑦𝑖 axis of each frame is coplanar with the origami face delimited by 

the joints 𝑖 and 𝑖 − 1, and the 𝑦1 frame is coplanar with the origami face 

delimited by frames 1 and 6. 

5. The 𝑥𝑖 axis of each 𝑖 frame is the normal of the face delimited by joints 𝑖 

and 𝑖 − 1, and the 𝑥1 frame is the normal to the face delimited by frames 

1 and 6. 

6. The waterbomb defines an inner region and an outer region, where the 

inner region is contained within the waterbomb edges 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐸, 𝐸𝐹 

and 𝐹𝐴.  Each 𝑥𝑖 axis points outwards the inner region. 

 

Each 𝑧𝑖 axis is defined such that every 𝜃𝑖 angle belongs to the range [0, 𝜋]. With 

this consideration, 𝑧𝑖 axis associated with valley folds (creases 𝑂𝐴,𝑂𝐶, 𝑂𝐷 and 𝑂𝐹) are 

positioned along the crease, pointing from 𝑂𝑖 to the correspondent vertex (𝐴, 𝐶, 𝐷 or 𝐹), 

while 𝑧𝑖 axis associated with mountain folds (𝑂𝐵 and 𝑂𝐸) are positioned along the crease, 

pointing to the opposite direction of the correspondent vertex (𝐵 or 𝐸). The values of the 

D-H parameters for a generic waterbomb cell are given in Table 4-1. 

 

Table 4-1: D-H parameters and its correspondence to each vertex of the unit cell 

vertex 𝐵  𝐶  𝐷  𝐸  𝐹  𝐴  

      i 1 2 3 4 5 6 

𝛼𝑖  𝜋 − 𝜆 𝜋 + 2𝜆 𝜋 − 𝜆 𝜋 − 𝜆 𝜋 + 2𝜆 𝜋 − 𝜆 

𝜃𝑖  𝜃1   𝜃2  𝜃3  𝜃4  𝜃5  𝜃6  

𝑅𝑖  0 0 0 0 0 0 

𝑎𝑖  0 0 0 0 0 0 

 

The D-H formulation allows the description of each 𝑖 → 𝑖 + 1 joint pair through 

just four parameters, and since three of them are constant values, each joint can be 

represented by one degree of freedom, 𝜃𝑖, resulting in 6 free variables. Note that the 

waterbomb pattern is related to a closed chain, which means that the last joint connects 

to the first one. In this regard, there is no sense in talking about the end-effector, instead 

it is necessary to evaluate the loop closure equation. It acts as a restriction to the system, 
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reducing the number of degrees of freedoms that results in the mobility 3 mechanism 

previously analyzed. 

The system (3.4) is solved using the parameters from Table 4-1. Note that the 

system can be simplified and reduced from 16 to 9 equations, once that the parameters 

from Table 4-1 applied to Equation (3.4) result in 𝑃𝑚4 = 0 and 𝑃4𝑛 = 0 for every 𝑚, 𝑛 =

1…3, and 𝑃44 = 1. Therefore, the system of equations is conceived without the last row 

and the last column of matrix 𝑷(𝜽), resulting in 𝑓𝑖(𝜽) = [𝑷(𝜽) − 𝑰]𝑚𝑛, where 𝑖 =

3(𝑚 − 1) + 𝑛, for 𝑚, 𝑛 = 1…3. 

The system is solved within the lower and upper boundaries that define the 𝜃 

range, [0, 𝜋]. Besides, the unit cell is built as a square of side length 2𝑙. Thus, D-H 

parameters are 𝑎𝑖 = 0 and 𝑅𝑖 = 0, for 𝑖 = 1…6, 𝛼1 = 𝛼3 = 𝛼4 = 𝛼6 =
3𝜋

4⁄  and 𝛼2 =

𝛼5 =
3𝜋

2⁄ , and 𝜃𝑖 are the mechanism variables. With these known parameters and the 

closure equation (3.6), it is possible to fully describe the 6-creased waterbomb equivalent 

mechanism with only 3 inputs. 

 

4.2. Workspace analysis 
 

The mechanism workspace represents a region of movement of the end-effector 

relative to a referential frame, usually attached to the frame associated with the first 

linkage. In this subsection, a workspace analysis is carried out considering the motion of 

the waterbomb unit cell related to the frame attached to the crease OA. 

The origami analysis considers a subset of angles (𝜃1, 𝜃2, 𝜃3) that, if physically 

attainable without stretching, twisting, or compressing the links and without penetration 

of panels, is identified in a feasible region of the 3D space named as workspace. Figure 

4-3-a to Figure 4-3-i presents the waterbomb unit cell workspace, defined by the feasible 

region generated by giving (𝜃1, 𝜃2, 𝜃3) in a range [0, 𝜋]. The workspace assumes a 

spherical configuration, centered at (0,0,0). Note that it is composed by two spheres: an 

inner sphere, associated with the motion of vertices B and E, and an outer sphere, 

associated with motion of vertices C, D and F, being vertex A an inertial point located in 

the outer sphere. 
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Figure 4-3: From (a) to (i): Different representations of the unit cell shape 

configurations for distinct values of the input angles (𝜃1, 𝜃2, 𝜃3). The waterbomb cell is 

represented through the connective of the position of each vertex on the workspace 

where vertices A, C, D and F belong to the outer sphere with radius 𝑏√2, wherein 𝑂𝐴 =

𝑂𝐶 = 𝑂𝐷 = 𝑂𝐹 = 𝑏 √2, and vertices B and E belong to the inner sphere with radius 𝑏, 

wherein 𝑂𝐵 = 𝑂𝐸 = 𝑏. 

 

The workspace contained in Figure 4-3 corresponds to the gray dots, and it is 

formed through a contribution of the combined motion of vertices B to F of the 

waterbomb cell, where vertex A is assumed as the inertial one. The points in the 

workspace should not be considered individually, but as a set of 6 points. As examples, 

we selected 9 sets, where each set corresponds to a subset of angles (𝜃1, 𝜃2, 𝜃3) given as 

an input and a subset of angles (𝜃4, 𝜃5, 𝜃6) that corresponds to the output. The subset for 

b) c) 

d) e) f) 

g) h) i) 
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each case in Figure 4-3-a to Figure 4-3-i is shown in Table 4-3, along with the converted 

remaining three angles, rounded in the Table 4-3 to the second decimal number. Figure 

4-3-a shows the case where the waterbomb is fully unfolded. 

 

Table 4-2: Subsect of input angles (𝜃1, 𝜃2, 𝜃3) and numerically converged remaining 

three angles (𝜃4, 𝜃5, 𝜃6) 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 

𝜽𝟏 0 30 90 90 95 95 95 105 180 

𝜽𝟐 0 45 75 75 110 145 170 105 180 

𝜽𝟑 0 30 75 130 90 145 80 105 175 

𝜽𝟒 0 22.70 19.51 68.00 63.52 174.04 100.90 66.60 165.90 

𝜽𝟓 0 48.28 49.30 74.86 99.44 153.67 173.72 96.64 175.00 

𝜽𝟔 0 34.56 111.11 140.73 98.11 144.33 83.09 116.49 170.04 

 

A different perspective of the workspace is now of concern highlighting the 

vertices on the workspace. Figure 4-4 highlights each joint-linkage pair, considering a 

referential frame at crease OA (joint A). Some isolated groups of points on the workspace 

are more visible on the workspace for vertex D. These isolated groups represent a peculiar 

set of tridimensional configurations achieved by the waterbomb cell, where the structure 

has an inversion of crease type or is on the verge of a panel penetration. Any configuration 

that would be in between these isolated components results in a cell with a superposition 

and/or penetration of panels and, therefore, are not contemplated in the workspace. A 

connection between these isolated components requires a deformation on at least one 

panel that is not feasible for the equivalent mechanism description due to geometrical 

restrictions. It is important to highlight that even though a few components are more 

evident in one panel than in another one, each component of one panel has a connection 

with one component on another panel. 
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Figure 4-4: Workspace for each joint-linkage pair of the waterbomb cell, considering 

the referential frame at joint A (crease OA). 

 

4.3. Symmetry analysis 
 

The mobility of the mechanism can be reduced by imposing symmetry conditions 

on the origami, which can be associated with either the actuation or some mechanical 

restriction imposed to the origami. The actuation providing symmetric responses is 

related to external forces that are applied in such a way that preserves the symmetry. The 

mechanical restriction can be achieved by considering some displacement constraint.  

 

A 

B 

C 

D E 

F O 
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Figure 4-5: Symmetry conditions on a waterbomb unit cell: (a) planes of symmetry; (b) 

configuration related to Case Π1, with mobility 2; (c) configuration related to Case Π2, 

with mobility 2; (d) symmetric configuration related to Case Π3, with mobility 1. 

 

By observing the unit cell in Figure 4-5-a, three symmetry planes can be defined, 

where two of them lead to a partial symmetry (with mobility 2) and the third one 

represents the cell with a symmetric behavior (with mobility 1). The first symmetry plane 

is obtained through a diagonal of the unit cell, either 𝐴𝐷 or 𝐶𝐹 (Π1), resulting in 𝜃𝑖 =

𝜃𝑖+3 (𝑖 = 1…3). The second symmetry plane is obtained through the cut 𝐵𝐸 (Π2), 

resulting in 𝜃3 = 𝜃5 and 𝜃2 = 𝜃6. The third symmetry plane is obtained by connecting 

the middle points of the links 𝐶𝐷 and 𝐴𝐹 such that 𝐴𝐹//𝐶𝐷 (Π3), resulting in  𝜃2 = 𝜃3 =

𝜃5 = 𝜃6 and 𝜃1 = 𝜃4. Note that this third case has a shape that can be fully described by 

only one angle, since the origami is fully symmetric (mobility 1). In addition, the shapes 

resulting from Π3 can be considered as a subset of the shapes resulting from both Π1 and 

Π2, as can be observed in Figure 4-6, where the intersection between the workspaces 

considering Π1 and Π2 is the workspace considering Π3. 
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Figure 4-6: Workspaces for the plane-symmetry cases Π1 and Π2 and the symmetry case 

Π3 (a).  The symmetric case Π3 is showed superposed to only the plane-symmetric case 

Π1 in (b), while it is superposed to only the plane-symmetric case Π2 in (c). 

 

Plane-symmetry constrains mostly the workspace of the joint 4, associated with 

the crease 𝑂𝐸. The original spherical surface covered by the motion of crease 𝑂𝐸 (see 

Figure 4-4) is now reduced to a single spherical arc for all three cases, Π1, Π2 and Π3. It 

is important to remember that the referential frame associated to the crease 𝑂𝐴 is 

considered as the inertial frame. The study of the symmetry cases is an interesting strategy 

to intelligently design the actuation of the origami in applied cases. This advantage is 

clear when observing the change on the workspace of Node E from a general case (Figure 

(a) 

(b) (c) 
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4-4) to the plane-symmetric cases (Figure 4-6). If the objective is to constrain the 

waterbomb to a symmetric or quasi-symmetric motion, it suffices to control the motion 

of Node E, keeping it in a spherical arc, as shown in Figure 4-4. Additionally, it is possible 

to notice that for all three plane-symmetric and symmetric cases, the workspace of Node 

𝐹 is confined within a single dot in space. This immovability of Node 𝐹 is the main reason 

why Node 𝐸 behaves the same way as Node 𝐵, describing just a single arc in space. 

It is important to highlight that these observations are made here considering that 

there is no inversion on the creases, so creases 1 − 7 and 4 − 7 (creases 𝑂𝐵 and 𝑂𝐸) are 

always a mountain type fold while the other four (2 − 7, 3 − 7, 5 − 7, 6 − 7) are always 

a valley type fold.  

Symmetry assumptions can be employed to reduce the necessary equations for the 

origami description, leading to a simplified formulation. Another way to obtain the 

equations for the symmetric case is the use of other formulations such as spherical 

trigonometry, since the waterbomb is a spherical mechanism (Bowen et al., 2014; Evans 

et al., 2015; Chen & Santangelo, 2018; Fonseca et al., 2019; Fonseca & Savi, 2020). The 

next section presents a discussion about this subject considering only the case Π3, where 

the origami has mobility 1, and therefore can be represented by a single degree of freedom 

system (DoF). 

 

4.4. Closed-form trigonometric description 
 

This section has the objective to present the kinematics analysis of a waterbomb 

unit cell based on spherical trigonometry formulation. This formulation is widely 

explored in the literature (Bowen et al., 2014; Evans et al., 2015; Chen & Santangelo, 

2018; Fonseca et al., 2019), and is represented here in details. Hence, consider a 

symmetric unit cell inserted into a sphere of unitary radius such that the vertex 𝑂 matches 

with the sphere center. Figure 4-7 shows the top view (Figure 4-7-a) and side view (Figure 

4-7-b) of the unit cell, respectively. 

Figure 4-7-c shows a tridimensional view of the cell inserted in the sphere while 

Figure 4-7-d presents a tridimensional view of a general rectangular waterbomb cell with 

sides 2a and 2b and internal acute angle λ, such that 𝑎 = 𝑏 tan(𝜆). Each side of the 

spherical triangle is defined by its correspondent internal angle, as shown in Figure 4-8. 
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Figure 4-7: Spherical representation of the origami unit cell: (a) top view; (b) side view; 

(c) tridimensional view; (d) schematic view of a waterbomb spherical mechanism 

 

 

Figure 4-8: Spherical triangle sides’ definition. 

 

Based on that and knowing the unit cell inner angles (λ and π-2λ), the following 

arcs are obtained: 𝐴𝐵 ̂ = 𝐵𝐶 ̂ = 𝐷𝐸 ̂ = 𝐸𝐹 ̂ = 𝜆  and 𝐶𝐷 ̂ =  𝐹𝐴 ̂ =  𝜋 − 2𝜆 , and the 

angle between these arcs are defined as ϕ1 and ϕ2. The cell configuration is described by 

angles θ and α that are coupled by trigonometric relations and assuming symmetry 

conditions. Figure 4-9 shows the triangles inside the sphere employed to obtain the unit 

cell geometric relations. 
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Figure 4-9: Spherical triangles used to define geometric relations of the unit cell, 

computing angles α and θ. 

 

Three intermediate relations can be obtained by considering cosine and sine 

formulas for right and general spherical triangles: 

 

𝜙1 = 2𝜃            (4.1) 

cos(𝜙2) =
cos(𝜃) cos(𝛼)

sin(𝜆) cos(𝜆)
− 1          (4.2) 

sin(𝜙2) =
sin(𝜃) cos(𝛼)

sin(𝜆)
          (4.3) 

 

By employing trigonometric fundamental law on Equations (4.2) and (4.3), it is 

possible to establish relations between θ and α, as follows:  

 

cos(𝜃) cos(𝛼) tan(𝜆) + |sin(𝛼)| = 1     (4.4) 

 

Afterward, it is necessary to establish the relation between the angles described 

by the D-H parameters and the angles described by the spherical trigonometry 

formulation. Note that the angles 𝜃𝑖 from D-H formulation can be interpreted as the angle 

between the normal vectors of two consecutives faces (Figure 4-10). It is assumed that 

the positive direction is outwards, which means that they are pointing to the external 

region of the waterbomb unit cell. Therefore, the following expressions are defined 

 

cos(𝜃1) = 𝒏𝐴𝐵 ⋅ 𝒏𝐵𝐶
cos(𝜃2) = 𝒏𝐶𝐷 ⋅ 𝒏𝐵𝐶

         (4.5) 
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where 𝜃2 = 𝜃3 = 𝜃5 = 𝜃6 and 𝜃1 = 𝜃4; 𝒏𝐴𝐵 = 𝒏𝐵 × 𝒏𝐴, 𝒏𝐵𝐶 = 𝒏𝐶 × 𝒏𝐵 and 

𝒏𝐶𝐷 = 𝒏𝐷 × 𝒏𝐶, with 𝒏𝐵 being the unitary vector for the position of vertex 𝐵, 𝒏𝐴 being 

the unitary vector for the position of vertex 𝐴, and 𝒏𝐴𝐵 being the normal unitary vector 

of face 𝐴𝑂𝐵, considering a referential frame attached to the vertex 𝑂 (see Figure 4-10). 

Thus, equation (4.5) results in the following expressions 

 

cos(𝜃1) =
(tan(𝜆) sin(𝜃))2−(cos(𝛼)−tan(𝜆) cos(𝜃) sin(𝛼))2

(tan(𝜆) sin(𝜃))2+(cos(𝛼)−tan(𝜆) cos(𝜃) sin(𝛼))2

cos(𝜃2) =
tan(𝜆)2 sin(𝛼)−tan(𝜆) cos(𝜃) cos(𝛼)

√(tan(𝜆) sin(𝜃))2+(cos(𝛼)−tan(𝜆) cos(𝜃) sin(𝛼))2

    (4.6) 

 

For a symmetric 6-creased waterbomb cell, equation (4.6) is rewritten as: 

 

cos(𝜃1) =
sin2(𝜃)−(cos(𝛼)−cos(𝜃) sin(𝛼))2

sin2(𝜃)+(cos(𝛼)− cos(𝜃) sin(𝛼))2

cos(𝜃2) =
tan(𝜆)2 sin(𝛼)−tan(𝜆) cos(𝜃) cos(𝛼)

√(tan(𝜆) sin(𝜃))2+(cos(𝛼)−tan(𝜆) cos(𝜃) sin(𝛼))2

    (4.7) 

 

 

Figure 4-10: Definition of vectors for the waterbomb cell.  

 

The spherical trigonometry formulation offers a reduced-order description of the 

waterbomb cell behaving under Π3 condition (symmetric behavior), resulting in a low 

computational cost while evaluating complex behaviors such as dynamical aspects of 

origami structures applied to mechanical devices (Fonseca et al., 2019; Fonseca & Savi, 

2020). Closed tessellations, for example, present reduced DoF when compared to the 

opened tessellations formed by the same 𝑚 × 𝑛 unit cell distribution. Besides, quasi-
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symmetric or symmetric actuation constrains the behavior of the unit cells to plane-

symmetric or symmetric workspaces, as presented at the workspaces in Figure 4-6. 

 

4.5. Finite Element Analysis (FEA) 
 

As an example, boundary conditions are applied to the face 567 such that its node 

displacements (nodes 5, 6 and 7; or vertex F, A and O, respectively) are restrict in all 

directions (Figure 4-11). In a general situation, all creases might be actuated. 

 

 

Figure 4-11: Origami waterbomb pattern unit cell with boundary conditions and Input 

as a Force type. 

 

Initially, we present a comparative example (Figure 4-12) between the original 

result of a simulation using the displacement-based method, presented in Section 3.3, and 

the result after the modification (Section 3.3.1) is implemented, using the force 

application as Input presented at Figure 3-8-b, where the Inputs are applied as Force type 

to Nodes 3 and 4, being 𝑭3 = 0.056 [0 −1 1]𝑇 and 𝑭4 = 0.056 [1 1 1]𝑇.  

 

𝐹3 

𝐹4 
𝐹2 

𝐹1 

1 

3 

4 

5 

6 

7 

2 
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Figure 4-12: Closure process of a waterbomb cell with and without the force 

decomposition procedure. Waterbomb final configurations (a) and (d), spatial location 

of the vertices during the closure (b) and (e), and true strain (c) and (f) of each bar of the 

waterbomb cell. 

 

For the original code, the forces 𝑭3 and 𝑭4 are described on the undeformed 

referential frame, while on the modified code they follow the Nodes movement. Thus, the 

absolute values of the forces (‖𝑭3‖ and ‖𝑭4‖) is kept, but their direction changes with 

the Nodes’ motion. Note that the modification reduces considerably the deformation 

presented by each bar, preserving the general aspect of the motion. Besides, it reduces the 

occurrence of an unadvised crease inversion due to an inadequate force actuation. Also, 

once that this modification allows a revaluation of the external effort for each iteration, it 

(a) (d) 

(b) (e) 

(c) (f) 

Original code Modified code 
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makes it possible to generate a cyclic opening/closure process along the same simulation, 

with the proper modification of the force decomposition process. 

The purpose of this modification is to make a considerably accurate representation 

of the folding process without imposing an extreme incorrect deformation on the bars of 

the bar-and-hinge representation, and, even so, consider a possible deformation on the 

origami. The simulations carried out along this paper use the modified method from 

Section 3.3.1. 

The modified method uses not only the Node at which the Input is being applied 

to, but also an identifier as the direction of that Input, in the case of a Force type. In this 

work, we use the crease as the identifier. The relation between the node for applying the 

external force and the activated fold can be seen at Table 4-3. Note that the same fold can 

be activated by different nodes, depending on the chosen crease for the force 

decomposition. Besides, the order of the nodes for the chosen crease is important, once 

that it defines if it is a mountain or a valley fold, through the cross product. This table 

shows a general formulation, including activation through nodes 5 and 6. Note that 

creases 1 − 7 and 4 − 7 are mountain folds and the other creases are valley folds. 

 

Table 4-3: Activated crease representation: Force applied at a Node and decomposed 

related to a predefined direction (Nodedirection) 

 Nodedirection 

Crease Case I Case II 

1 − 7 21→7 

 

67→1 

 2 − 7 12→7 

 

37→2 

3 − 7 23→7 47→3 

4 − 7 54→7 37→4 

5 − 7 45→7 67→5 

6 − 7 56→7 17→6 
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Figure 4-13: Final configuration of the waterbomb cell considering the activation of a 

single crease at a time, for the boundary conditions of clamped Nodes 5, 6 and 7, 

including the dual cases for creases 2 − 7 and 3 − 7. 

 

An initial evaluation is made considering that only one crease is activated at each 

time, according to the relation presented at Table 4-3. The final configuration for each 

case is shown at Figure 4-13. It is important to highlight that due to the mirror-symmetry 

property of the waterbomb cell, the final configuration for creases 3 − 7, 4 − 7 and 5 −

7 are a mirrored-like image of cases 2 − 7, 1 − 7 and 6 − 7, respectively. The input of 

each case is the node and crease, according to Table 4-3, and a force with absolute value 

of 0.136 N. 

Once that we know the behavior of each activated crease, it is noticeable the 

influence of each one in the final configuration of a waterbomb cell. A configuration 

promoted by the actuation of creases 3 − 7, 4 − 7 and 5 − 7 is shown in Figure 4-14, and 

the crease 3 − 7 is activated through the node 2 – Case I. 

 

Node 1 – Case II 

Node 2 – Case I 

Node 1 – Case I 

Node 3 – Case II Node 2 – Case I 

Node 4 – Case II 

Node 3 – Case II 

Node 4 – Case I 

6 

1 

2 3 

4 

5 
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Figure 4-14: Configuration of the waterbomb cell considering activated creases 3 − 7, 

4 − 7 and 5 − 7. 

 

A mechanical analysis of the waterbomb unit cell is now in focus considering 

numerical simulations using ‘MERLIN’. The study starts with a general visualization of 

the waterbomb movement under external forces, with evaluation on the deformation of 

the creases. For all simulations presented here, boundary conditions and Inputs as Force 

type are defined as the example presented at Figure 4-11, where the face AFO (face 

formed by Nodes 5, 6 and 7) is fixed in space and the Nodes 1, 2, 3 and 4 (vertexes B, C, 

D and E, respectively) are subjected to external forces.  

The folding process of the waterbomb cell is evaluated using FEA for four cases: 

the plane-symmetric (Π1, Π2) and symmetric (Π3) cases, presented at Section 4.3, and an 

asymmetric case. These four cases are evaluated with the inputs shown in Table 4-4, 

where the input is described by the Node where the Force is being applied and a crease. 

The crease as an input has two purposes: the first one is to define the Face to which the 

Force remains perpendicular, following the Node movement. The second one is the 

direction of the Force applied. Thus, a Force applied to Node 1 with Crease identification 

7 − 6 results in a Force normal to Face 𝐴𝐵𝑂 (face 167) following the motion of Node 1, 

folding the origami along the crease 𝑂𝐴 such that 𝑂𝐴 is a valley type fold. On the other 

hand, a Force applied to Node 1 with Crease identification 6 − 7 results in a Force normal 

Node 4 – Case I 

 

 Node 3 – Case II 

 

Node 2 – Case I 
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to Face 𝐴𝐵𝑂 (face 167) following the motion of Node 1, folding the origami along the 

crease 𝑂𝐴 such that 𝑂𝐴 is a mountain type fold. 

 

Table 4-4: Input and final configuration for each one of the four cases: quasi-symmetric 

(Π1 and Π2), symmetric (Π3) and asymmetric 

Case Π1 Π2 Π3 Asymmetric 

Node 1 4 3 1 4 2 1 4 1 4 2 

Crease 7 − 6 7 − 3 7 − 4 7 − 6 5 − 7 7 − 3 7 − 6 5 − 7 7 − 6 5 − 7 3 − 7 

Folded 

shape 

 
 

  
 

At this point, it is important to define the symmetric characteristics and their 

deviations of the symmetric case. From mechanical point of view, a symmetric behavior 

of the unit cell can be defined as the case where the creases have identical behaviors, and 

all mountain type folds present the same absolute deformation along the entire folding 

process (creases 𝑂𝐴,𝑂𝐶, 𝑂𝐷 and 𝑂𝐹) and all valley type folds present the same absolute 

deformation along the entire folding process (creases 𝑂𝐵 and 𝑂𝐸). A similar observation 

is made for the angle variation. For the waterbomb unit cell under symmetric behavior, 

the angle variation of all mountain type folds is the same (angles 𝐴, 𝐶, 𝐷 and 𝐹) along the 

entire folding process, just as the angle variation of all valley type folds (angles 𝐵 and 𝐸). 

Discrepancies along the folding process on both deformation and angle variation are 

understood as deviation of the symmetric case. This deviated case is identified as a plane-

symmetric case if the angle relation is according to either Π1 or Π2. Otherwise, it is 

defined as an asymmetric case. 

The bar-and-hinge formulation considers a simplified model of the origami face, 

where the face deformation is represented by the sum of the contribution of each edge 

and/or crease deformation. Therefore, a deformation on face 𝑂𝐴𝐹 is represented by the 

cumulative effect of the deformation on creases 𝑂𝐴 and 𝑂𝐹 and edge 𝐴𝐹. 
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Figure 4-15: Workspace for cases Π1 and Π2 and simulations for a generic case 

(asymmetric), plane-symmetric behavior (Π1, Π2) and symmetric behavior (Π3). The 

correspondent deformation of each origami face is shown for cases Π3 (b), Π2 (c), Π1 (d) 

and asymmetric (e). 

 

(a) 

(b) (c) 

(d) (e) 
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Figure 4-15 (a) shows the motion in space of the four cases presented at Table 

4-4. As a reference, the workspace for the plane-symmetric cases (Π1 and Π2) are also 

plotted. Figure 4-15 (b) shows the deformation evolution for the waterbomb origami 

under symmetric behavior of type Π3. It is possible to note that faces 𝑂𝐵𝐶 and 𝑂𝐷𝐸 have 

the same deformation, just as faces 𝑂𝐴𝐵 and 𝑂𝐸𝐹. More than that, faces 𝑂𝐴𝐵, 𝑂𝐵𝐶, 

𝑂𝐷𝐸 and 𝑂𝐸𝐹 have the same absolute deformation. Face 𝑂𝐴𝐹 presents a larger 

deformation related to face 𝑂𝐶𝐷 due to the boundary conditions applied to the origami, 

where nodes 𝐴 and 𝐹 have their motion restricted on two out of three directions. 

One deviation from the symmetric case is observed in Figure 4-15 (c), where the 

waterbomb behaves according to the plane-symmetric case of type Π2. Note that there is 

a divergence on the deformation of faces 𝑂𝐵𝐶 and 𝑂𝐷𝐸, just as for faces   𝑂𝐴𝐵 and 𝑂𝐸𝐹. 

An interesting behavior is observed in Figure 4-15 (d), where the waterbomb unit cell 

behaves according to plane-symmetric case of type Π1. For this configuration, diagonally 

opposed faces present the same deformation, by pairs: faces 𝑂𝐴𝐵 and 𝑂𝐷𝐸, faces 𝑂𝐵𝐶 

and 𝑂𝐸𝐹 and faces 𝑂𝐴𝐹 and 𝑂𝐶𝐷. Finally, for the asymmetric case, shown in Figure 

4-15 (e), no symmetry is observed among the deformation of origami unit cell faces. 

The folding process can also be evaluated through the inner angles of the origami 

unit cell, as can be seen at Figure 4-16. Note that for the case Π3, the kinematics 

formulation can precisely describe the increasing of the angles, even with the creases and 

edges presenting a larger deformation, showed in Figure 4-15 (b) , and 𝐴 = 𝐶 = 𝐷 = 𝐹 

and 𝐵 = 𝐸 along the entire folding process (Figure 4-16 (a)). A similar analysis is 

performed for the case Π2, showed in Figure 4-16 (b), where 𝐴 = 𝐶 and 𝐷 = 𝐹. 

 As evaluated through the kinematics formulation, when the waterbomb is folding 

according to case Π1, the inner angles relate as 𝜃𝑖 = 𝜃𝑖+3, for 𝑖 = 1,2,3. By observing the 

vertices, this can be translated as 𝐴 = 𝐷, 𝐶 = 𝐹 and 𝐵 = 𝐸. Figure 4-16 (c) shows the 

angles evolving with the increment, and it can be noticed that 𝐴 ≅ 𝐷, 𝐶 ≅ 𝐹 and 𝐵 ≅ 𝐸. 

The deviation can be considered a result of the deformation that happens on the creases 

(Figure 4-15 (d)). 

The fourth case, with inner angles showed in Figure 4-16 (d) and faces 

deformation showed in Figure 4-15 (e), represent a general asymmetric motion, with no 

relation among the angles. Note that in the asymmetric case, the continuous folding of an 

angle (angle 𝐴, for example) might occur in a sequential folding – unfolding – folding of 
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another angle (angle 𝐸, for example). This behavior can be seen between time 50 and 100 

of Figure 4-16 (d). 

 

 

Figure 4-16: Evolution of the inner angles of the waterbomb cell with the increment 

during the folding process, for a folding occurring according to cases Π3 (a), Π2 (b) and 

Π1 (c), and according to an asymmetric actuation (d). The final configuration is also 

shown in evidence in each case. 

 

A closer observation of the asymmetric case is now performed comparing the path 

described through kinematics formulation with the path obtained by FEA. Figure 4-17 

establishes a comparison between both formulations. Figure 4-17 (a) presents the 

superposed trajectories followed by both cases, showing a good match. This evaluation 

is ensured by observing the difference on the inner angles for each increment (Figure 4-17 

(b)). For the kinematics formulation, the input is given by the set of angles (𝜃1, 𝜃2, 𝜃3), 

(a) (b) 

(c) (d) 
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corresponding to the inner angles of vertices 𝐵, 𝐶 and 𝐷, respectively. Note that the 

deviance is smaller than 1 degree (approximately 0.017 rad), meaning that the kinematics 

formulation can represent the folding process of the waterbomb origami. In other words, 

the rigid foldability hypothesis is valid. 

 

 

Figure 4-17: Asymmetric behavior of the waterbomb cell described by the kinematic 

formulation (using D-H parameters) and the FEA formulation (using bar-and-hinge 

description). (a) Tridimensional movement of the cell on folding process; (b) Difference 

between the inner angles evaluated by kinematics method and by FEA method. 

 

 

 

 

 

 

 

 

 

(a) (b) 
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5  Waterbomb Tessellation 
 

A tessellation is a highly symmetric, edge-to-edge tiling surface, constructed 

through the arrangement of regular polygons. Zhao et al. (2018) explored the complexity 

of waterbomb tessellations, designing generalized tessellations to describe several 3D 

shapes going from spherical and cylindrical elements to hyperbolic paraboloids and torus, 

exploring asymmetries on both the pattern design and its shape configuration. In their 

work, Zhao et al. (2018) approximated 3D surfaces by modeling their curvatures with 

adapted waterbomb patterns, with variations in its unit cell. One example is the vase-like 

structure from Figure 5-1. Figure 5-1-a presents the target surface, where u and v are 

coordinates in the parametric u-v plane. With these coordinates, the structure is mapped 

into a quad surface (Figure 5-1-b), and each square is replaced by a waterbomb pattern 

half-folded. Depending on the resolution or the level of approximation desired, the 

number of waterbomb cells can increase substantially (Figure 5-1-c to Figure 5-1-f). The 

increasing in the resolution comes with a substantial increasing in the complexity and the 

number of degrees of freedom, apart from the level of variation input to the waterbomb 

unit cells. 
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Figure 5-1: Target 3D surface and approximation using waterbomb tessellation. (a) 

Target surface and coordinates in parametric u-v plane; (b) Quad surface; (c) to (f): 

Target surface approximated using waterbomb tessellation, with increasing resolution. 

[Image source: Zhao et al. (2018)] 

 

5.1. Poisson’s ratio 
 

The Poisson’s ratio of an element is a measurement of the dual effect subjected to 

an element by a compression load (Poisson’s effect). In other words, the Poisson’s ratio 

is a comparative numerical representation of the effect that a load applied in one direction 

has on a transversal direction of said element. 

Assume that, for example, a tractive load is applied in the Y direction of a 

material, with two perpendicular directions X and Z, and the material’s behavior 

regarding expansion/ contraction is described by the Poisson’s ratio. In a bi-dimensional 

representation, the Poisson’s ratio can be easily interpreted (Figure 5-2). A positive 

Poisson’s ratio (PPR) indicates that by applying a tractive load in Y direction, the material 

(a) (b) 

(c) (d) (e) (f) 
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will contract in X and Z directions. If instead of contracting the material’s cross-section 

expands in X and/ or Z directions, it has a negative Poisson’s ratio (NPR). A peculiar case 

occurs for a material with zero Poisson’s ratio (ZPR), where directions X and/ or Z are 

not affected by the loading on direction Y. This last category satisfies the morphing 

structure requirements. 

 

 

Figure 5-2: Poisson’s ratio explained in two dimensions. 

 

Based on this definition, the geometric particularities of origami unit cells and 

tessellations result in interesting characteristics related to the Poison’s ratio. In this regard, 

this parameter can be exploited in different applications, allowing engineers to design 

tessellation patterns for optimized desired mechanical properties. Findley (2013) 

presented an experimental study of several tessellations evaluating their properties 

applied in sandwich structures, acting as the sandwich core. Due to the negative Poisson’s 

ratio of some origami tessellations, the application of said tessellations as sandwich cores 

present an interesting hardening-like behavior when loaded, once that the origami 

sandwich behaves as an auxetic structure. Findley (2013) studied sandwich cores made 

with Miura-Ori, Waterbomb, Square Twist and Honeycomb patterns. 

Wei et al. (2013) developed an extensive work on the Miura-Ori tessellation, 

characterizing its geometry and planar and nonplanar effective elastic response. They 

verified that the Miura-Ori tessellation has an unusual emergent property, such as a 

negative Poisson’s ratio. Origami Poisson’s ratio evaluation was confirmed by Wei et al. 

(2013), for the Miura-Ori tessellation. This method, however, can be easily extended to 

other origami patterns, such as the waterbomb pattern studied here.  

𝑃𝑃𝑅 𝑁𝑃𝑅 𝑍𝑃𝑅 

x 

y 

Input 

Output 
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Wei et al. (2013) considered that the tessellation can be represented by a single 

cell, implicitly indicating a symmetric behavior. By definition, the Poisson’s ratio is 

evaluated through the input/output relation of transversal principal directions, regarding 

the deformation. The Poisson’s ratio can be evaluated for origami structures if the 

analyzed transversal directions are perpendicular through the entire deployment 

movement. Therefore, it is applicable mainly to symmetrical folding/unfolding process 

of unit cells. Even though, determining Poisson’s ratio for the origami structure provides 

an optimization to the design method regarding the deployment motion, once it increases 

the understanding of a pattern’s motion at any point in the deployment.  

 

𝜈𝑤𝑙 = −
𝑑𝑤/𝑤

𝑑𝑙/𝑙
          (5.1) 

 

Length and width of an expanding and collapsing structure is properly defined by 

corner points, rather than edges, knowing that the selected corner points must define lines 

that remain perpendicular during the entire range of deployment. For the waterbomb 

patterns shown in Figure 5-3, three points are considered: points 𝑃𝐿1 and 𝑃𝐿2, placed along 

the diagonal, and point 𝑃𝐿3. The distance between the first two points is defined as R, and 

the deployment angle is defined as ϖ. For both waterbomb patterns shown in Figure 5-3, 

the distance R is defined as 𝑅 =
2𝑙 sin

ϖ

2

cos𝜆
. Variable R is used to evaluate W, L and H, 

indicated in Figure 5-3 for each waterbomb pattern, where W is the width, L is the length 

and H is the height. 

Another interesting parameter for origami tessellations is the volumetric packing, 

that is characterized as the effective volume of the structure at a given folded state. When 

analyzing a single unit, the volumetric packing is evaluated as the effective volume of 

that unit 𝑉 = 𝑊 ×𝐻 × 𝐿, where W is the width, H is the height and L is the length. Note 

that W, H and L not necessarily represent the edges, but instead are obtained as a relation 

between the cell geometry (edge’s length) and the deployment angle. 
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Figure 5-3: Waterbomb unit cell, selected points for Poisson’s ratio evaluation and 

variables for the 8-creased (a, b) and the 6-creased (c, d) patterns. 

 

Table 5-1 shows the variables W, L and H for each waterbomb pattern. 

Additionally, it presents the volumetric packing of each waterbomb pattern and the in-

plane (𝜈𝑤𝑙) and out-of-plane (𝜈𝑤ℎ, 𝜈𝑙ℎ) Poisson’s ratios. 
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Table 5-1: Characteristic length (L), height (H) and width (W), effective volume (V) 

and in-plane (𝜈𝑤𝑙) and out-of-plane (𝜈𝑤ℎ, 𝜈𝑙ℎ) Poisson’s ratio of a 6-creased and an 8-

creased waterbomb pattern 

 8-creased 6-creased 

W 2𝑙 sin ϖ
2
  2𝑙  

H 𝑙 cos ϖ
2
cos 𝜆⁄   𝑙 cos ϖ

2
cos 𝜆⁄   

L 2𝑙 tan 𝜆 sin ϖ
2
  2𝑙 tan 𝜆 sin ϖ

2
  

V 2𝑙3
tan𝜆

cos𝜆
sin ϖ

2
sinϖ  2𝑙3

tan𝜆

cos𝜆
sinϖ  

𝜈𝑤𝑙 -1 0 

𝜈𝑤ℎ (sin ϖ
2
)
−2
− 1  0 

𝜈𝑙ℎ (sin ϖ
2
)
−2
− 1  (sin ϖ

2
)
−2
− 1  

 

It is interesting to notice that the 6-creased waterbomb has a zero Poisson’s ratio 

in-plane, while the 8-creased waterbomb has a negative in-plane Poisson’s ratio. Besides, 

the out-of-plane Poisson’s ratio for the 8-creased waterbomb pattern decreases with the 

increasing of the deployment angle, being zero for a fully deployed cell (opened 

configuration) and -1 for a fully undeployed cell (closed configuration). This difference 

is clear when analyzing the deployment of each cell, as shown in Figure 5-4. Both cells 

are pushed in Y direction (red arrows in Figure 5-4 (a) and (b)) with a normal in-plane 

force. The result for the 8-creased cell is a reduction on both X and Y directions (Figure 

5-4 (c)), while the result for the 6-creased waterbomb pattern is a reduction only on Y 

direction (Figure 5-4 (d)) and no change on X direction. Figure 5-4 (e) and (f) shows the 

superposition of XY projection of initial and final configurations for both waterbomb 

patterns. 
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Figure 5-4: Poisson’s ratio representation for the 6-creased and the 8-creased 

waterbomb patterns. (a) and (b): Input force/ displacement and output result for the in-

plane case; (c) and (d): Final configuration reached for 8-creased and 6-creased 

respectively; (e) and (f): Overlap between final and initial configurations. 

 

 Comparatively, the effective volume of the 6-creased and the 8-creased 

waterbomb patterns are shown in Figure 5-5. It is interesting to notice that the effective 

volume of the 6-creased squared pattern has a perfectly symmetric shape, reaching its 

(a)  (b) 

(c)  (d) 

(e)  (f) 

Input 

Output 
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maximum value for ϖ = 90°, while the 8-creased squared pattern reaches its maximum 

at ϖ ≈ 110°. Also, it is possible to see that the 8-creased pattern is more compact than 

the 6-creased pattern for every deployable stage. 

 

 

Figure 5-5: Effective volume of 6-creased and 8-creased waterbomb unit cells as a 

function of the deployable angle.  

 

Therefore, considering a single waterbomb cell, the 6-creased pattern presents a 

higher maximum effective volume related to the 8-creased pattern. Extending this 

analysis to their tessellations, a waterbomb tessellation generated from a 6-creased pattern 

will generate a higher maximum effective volume than a tessellation generated from the 

8-creased pattern. Since our focus here is to exploit the applicability and dynamical 

behavior of a closed waterbomb tessellation as a replacement for a robot wheel, and we 

are not focused on compactability but on morphing, the next analysis will be performed 

exclusively on the 6-creased tessellation. 

This work is focused on the complexity related to the number of degrees of 

freedom and the identification of symmetry planes for engineering application purposes. 

This chapter presents a study on tessellations obtained through the regular distribution of 

a 6-creased waterbomb pattern through a surface. A general study is developed, starting 

with the opened tessellation, passing through a closed configuration and analysis of the 

structure.  
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5.2. Opened tessellation 
 

Usually, origami tessellations are applied in situations where they are subjected 

to a symmetric actuation, presenting a reduced number of controlled variables and a 

considerably small number of degrees of freedom (DoF). However, slight asymmetries 

might influence substantially the origami behavior during opening/ folding process. 

Besides that, small actuations such as perturbations promoted to a crease that is near a bi-

stable condition might affect significatively the origami configuration, its stability and 

the actuation. 

Considering these possible situations, a general study is developed on the 

waterbomb opened tessellation, exploring its number of DoF, the variety of shapes and 

motions. David Huffman (1976) pioneered the study of origami tessellations by 

presenting a study on the behavior of surfaces with zero-Gaussian curvature (developable 

surfaces) near creases and apices of cones. He presented an interesting analysis of 

fundamentals of both straight and curved creases, using a dual diagram to analyze both 

local behavior and interactions among creases. 

Tachi (2010) uses a perturbation-based approach for obtaining design variations 

of flat-foldable meshes. He develops a necessary and sufficient condition for existence of 

finite rigid motion of general flat-foldable quadrilateral mesh origami, using perturbations 

on a known stable configuration and reaching a subsequent stable configuration. 

The analysis developed in this chapter use the deformation-based formulation 

from Liu & Paulino (2017) with the intent to evaluate the variety of configurations and 

degrees of freedom presented by a 𝑚 × 𝑛 waterbomb tessellation, with 𝑚 lines and 𝑛 

cells on each line. 

The tessellation configuration can be divided into three classifications: folded, 

unfolded and half-folded or semi-folded. The folded case is associated to a flat condition, 

where all creases are completely folded, meaning that 𝜃𝑖 = 𝜋, for 𝑖 = 1. . 𝑁𝑐𝑟𝑒𝑎𝑠𝑒𝑠. The 

unfolded case is also associated to a flat condition. But in this case, the origami is 

completely opened, in a flat sheet shape, meaning that 𝜃𝑖 = 0, for 𝑖 = 1. . 𝑁𝑐𝑟𝑒𝑎𝑠𝑒𝑠. Any 

configuration that is neither folded nor unfolded (0 < 𝜃𝑖 < 𝜋, for 𝑖 = 1. . 𝑁𝑐𝑟𝑒𝑎𝑠𝑒𝑠) is 

classified as half-folded or semi-folded. For the analysis developed here, it is considered 

the 5 × 9 waterbomb tessellation shown at Figure 5-6, with nodes indexes indicated. For 
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further local analysis, three cells are chosen for inner angles and deformation evaluation: 

cell 𝐶1, with vertex node 129, cell 𝐶2, with vertex node 53, and cell 𝐶3, with vertex node 

21. These cells are also highlighted in Figure 5-6. 

 

 

Figure 5-6: 5 × 9 waterbomb tessellation generated from a squared waterbomb unit cell. 

The cells 𝐶1, 𝐶2 and 𝐶3 are highlighted. 

 

The folding process ability inherent of origami tessellations conceives an 

interesting property of undergoing relatively large deformations. We put it here as 

“relative” because, when analyzed locally, the deformation happening on the creases are 

not expressive even for large angle variations. If instead of looking to the creases we 

analyze the structure as a single body and consider its deformation according to the 

classical description, it has the capability to present an expressive deformation, since a 

chosen dimension of the origami (transversal section, for example) could have a measure 

of 1 cm in a completely folded (or simply folded) state (Figure 5-7-a), while it can 

increase more than 20 times this dimension, measuring 22,5 cm in a completely unfolded 

(or simply unfolded) condition. Figure 5-7-b shows the tessellation for a half-folded 

configuration, where the origami is stable without constraints or external efforts.  

𝐶1 𝐶2 

𝐶3 Z 

X 
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Figure 5-7: Waterbomb tessellation in a fully closed (a) and in an opened (b) 

configuration 

 

Even though it is fairly uncommon, some materials and material constructions 

exhibit negative Poisson’s ratios, including tessellation origami. Lakes (1987) identified 

a foam structure with a negative Poisson’s ratio expanding laterally when stretched. The 

foam is composed by a plurality of 24-sided polyhedron that, ideally, collapses 

symmetrically when mechanically solicitated. Similar study is developed by Prall & 

Lakes (1997), where a 2D analysis on a honeycomb with re-entrant cells provides a 

structure with a -1 Poisson’s ratio. It is interesting to point out that the re-entrant 2D 

pattern studied by Prall & Lakes (1997) resembles a top view of the waterbomb unitary 

cell in a half-folded configuration. A similar structure is evaluated by Grima et al. (2005), 

exploiting the hinge rotation of a plurality of units (Grima et al., 2005a) and the re-entrant 

(a) 

(b) 
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cells in a polyurethane foam (Grim et al., 2005b), that presents an auxetic behavior 

(expand instead of contract when stretched in a transverse direction). 

In section 5.1 we verified that the waterbomb unit has a negative Poisson’s ratio. 

In addition to its natural spherical behavior, it is expected that the waterbomb tessellation 

behaves in a synclastic way under bending effort, presenting a spherical shape. Therefore, 

the 6-creased waterbomb tessellation is submitted initially to a sequence of numerical 

bending tests, where the boundary conditions are defined as simply supported 

(translations are restricted, rotations are allowed) and a punctual load is applied to vertex 

53 (see Figure 5-6). A total of six conditions are tested, being a combination between a 

downwards (Case A) or an upwards (Case B) punctual load, and a two-points (Case I), 

three-points (Case II) or four-points (Case III) support for bending test. The numerical 

simulations are performed as shown in Table 5-2.  

 

Table 5-2: Nodes for applied boundary conditions for each bending test, considering the 

number of the supports and the direction of the punctual load. 

  Boundary 

  𝐵𝐸1 𝐵𝐸2 𝐵𝐷1 𝐵𝐷2 

2
-p

o
in

ts
 

Case I-A 66 - 42 - 

Case I-B 66 - 42 - 

3
-p

o
in

ts
 

Case II-A 37 104 42 - 

Case II-B 37 104 42 - 

4
-p

o
in

ts
 

Case III-A 37 104 17 84 

Case III-B 37 104 17 84 

 

The simulations for A-type cases are shown in Figure 5-8 (a) to (c), and 

simulations for B-type cases are shown in Figure 5-8 (d) to (f). It is expected that, for all 

bending cases, the tessellation behaves as a stiffer structure for B-type cases when 

compared to A-type cases, since the opening process of the tessellation occurs naturally 

according to the A-type condition. This behavior is observed when comparing the results 

of A-type and B-type for the same boundary condition. 
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It is interesting to notice that the tessellation behavior differs substantially from 

A-type to B-type, even when looking into the same case. A-type cases present an 

increasing on the load factor until a maximum value is reached and, after that, the load 

factor decreases. The increasing is associated to the folding process of the cells on the 

border of the tessellation (columns 1 and 3) and, when the maximum point is reached, 

these cells start to unfold, which decreases the load factor. This folding/ unfolding process 

can be seen in more details in Figure 5-9. The number of supporting points influences on 

the maximum value. More specifically, it is possible to notice from Figure 5-8 (a) to 

Figure 5-8 (c) that the increasing on the supporting points dislocates the maximum value 

to the left, meaning that the unfolding of the cells on the columns 1 and 3 starts earlier. 

For the 3-points case (Case II-A, shown in Figure 5-8 (b)), the unfolding process is so 

expressive that even though cell 53 is being pushed, upwards, it results in a dislocation 

downwards. 

Another interesting observation is that in the B-type cases it is noticeable a 

saturation-like or plateau after a percentage of folding. It can be understood as a resistance 

of the material to undergo large local deformations, since the folding limit is achieved for 

a few cells prior than to others, and it is not possible to continue the material 

accommodation. Also, B-type cases (Figure 5-8 (d) to (f)) does not present a maximum 

load factor value. In fact, some cases such as the 3-points (Case II-B) and 4-points (Case 

III-B) cases might present multiple inversions on the load factor temporal evolution. Each 

one of these inversions is associated to a new cycle of folding/unfolding process. Similar 

to the A-type cases, the increasing on the number of supporting points results in an earlier 

event of said inversion. This behavior can be seen in more details in Figure 5-10 for all 

three cases.  
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Figure 5-8: Waterbomb tessellation under bending. (a) Case I-A: 2-points boundary 

condition; (b) Case II-A: 3-points boundary condition; (c): Case III-A: 4-points 

boundary condition; (d) Case I-B: 2-points boundary condition; (e) Case II-B: 3-points 

boundary condition; (f): Case III-B: 4-points boundary condition. 
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(c) 

(d) 

(e) 

(f) 



73 

 

 

Figure 5-9: Top view of the waterbomb tessellation’s folding process over time for an 

A-type bending actuation, for Cases I, II and III.  
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Figure 5-10: Top view of the waterbomb tessellation’s folding process over time for a 

B-type bending actuation, for Cases I, II and III. 
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We can also evaluate the behavior of the tessellation by looking into its inner cells. 

More specifically, the folding/unfolding process of each cell can be described by its inner 

angles’ variation. Keeping that in mind, we observe the inner angles of unit cells C1, C2 

and C3 highlighted in Figure 5-6. Without loss of generality, we can observe the inner 

angle D of all three cells for each one of the cases presented in Table 5-2, and this plot is 

shown in Figure 5-11. The vertical lines point to each inversion, maximum or minimum 

for each case. It is interesting to notice that for all A-type cases the maximum points found 

in Figure 5-8 (a) to (c) are directly related to unfolding or saturation (plateau) of cells 

contained within the middle column (column 2), while for all B-type cases the inversions 

found in Figure 5-8 (d) to (f) are directly related to unfolding or saturation (plateau) of 

cells contained within the borders (columns 1 and 3). 

 

 

Figure 5-11: Time evolution of inner angle D of unitary cells C1, C2 and C3 for folding 

A-type cases I (a), II (b) and III (c); and for B-type cases I (d), II (e) and III (f). 

 

It is also important to highlight the fact that when bended on the B-type condition, 

the waterbomb presents a saddle-like shape, that is characteristic of structures with a 
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globally negative Gaussian curvature. Also, even though the waterbomb tessellation has 

a negative Poisson’s ratio, it is intriguing that it can be bended in a saddle-like shape, 

since it is a typical behavior of materials with a positive Poisson’s ratio. The saddle-like 

shape can be seen in detail in the front and side views in Figure 5-12. 

 

 

Figure 5-12: Front view (top) and side view (bottom) of the final configuration of the 

waterbomb tessellation for Case III-B (green), compared to the initial configuration 

(gray). 

 

Aiming to evaluate the behavior of the tessellation when subjected to a uniaxial 

force, Node 66 is simply supported ([𝑥66, 𝑦66, 𝑧66] = [0,0,0]) and an external load is 

applied to Node 42 along Z direction (see Figure 5-6). The natural spherical motion of 

the waterbomb unit cell is dominant on the folding/unfolding process. Notice that even 

though the external load is applied along Z direction, the tessellation presents an 

expressive motion on Y direction, maintaining a spherical-like shape. The tessellation 

behavior under traction/ compression effort resembles an hyperelastic material. Besides, 

the unfolding process (Figure 5-13 (a)) presents a larger load factor than the folding 

process (Figure 5-13 (b)).  
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Figure 5-13: Waterbomb tessellation under uniaxial loading. (a) Uniaxial load inducing 

the unfolding of the waterbomb tessellation (traction); (b) uniaxial load inducing the 

folding of the waterbomb tessellation (compression). 

 

The spherical-like shape assumed during folding/unfolding process can be seen in 

detail in Figure 5-14, where Case I refers to the unfolding (traction) and Case II refers to 

the folding (compression) process. It is important to note that in the uniaxial loading Cases 

I and II, the structure does not present a saddle-like shape. Instead, it preserves the 

spherical-like shape. 

 

 

 

(a) (b) 
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Figure 5-14: Side view of the waterbomb tessellation’s folding process over time for a 

uniaxial actuation, for Cases I and II. 
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It is important to highlight here that synclastic structures are non-developable, by 

definition, since it is not possible to take the structure from a flat geometry to a double 

curvature geometry without introducing gaps. The foldability of origami-like structures 

allows the design of synclastic surfaces from a flat hole-less surface through the 

replacement of the gaps by foldable unitary cells. This foldability also results in a fluid 

surface that interchanges between singly curved (cylindrical and conic geometries) and 

doubly curved (saddle-like and domes). 

This fluidity can be seen in Figure 5-15 for an asymmetric actuation of the 

waterbomb tessellation taken according to Table 5-3, where 𝑓 = 9.216 N. 

 

Table 5-3: Boundary conditions and Inputs given by (𝑥, 𝑦, 𝑧) and the respective numeric 

reference for the Node  

  𝑥 𝑦 𝑧 

B
o
u
n
d
ar

y
 

C
o
n
d
it

io
n
s 

53 1 1 1 

52 0 1 0 

49 0 1 0 

66 1 1 0 

42 0 1 0 

In
p
u
ts

 

82 −𝑓 0 0 

15 𝑓 𝑓 0 

2 −𝑓 −2𝑓 0 

69 𝑓 3𝑓 0 
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Figure 5-15: Time evolution of the Load factor for an asymmetric folding process of the 

waterbomb tessellation. 

 

The tessellation starts as a singly curved surface in a cylindrical-like shape and, 

as time evolves, the tessellation goes from singly to doubly curved surface presenting a 

saddle-like shape, that is associated with an asymmetric opening of each waterbomb unit 

cell. This asymmetry can be better analyzed by looking to the inner angles of cells 𝐶1, 𝐶2 

and 𝐶3 (Figure 5-16). Note that until approximately the time 20 (line I in Figure 5-16) all 

three cells 𝐶1, 𝐶2 and 𝐶3 behave near the Π2 plane-symmetric case, i.e., angles 𝐴 ≈ 𝐷 and 

𝐶 ≈ 𝐹, with a larger deviance observed in cell 𝐶3. From this time on, the tessellation 

changes its general curvature from singly to doubly curved, presenting a saddle-like shape 

and imputing a significative deviation from a plane-symmetric condition on inner cells 

𝐶1, 𝐶2 and 𝐶3. 
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Figure 5-16: Time evolution of inner angles A to F of unit cells 𝐶1, 𝐶2 and 𝐶3. 

 

5.3. Closed tessellation 
 

Closed tessellations have a reduced number of DoF when compared to the opened 

ones. Besides, the coupling due to the closure of the tessellation promotes some 

periodicity along the structure, which can be described considering different kinds of 

symmetries (Fonseca & Savi, 2021). Initially, it is important to consider the 

differentiation presented here between local and global symmetries. A global symmetry 

is related to the structure, and it is noticeable on a repetition of a line or a group of lines 

periodically, and this group is named representative volume element (RVE). Global 

symmetries are usually considered when the outer surface of the origami is of interest, 

and local asymmetries can be neglected. On the other hand, a local symmetry is related 

to a unit cell, and the behavior of each cell individually is of importance or needs to be 

controlled somehow. In this regard, it is possible to imagine a total symmetry where the 

fundamental substructure is the unit cell, or other situations where the fundamental 
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structure is built by a set of unit cells, RVE. Besides, symmetry conditions might need to 

be associated with both geometrical and mechanical aspects. The complexity of the 

origami description increases as the asymmetry of the fundamental representative element 

accentuates. Therefore, the complexity of the closed tessellation representation relies 

mostly on the unit cell configuration, regarding its degree of asymmetry. Figure 5-17 

illustrates different kinds of symmetry related to a closed waterbomb tessellation with 18 

unit cells disposed in 3 lines with 6 cells each.  

Figure 5-17 (a) explores the local symmetry through a unit cell with a symmetric 

configuration (equivalent mobility 1). The repetition of this element through a line 

generates a symmetric RVE, and the result of this element repetition through a column 

generates a totally symmetric tessellation. In this case, the behavior of the whole structure 

can be extrapolated from the analysis of a single unit cell. 

Figure 5-17 (b) presents a unit cell with a plane-symmetric configuration 

(equivalent mobility 2). Note that the repetition of this unit cell through a line generates 

a structure with no mirror symmetry, but which configuration can be extrapolated from 

the analysis of a single unit cell. The repetition of this RVE through a column, however, 

generates two different structures: the first one (Figure 5-17 (b)-i) is obtained by piling 

the RVE, while the second one (Figure 5-17 (b)-ii) is obtained by mirroring every other 

RVE while piling them. On both cases, the structure has longitudinal and circumferential 

symmetry and, therefore, global symmetry, but with a local asymmetry (or plane-

symmetry). Although the tessellation Figure 5-17 (b)-i can be fully described through the 

extrapolation of the analysis of one line (RVE), the tessellation Figure 5-17 (b)-ii requires 

the knowledge of two consecutive lines or minimally the coupling between a cell from 

line k to a cell on line k+1.  

Figure 5-17 (c) highlights two asymmetric unit cells that belong to a line 

composed exclusively by asymmetric cells. Depending on the final configuration 

achieved by the line, it might be possible to generate a tessellation with some identifiable 

periodicity along the lines, where the RVE is a line or a set of lines. For a general case, 

the tessellation has neither local nor global symmetry. 
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Figure 5-17: Three different configurations assumed by a closed waterbomb 

tessellation. (a) The RVE is the symmetric unit cell, and, in this case, the structure has 

both local and global symmetries; (b) The RVE is a set of cells, where the set is 

composed by two cells from consecutive lines for (i) case and by a single plane-

symmetric unit cell for (ii) case. The (ii) case has global symmetry; (c) A RVE is not 

identified, resulting in a structure with neither local nor global symmetry. 
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The closed tessellation generated with the 6-creased waterbomb pattern (Figure 

5-18a) results in a cylindrical-like structure. The natural force (Kresling, 2008; Ma et al., 

2020) associated with the folding process of the closed tessellation tends to generate a 

conic-like structure (Figure 5-18b), which results in local asymmetries even for a 

symmetric actuation. This conic-like natural force can generate several 3D structures, 

including a double-curved surface or ball-shaped origami (Figure 5-18c) and a singly 

curved surface or cylindrical origami (Figure 5-18d). 

 

 

Figure 5-18: Waterbomb pattern and natural way of folding. (a) 6-creased waterbomb 

unitary cell; (b) Illustration of the geometric relationship between natural force and 

waterbomb fold pattern; (c) Illustration of a closed waterbomb tessellation with a 

double-curved surface; (d) Illustration of a closed waterbomb tessellation with a single-

curved surface. 

 

From this point on, the closed tessellation is defined by a 𝑚 × 𝑛 configuration, 

where 𝑚 is the number of lines and 𝑛 is the number of cells on each line (Figure 5-19). It 

is clear from the previous analysis that the waterbomb tessellation has a considerably 

large number of Degrees of Freedom (DoFs), even if reduced on a closed tessellation. 

Aiming to reduce the number of DoFs and still be able to capture local asymmetric 

behaviors, the analyses are performed considering a symmetric distribution on external 

loadings. Therefore, a longitudinal symmetry is placed on the unitary cells’ vertex, such 

(a) (b) 

(c) 

(d) 

2𝑎 

𝑏 
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that the radius of each line measured from the tessellation axis to each cell vertex (point 

O) is the same between lines and within the same line.  

 

 

Figure 5-19: Closed waterbomb tessellation generated with the 6 creased waterbomb 

unit cell. The tessellation is defined by the number of lines (𝑚) and the number of cells 

on each line (𝑛). 

 

Initially, the general motion of the closed tessellation is evaluated. A 3 × 6 closed 

tessellation starts in an unfolded configuration and its folding process is represented in 

Figure 5-20, with panels highlighted in the time evolution of the load factor λ. The first 

thing that is noticeable is a strangulation effect due to the natural force or natural way of 

folding of this closed tessellation (Figure 5-18-b). The middle line starts the folding 

process, increasing λ substantially between time 10 and 26. It reaches a peak and drops 

when the middle line stops folding and the remaining lines start the folding process, 

reaching its bottom around time 52. With all creases activated, the remaining lines 

continue their folding process until the middle line starts to fold again. At this point, the 

load factor reaches a near zero value and the whole tessellation folds homogeneously, 

with barely any resistance. It is interesting to notice that in this case the larger radius of 

𝑚 

𝑛 
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the folded structure is the same of the unfolded one, as can be seen in Figure 5-21, and 

the structure presents only a reduction on its height. 

 

 

Figure 5-20: Load factor λ evolution during the symmetric folding process of a closed 

3 × 6 waterbomb tessellation. The panels (i) to (vi) show, sequentially, a closer look 

into the origami configuration for each remarkable variation in the load factor evolution. 

 

 

   

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 
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Figure 5-21: Top view of the closed waterbomb tessellation during the folding process. 

On each view from (i) to (vi), the gray line represents the initial configuration, and the 

green panels are the tessellation. 

 

In sequence, some analyses are performed on the 𝑚 × 𝑛 tessellation, aiming to 

evaluate both behaviors seen in Figure 5-18. All analyses are performed according to a 

symmetric actuation, where each cell is pulled radially through its middle vertex. 

Initially, an analysis is performed on the tessellation according to Figure 5-18-d 

behavior. The first study evaluates the influence of the number of lines (𝑚) and, for this 

case, it is considered a tessellation with 𝑛 = 6 cells on each line. The second study 

evaluates the influence of the number of cells on each line (𝑛) and, for this case, two 

tessellations are considered: one with 𝑚 = 5 lines and one with 𝑚 = 6 lines.  

 

(i) (ii) (iii) 

(iv) (v) (vi) 
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Figure 5-22: Closed waterbomb tessellation formed by m lines, with each line composed 

by n=6 squared cells. (a) m=3; (b) m=4; (c) m=7; (d) m=8. 

 

In order to evaluate the influence of the number of lines (m), four tessellations 

formed by waterbomb unit cells on each line are of concern, varying the numbers of lines 

(Figure 5-22): 𝑚 = 3 lines (Figure 5-22-a); 𝑚 = 4 lines (Figure 5-22-b); 𝑚 = 7 lines 

(Figure 5-22-c) and 𝑚 = 8 lines (Figure 5-22-d). For all tessellations, the initial 

configuration is the opened one (gray color) and each line is formed by 𝑛 = 6 waterbomb 

unit cells. The purpose of these simulations is to evaluate the behavior of each individual 

waterbomb when the structure is folded in a symmetric way, looking for similarities 

between the behavior of the waterbomb cells. To visualize any local asymmetry, the inner 

angles are represented according to at least one of the previous cases: Π1, Π2 and Π3. 

 

(a) (b) (c) (d) 
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Figure 5-23: Relation between the inner angles of each one of the 6𝑚 cells of the 

tessellation, where 𝑚 is the number of lines of that tessellation. (a) Relation for the case 

𝑚 = 3; (b) Relation for the case 𝑚 = 4; (c) Relation for the case 𝑚 = 7; and (d) 

Relation for the case 𝑚 = 8. For all four cases, the bisector line represents the 

symmetric behavior (case Π3). 

 

This first set of simulations is represented in Figure 5-23, by a relation between 

the inner angles of each one of the cells. The inner angles are represented according to 

the relation of Π2. Therefore, they are plotted as: A versus C, D versus F and B versus E, 

where the bisector line represents the symmetric case (Π3). Figure 5-24 shows, 

respectively, the inner angle relation for the tessellation with 𝑚 = 3 lines (Figure 5-24-

a), 𝑚 = 4 lines (Figure 5-24-b), 𝑚 = 7 lines (Figure 5-24-c) and 𝑚 = 8 lines (Figure 

5-24-d). 

(a) (b) 

(c) (d) 
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Two major observations can be made about these cases. The first one is related to 

the influence of the tips or endings in this tessellation. Note that the tessellation studied 

here has free ends, where at least 6 vertexes on the top (related to vertex 𝐸) and at least 6 

vertexes on the bottom (related to vertex 𝐵) are not restrained in any way, and an inversion 

of crease type (from mountain to valley fold) might occur freely. Besides, these free 

endings result in additional degrees of freedom for the structure, even when a controlled 

symmetric folding process is performed. The ending influence can be seen on all four 

graphs by the deviance of both vertexes 𝐵 and 𝐸 from the symmetric condition (case Π3). 

Note that for all four cases, the first and the last lines, associated to the bottom and the 

top of the tessellation, behave according to case Π2, while the lines contained within the 

first and the last one tends to behave according to Π3. This analysis comes from the 

observation of the points outside the bisector line. 

The second observation is related to the influence of the number of lines in the 

structure behavior. Specifically, the waterbomb cell in the tessellation with and odd 

number of lines (Figure 5-22-a and Figure 5-22-c) presents a plane-symmetric behavior 

(according to case Π2) for all cells on the first and last lines (Figure 5-23-a and Figure 

5-23-c), while it presents a symmetric behavior (case Π3) for the remaining lines. In the 

other hand, the waterbomb in the tessellation with and even number of lines (Figure 5-22-

b and Figure 5-22-d) tends to behave in a plane-symmetric condition (according to case 

Π2), with a more prominent plane-symmetry occurring on the external lines (first and last 

one) and a more prominent symmetry occurring on the other lines (Figure 5-23-b and 

Figure 5-23-d).  

The second study evaluates the influence of the number of cells on each line on 

the structure behavior during the folding process. For this study, a series of tessellations 

are considered, going from 6 cells per line until 22 cells per line. As observed in Figure 

5-23-a to Figure 5-23-d, the major deviance occurs on the first and last lines, due to the 

effect of the endings. However, we are not focused on this point in the effect of the 

endings, but on the influence of the number of cells on the symmetric behavior of the 

inner lines. Therefore, we will focus on the line that presents the major deviance from the 

symmetric behavior (case Π3) for each simulation, disregarding the first and the last lines 

(ending effect). In addition, it should be pointed out that there is a point for each 

simulation where this deviance reaches its maximum value, as can be seen in Figure 5-23-

a to Figure 5-23-d. Figure 5-24 brings the maximum deviance observed for each case, 
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going from 𝑛 = 6 to 𝑛 = 22. Figure 5-24-a shows this evaluation for a tessellation with 

an odd number of lines (𝑚 = 5 lines), while Figure 5-24-b shows the deviance for a 

tessellation with an even number of lines (𝑚 = 6 lines). The deviance is evaluated as the 

absolute difference between the angles of a cell on the line 𝑗 and a cell on the line 𝑚 2⁄ , 

for the tessellation with an even number of lines, and on the line 
(𝑚 + 1)

2⁄ , for the 

tessellation with an odd number of lines. 

 

 

Figure 5-24: Maximum deviation of each inner angle with the increasing of the number 

of cells per line, considering a tessellation with 𝑚 lines. (a) Maximum deviation for a 

tessellation with an odd number of lines, with 𝑚 = 5; (b) Maximum deviation for a 

tessellation with an even number of lines, with 𝑚 = 6. 

 

It is noticeable that the tessellation with an odd number of cells (Figure 5-24-a) 

presents a maximum absolute deviance that tends to grow linearly with the increasing of 

the number of cells per line (increase of n). Besides, all cells outside the central line 

(𝑚 + 1)
2⁄  behave according to the Π2 plan-symmetric case. It is also noticeable that for 

a tessellation with up to 10 cells per line, the maximum deviance observed is around 1º. 

The combined result from simulation presented at Figure 5-23-a and Figure 5-23-c and 

the simulation presented at Figure 5-24-a indicates that, for a tessellation with an odd 

number of lines and a maximum of 10 cells per line, a simplified model describing the 

unitary cell behavior, such as the trigonometric formulation, can be extrapolated as a 

(a) (b) 
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representative of the structure behavior, and the influence of the endings is contained 

within the cells from the first and the last line. In addition, a tessellation with an even 

number of cells per line (Figure 5-24-b) presents a significant deviance from the 

symmetric behavior (case Π3). In opposition to the result presented at Figure 5-24-a, 

Figure 5-24-b indicates a smoother increasing on the maximum deviance. Besides, the 

increase of the number of cells causes the loss of the circumferential symmetry.  

The natural force (Figure 5-18-b) associated with the folding process of the closed 

tessellation evaluated in Figure 5-24 tends to generate a ball-shaped origami, where the 

middle lines tend to present a symmetric behavior, and the endings tend to be asymmetric. 

On the other hand, if this natural force (Figure 5-18-b) tends to generate a cylindrical-like 

origami, a different behavior is observed, where the middle lines tend to present an 

asymmetric behavior and the endings tend have a symmetric behavior. 

The folding process of a cylindrical-like origami is shown in Figure 5-25. The 

structure presents a motion that can be translated as a circumferential reduction, followed 

by an axial compression, a strangulation, and an axial relaxation. This motion sequence 

is presented at Figure 5-25-a, for a tessellation with 𝑚 = 5 lines, and at Figure 5-25-b, 

for a tessellation with 𝑚 = 6 lines. Note that the strangulation is more prominent on the 

tessellation with an even number of lines (Figure 5-25-b). 

The strangulation effect is further explored by considering an index, Δ, expressed 

by the difference between the tessellation radius measured from the middle axis to the 

vertex B of a cell in the middle line, and the tessellation radius measured from the 

tessellation axis to the vertex B of a cell in the first line. Thus, Δ=1 means that the 

tessellation does not present a strangulation, having a cylindrical surface (zero Gaussian 

curvature). On the other hand, Δ≠1 means that the tessellation presents a strangulation 

that can be a positive Gaussian curvature (Δ>1) or a negative Gaussian curvature (Δ<1). 

It is important to notice that closed waterbomb tessellations with an even number of lines 

always presents a negative Gaussian curvature under symmetrical actuation, which is an 

important consideration when designing closed waterbomb tessellations.  
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Figure 5-25: Folding process of a tessellation with 𝑚 = 5 lines (a) and 𝑚 = 6 lines (b), 

with each remarkable phase highlighted. The strangulation that happens in the middle of 

the tessellation is highlighted by red arrows. 

 

Figure 5-26 presents the relation between the number of origami lines (m) and its 

even/odd parity with the prominence of the strangulation effect. Origamis with an odd 

parity present a small strangulation, with a variation of ±0.025 (0.975<Δ<1.025). On the 

other hand, origamis with an even parity present a significant strangulation, with 

variations almost 10 times higher than origamis with odd parity (0.80<Δ<0.975).  
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Figure 5-26: Strangulation (Δ) evaluation for an even and an odd tessellation, as a 

function of the ratio between the number of cells on each line (n) and the number of 

lines (m). 

 

Figure 5-27 presents the influence of the number of cells on each line (n) on the 

strangulation (Δ), for both even and odd closed waterbomb tessellations. Figure 5-27 also 

brings the information regarding the influence of the number of lines (m). The first 

important thing to notice is that the parity of lines (m odd or even) of the tessellation 

seems to be more expressive in the strangulation than the number of lines itself (m). For 

a fixed number of cells on each line (n), the tessellation with an even number of lines (m) 

always presents a negative Gaussian curvature. Besides, the increase of the number of 

lines (m) does not have an expressive influence on the strangulation effect (Δ), apart from 

the increasing from m=3 to m=5 that stands out. A similar analysis is made on the 

tessellation with an odd number of lines, where the increase of the number of lines slightly 

changes the curvature of the outer surface of the closed waterbomb tessellation, varying 

between positive (Δ>1) and negative (Δ<1) Gaussian curvature. The increase of the 

number of lines in cases where m<6 can be an improvement for applications such as 

stents, since a positive Gaussian curvature surface does not present a gap. Cases where 

m≥6, however, tends to generate an unfolded closed waterbomb tessellation with a 

negative Gaussian curvature, which generates the gap on the middle line. The increase of 

the number of cells on each line (n) does not present a significant influence on the 

tessellation with an odd number of lines for cases where n>5. Nevertheless, the number 
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of cells on each line (n) significantly influences the strangulation effect (Δ), reducing its 

expressivity with the increasing on the number of lines (m). 
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Figure 5-27: Strangulation (Δ) evaluation for both even and odd tessellations as a 

function of the number cells on each line (n), with a color map on the number of lines 

(m). 
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6  Origami-Wheel 
 

This chapter presents a study of the modified waterbomb closed tessellation, 

evaluating the general behavior and the influence of the modification on the structure’s 

folding process. The chapter starts with an evaluation of the modified closed tessellation 

compared to the closed tessellation explored in Section 5.3; it is followed by an analysis 

on the folding process of the origami-wheel and explore symmetric behaviors. At the end, 

a reduced-order model is presented for the symmetric case. 

 

6.1. Mechanical evaluation of the origami-

wheel 
 

It is known that the natural force (Figure 5-18-b) associated with the folding 

process of the waterbomb closed tessellation can produce a strangulation on the structure, 

changing its original outer surface Gaussian curvature. When a strangulation effect is 

present, the tessellation outer surface changes from cylindrical (zero Gaussian curvature, 

Δ=1) to either double-curved (negative Gaussian curvature, Δ<1) or single-curved 

(positive Gaussian curvature, Δ>1). Besides, tessellations with an odd parity tend to 

present a small local asymmetry or strangulation on both double-curved and single-

curved surfaces, as seen on Figure 5-24 and Figure 5-26. Therefore, a tessellation with an 

odd parity is of interest. 

The application of a closed waterbomb tessellation as a deformable wheel, as 

studied here, requires the shape changing from a cylindrical-like structure (Δ=1) to a 

single-curved structure surface (Δ>1). One way to ensure that the folding/unfolding 

process will lead exclusively to a positive Gaussian curvature surface is to constrain the 

endings, removing the additional Degrees of Freedom (DoFs). One interesting 

modification that produces the desired effect was introduced by Lee et al. (2013), by 
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creating an origami-based ending that couples the additional Degrees of Freedom by 

removing their radial variation. Such variation corresponds to including a set of folds on 

the structure shown in Figure 5-6 such that, once folded, the added tips are glued together. 

Figure 6-1 shows the 3 × 8 waterbomb tessellation with the added tips. 

 

 

Figure 6-1: Representation of an opened waterbomb tessellation in an opened 

configuration, showing the colored-defined folds (mountain in blue and valley in red). 

The inserted tips are also present, with a dashed mark for regions that will be glued. 

 

This modification produces a significant influence on the structure behavior 

regarding the shape changing and the controllability of the process. The major 

contribution relies on the constraint of the additional Degrees of Freedom (DoFs) 

associated to the first and last rows. Even more than that, the modification restricts the 

motion of the cells on first and last rows to a behavior according to Π2 plane-symmetry 

case. Aiming to evaluate and better visualize the influence of this modification, a 3 × 8 

closed waterbomb tessellation is subjected to a folding process with and without the 

modification.  

 

Glue 

Glue 



98 

 

 

Figure 6-2: Folding process of a 3 × 8 closed waterbomb tessellation starting in an 

unfolded configuration and reaching a half-folded configuration. 

 

Since the inclusion of said modification allows a reduced number of Degrees of 

Freedom (DoFs), the simulations presented here have a smaller number of inputs. 

Looking for a symmetric or quasi-symmetric behavior, the external load is applied to the 

middle row by pulling the vertex (point O) on each unit cell. Firstly, the tessellation 

without the modification is subjected to a closing process, starting from an opened 

cylindrical-like configuration (Figure 6-2). It is possible to see the strangulation 

happening along the entire folding process with a substantial variation on the load factor. 

There is a peak near time 25 that corresponds to the folding of the middle row, along with 

an axial contraction. Then, there is an axial expansion followed by the folding process of 

the first and last rows. The final configuration corresponds to a double-curved surface 
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structure. The modification forces the tessellation to fold presenting a single-curved 

surface during the entire process, without the presence of a strangulation (Figure 6-3). 

 

 

Figure 6-3: Folding process of a 3 × 8 modified closed waterbomb tessellation starting 

in an unfolded configuration and reaching a half-folded configuration. 

 

This single-curved surface is also present during the unfolding process of the 

closed waterbomb tessellation with the modified endings (Figure 6-4).  
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Figure 6-4: Unfolding process of a 3 × 8 modified closed waterbomb tessellation 

starting as a half-folded configuration and reaching an unfolded configuration. 
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Figure 6-5: Highlight of one cell of an odd parity line for the modified closed 

waterbomb tessellation. (a) Pop-in behavior happening during the folding process; (b) 

Pop-out behavior happening during the unfolding process. 

 

It is possible to notice that, during the folding process, the load factor decreases 

considerably once the unit cells on both endings of the waterbomb tessellation (lines with 

an odd parity) ‘pop in’. This situation happens around time 32 (Figure 6-3). Similarly, the 

load factor for the unfolding process increases considerably while both endings of the 

waterbomb tessellation (lines with an odd parity) ‘pop out’, which happens around time 

53 (Figure 6-4). This behavior differs from the previous one observed for the closed 

(a) 

(b) 
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tessellation without the ending modification (Figure 6-2), where the peak on the load 

factor is due to the folding of the middle line (even parity line).  

Another interesting observation is that the tessellation requires a larger force for 

the folding motion (closing it) than it requires for the unfolding motion (opening it), as 

can be seen by the difference in the maximum load factor, which influences the proper 

design of the actuators, avoiding under or oversizing.  

The chosen actuation evaluated in this work is a BIAS system, composed at least 

by one Shape Memory Alloy (SMA) as an active actuator. The second component of the 

BIAS system can be, for example, another SMA with a different transformation critical 

temperature and stress. Another possibility for the second component of the BIAS system 

is a passive component, such as an elastic or super elastic spring. The consideration of 

the actuation is important at this point because it will influence the origami design, which 

might result in slight changes to the system behavior. 

The case studied further in this work considers an actuation as initially presented 

by Lee et al. (2013), that assumes an elastic passive spring as the second element of the 

BIAS system. The elastic spring is attached to acrylic plates located at both ends of the 

closed waterbomb tessellation, and the presence of this additional structure results in 

interesting modifications to the folding/ unfolding process. 

The presence of rigid plates on both endings results in a restriction of motion of 

the vertices positioned along said endings, keeping the initial distance between them 

unchanged during the entire folding process. The referred distance is described through a 

geometric parameter associated with the plate apothem (𝑎𝑝𝑡ℎ) and/or its side (𝑙𝑝𝑡ℎ). As a 

reference, assume that each rigid plate is a regular octagon with polar axis of inertia Y 

and planar axes of inertia X and Z, and Y axis is aligned with the tessellation longitudinal 

axis (Figure 6-6). 

Figure 6-7 shows a first study of the folding process of the closed waterbomb 

tessellation with rigid endings. In this first study, it is assumed that both rigid plates are 

stiffer on Z axis than on X axis, which results in an asymmetric distribution of loads. Four 

cases are evaluated in this first study, being the first one a simulation with the same 

external load applied on the case of Figure 6-3 and the remaining three cases increases of 

10%, 20% and 30% on the external load. The final configuration of each simulation is 

shown in Figure 6-7-b to Figure 6-7-e for each one of the previously mentioned cases, 

respectively. 
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Figure 6-6: Axis definition for the closed waterbomb tessellation, where the 

longitudinal direction is defined as Y axis. The rigid plate is highlighted in gray. 

 

Note that for all cases there are two slight discontinuances on the load factor curve 

(indicated on Figure 6-7-a). These discontinuances mark important steps during the 

folding process of the closed waterbomb tessellation, where a bifurcation on the angle 

evolution occurs. Until the first bifurcation, the cells contained within the same line 

behave equally and the origami presents a global symmetry. Cells contained within odd 

parity lines (lines 1 and 3) behave according to Π2 plane-symmetry type, and cells 

contained within even parity lines (line 2) behave symmetrically (Π3). An asymmetric 

behavior within each line is observed between the first and the second discontinuances, 

and this asymmetry is due to the asymmetric stiffness of the rigid endings. 

In order to evaluate the plane-symmetry case for each cell, Figure 6-8 shows the 

relation between angles instead of the angles themselves. As evaluated in section 4.3, Π2 

type cases present the relations 𝐴 = 𝐶 and 𝐷 = 𝐹, Π1 type cases present the relations 𝐴 =

𝐷 and 𝐶 = 𝐹, and Π3 type cases have the relations 𝐴 = 𝐶 = 𝐷 = 𝐹 and 𝐵 = 𝐸. Figure 

6-8 brings the time evolution of the difference between angles A and C (a), between 

angles A and D (b), between angles C and D (c) and between angles B and E (d), for each 

cell. 

 

Z 

X 

Y 
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Figure 6-7: Load factor over time for the folding process of the closed waterbomb 

tessellation with rigid elements on both endings, and final configurations. (a) Time 

evolution of the Load factor, with a highlight for the bifurcation region; (b) to (e) Final 

configuration (at time 100) achieved for each case. 

 

It is possible to notice in Figure 6-8 that line 2 behaves symmetrically (according 

to Π3 type) for the entire folding process, even with the asymmetry. Outside the 

bifurcation region, i.e., before the first bifurcation and after the second one, lines 1 and 3 

behave according to Π2. Inside the bifurcation region, it is possible to observe four curves 

for each line. Even though there is an asymmetry on the force distribution, there is still a 

mirrored behavior on the tessellation such that diagonally opposed cells within the same 

line behave equally. Therefore, each curve in Figure 6-8-a to Figure 6-8-c is 

(a) 

(b) (c) (d) (e) 
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representative of two superposed curves, and each curve in Figure 6-8-d is representative 

of four superposed curves. Additionally, it is possible to observe a symmetric behavior 

on each graph in Figure 6-8, either between lines or within the same line. 

Note that the existent bifurcation changes the local symmetry but not the global 

symmetry, which means that outside the bifurcation region, the plane-symmetric behavior 

of lines 1 and 3 will always be according to Π3. The change observed for the case with an 

increasing of 20% on the external load in Figure 6-7 is not due to a change on the local 

plane-symmetry, but to a reversal on the folding process, where even though an external 

load is applied to fold the structure, it unfolds. This change on behavior can be seen in 

Figure 6-9, where the difference between angles A and D and between angles C and D 

decreases instead of increasing, and the difference between angles B and E increases, 

instead of decreasing. Therefore, asymmetric conditions of the folding process might 

trigger a bi-stability condition. 

 

 

Figure 6-8: Time evolution of inner angles relation for each cell for the case with an 

increasing of 24% on the external load. From (a) to (d), respectively, the difference 

between angles A and C, A and D, C and D, and B and E. 
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Figure 6-9: Time evolution of inner angles relation for each cell for the case with an 

increasing of 20% on the external load. From (a) to (d), respectively, the difference 

between angles A and C, A and D, C and D, and B and E. 

 

Another bi-stability that is observed on the tessellation is the well-known behavior 

of the waterbomb unit cell of inverting the mountain folds into valley folds, which 

inactivates the other four existent creases. This behavior is observed in Figure 6-10 under 

an asymmetric actuation of the closed waterbomb tessellation. For this case, a rigid plate 

is placed in just one end, that is fixed, while the other end is free. A single cell on the 

middle row (line 2) is pinched and the load factor evolution is shown in Figure 6-10, with 

panels representing the structure shape at some instants during the folding process. It is 

noticeable the natural bi-stable behavior of the waterbomb unit cell at time 30, when one 

cell ‘pops out’, creating a jump on the load factor curve. This is a rather critical situation 

for applied origami structures, particularly on dynamical systems, because this snap-

through condition or ‘popped out’ configuration is not easily reversible and can be 

understood as a collapse or failure of the origami structure, since the function for which 

it was designed is no longer feasible.  
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Figure 6-10: Load factor over time for the folding process of the closed waterbomb 

tessellation with a rigid element on one end.  

 

Once the cell ‘pops out’, it tends to keep the entire folding/ unfolding process on 

the ‘popped out’ configuration. Thus, only angles B and E, that correspond to the reversed 

creases, will change over time and the other inner angles (A, C, D and F) will be nearly 

zero (Figure 6-11). If the tessellation is built and modeled such that it can be described as 

a rigid origami, i.e., there is only deformation on the creases, A, C, D and F are identically 

zero. 
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Figure 6-11: Time evolution of inner angles for the ‘popped out’ unit cell, with a zoom 

for inner angles A, C, D and F after the inversion of crease. 

 

The presence of rigid plates on both endings avoids in some cases the failure of 

the origami that happens due to an inversion of crease. Nevertheless, it reduces 

considerably the asymmetries associated to uneven external load distribution or uneven 

distribution of material properties along the structure.  

Finally, a folding process of the closed waterbomb structure with rigid plates on 

both endings is evaluated. As can be seen in Figure 6-12-a to Figure 6-12-d, all curves 

are superposed and cells on odd parity lines behave according to Π2 during the entire 

folding process. It is worth noticing that a bifurcation occurs around time 96 and is 

associated to an overloading of the structure. From this point on, the folding process is 
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finished, and the structure presents a torsion or an increasing deformation on panels, 

depending on the overload. 

 

 

Figure 6-12: Time evolution of inner angles relation for each cell for the case with an 

increasing of 24% on the external load. From (a) to (d), respectively, the difference 

between angles A and C, A and D, C and D, and B and E. 

 

6.2. Reduced-order model 
 

The reduced-order model is developed considering symmetry planes, reducing the 

structure description to two planes only, as can be seen at Figure 6-13. This reduced-order 

formulation is proposed for situations where the load distribution is symmetrical, or the 

application requires a global symmetry. The XZ plane contains the radial symmetry, and 

it is assumed that the cells in the middle column expand/ contract equally. On the other 

hand, the YZ plane contains the longitudinal symmetry, and it is assumed that the 

origami-wheel has a mirrored symmetric behavior where the 2 columns on the tips are 

mirrored images from each other. 
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Figure 6-13: Plane views of the origami-wheel. 

 

Beside angles α and θ, that describe the opening/closure process of the unit cell, 

the angles β and γ are associated to the opening/closure process of the entire structure. 

These angles are related to each other, and this relation is a function exclusively of the 

number of cells (N) that compound the origami-wheel column, and can be obtained by 

observing the cells on the tips (near the acrylic plate) (Figure 6-14a). 

 

 

Figure 6-14: Trapezoidal pyramid (a) used to obtain the relation between β and γ (b). 

 

  

 

(a) (b) 
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The acrylic plate length is given by 𝑙𝑝 = 2𝑟 sin (𝜋 𝑁⁄ ), and the bases of the 

trapeze 𝐵𝐵′𝐵𝑃1𝐵′𝑃1 are functions of R2, the cell size and the number of cells, given by 

𝐵𝐵′̅̅ ̅̅ ̅ = 𝑅2 sin (
𝜋
𝑁⁄ ) and 𝐵𝑃1𝐵𝑃1′

̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑅2 − 2𝑏sin𝛽)sin(
𝜋
𝑁⁄ ). Besides, once that the 

symmetrical behavior is established, one can see that 𝐵𝐵′̅̅ ̅̅ ̅ ∥ 𝐵𝑃1𝐵𝑃1
′̅̅ ̅̅ ̅̅ ̅̅ ̅ ∥ 𝐵𝑃2𝐵𝑃2

′̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Thus, the final relation between β and γ is established as sin 𝛾 =

cos𝛽

√1 − sin2 𝛽 sin2 (𝜋 𝑁⁄ )
⁄

, and it is represented in Figure 6-14b. Note that, by 

increasing N, the angles β and γ tend to be complementary. By using N=8, the maximum 

error considering the complementary assumption is around 2.5%, ensuring that 𝛽 + 𝛾 ≈

𝜋
2⁄ , a value assumed by Lee et al., 2013. 

If the origami-wheel behaves with a global symmetry, the plane views from Figure 

6-13 can be modeled by equivalent mechanisms, as shown in Figure 6-15.  

Plan view XZ (Figure 6-15-a) is modeled according to Figure 6-15-b and is 

associated to the folding/ unfolding process of the unit cells from the middle row (line 2). 

Said folding/ unfolding process is described through the opening length (𝐿1) and opening 

angle (𝜃), and each cell single vertex can be located on a circumference of radius 𝑅1. 

Additionally, vertices A, C, D and F of each cell from the middle row (line 2) can be 

located on a circumference of radius 𝑅.  

Plan view YZ (Figure 6-15-c) is modeled according to Figure 6-15-d and is 

associated to the relative motion between the acrylic plates (2𝐿2). The second angle (𝛼) 

associated to the opening of the unit cell placed on the middle row (line 2) is evaluated in 

relation to the Z axis. The relative motion of the acrylic plates promotes a folding/ 

unfolding process of the cells located on both endings of the origami-wheel (lines 1 and 

3), and this folding/ unfolding process is described by the angles 𝛽 and 𝛾. The vertices B 

and E of each unit cell from the middle row (line 2) can be located over the surface of a 

cylinder with radius 𝑅2. 

Each unit cell is conceived as a rectangle of sides 2𝑎 and 2𝑏 with 𝑎 = 𝑏 tan(𝜆), 

and each acrylic plate is conceived as a regular octagon with apothem 𝑟. The variable 𝑐 

is arbitrary and it is only constrained by the geometric restrictions of the structure. 
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Figure 6-15: Origami-wheel and symmetric plane views. (a) Radial symmetry –XZ 

plan; (b) Simplified view; (c) Longitudinal symmetry –YZ plan; (d) Simplified view. 

    

By considering the complementary condition described above, and assuming that 

c=b/2, it is possible to obtain the following relations for the origami, projecting the lengths 

on axis X, Y and Z in Figure 6-15: 

 

𝐿2 = 𝑏 sin 𝛼 + 2𝑏 cos 𝛽 −
𝑏

2
sin 𝛽      (6.1) 

𝑅2 = 𝑟 + 2𝑏 sin 𝛽 + 𝑏

2
cos 𝛽       (6.2) 

𝑅2 = 𝑅1 + 𝑏 cos 𝛼        (6.3) 

𝐿1 = 2𝑎 sinθ         (6.4) 

𝑅1 = 𝑎 (sin 𝜃 tan 𝜋
8

⁄ − cos 𝜃)       (6.5) 

𝑅 =
𝐿1
2sin 𝜋

8
⁄          (6.6) 
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Note that there are two expressions for R2. These two forms can be obtained 

considering either the decomposition of the red edges on Figure 6-15-d, leading to (6.2), 

or the decomposition of the blue edges on Figure 6-15-d, leading to (6.3), being both 

decompositions made on axis Z. 

Based on geometric relations, an explicit relation between 𝐿2 and 𝐿1 is established 

by solving the system of equations (4.4 and 6.1 – 6.6), leading to a function L2 = g(L1). It 

is also possible to explicit R1 and R2 as functions of L1. Figure 6-16 shows graphical 

representations of these relations considering r = 0.04m, b = 0.065m and 𝜆 = 𝜋 4⁄  (a 

squared cell). Figure 6-16a shows the curve L2 = g(L1) and Figure 6-16b shows the curves 

of the external radius, R2, and internal radius, R1, as a function of L1. 

 

 

Figure 6-16: Origami-wheel geometric relations. (a) Curve of the distance between the 

acrylic plates (𝐿2) as a function of the middle row opening (𝐿1); (b) Curve of the inner 

(𝑅1) and outer (𝑅2) radii of the origami-wheel as a function of the middle row opening 

(𝐿1). 

 

The next chapter deals with the dynamical analysis of the origami-wheel actuated 

by a BIAS system composed by SMAs, placed on the middle row along 𝐿1, and an elastic 

passive spring connecting the acrylic plates, along 2𝐿2. 
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7  Origami-Wheel Dynamics 
 

This chapter presents the dynamical analysis of the origami-wheel described by 

the reduced-order formulation shown in Section 6.2. This chapter starts with the 

dynamical formulation, followed by a quasi-static analysis that covers the origami 

stability and shape changing. Finally, a dynamical study is developed, including 

bifurcation analysis and dynamical jumps.  

In the closed-form tessellation analysis, it is verified that, under symmetric or 

quasi-symmetric actuation, the origami-wheel structure behaves as a single DoF system, 

and thus its shape changing can be described by a simplified model.   

Figure 7-1 shows the SMA actuators, that act by closing the wheel (reducing its 

radius), and the passive elastic spring, that restores the wheel configuration. The elastic 

spring is connected to two octagonal acrylic plates. The SMAs are designed with a 

residual deformation, such that, in the opened configuration, all springs are free of stress 

and the SMA has a tractive detwinned martensite (𝑀+) crystallographic phase. Thus, the 

shape changing is promoted by inducing the phase transformation 𝑀+ → 𝐴, increasing 

the SMA stiffness and reducing the SMA length. During this process, the elastic passive 

spring is extended, reducing the wheel’s radius. The cooling down process of the SMA 

induces the reverse transformation, releasing the stress on the SMA. The elastic spring 

acts as a restitutive force in the BIAS system, restoring the initial configuration of the 

wheel.  
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Figure 7-1: Origami-wheel with SMAs placed along the middle row to promote the 

folding process (left) and a cut exposing the elastic passive spring, connecting the 

acrylic plates, to promote the BIAS effect (right). 

 

Concerning the origami construction, it is assumed that, when elastic springs are 

free of tension, the SMA actuator is pre-deformed at the martensitic phase (T=288K) and 

the origami-wheel is not totally opened. This means that the SMA actuator has a residual 

strain that can be recovered by heating, and the relaxed spring size is given by L1=0.089. 

It should be highlighted that, for the considered values of b and r, the range of feasible 

values for constructive reasons is L1 ∈ [0.0555, 0.1225] m. In this regard, point P1 

represents the construction configuration; point P2 represents the minimum configuration, 

where the origami-wheel is completely closed (minimum radius); and point P3 is the built 

configuration, where the origami-wheel is half-opened. Table 7-1 presents origami-wheel 

configuration characteristics. 

 

Table 7-1: Configurations of the origami-wheel for 𝑏 = 0.04 𝑚 and 𝑟 = 0.065 𝑚. 

 

P 

(°) (m) 

α β θ L1 L2 R2 R1 

1 52.98 55.14 70.44 0.1225 0.0995 0.1652 0.1261 

2 5.75 0.17 25.27 0.0555 0.1364 0.0729 0.0082 

3 32.82 41.72 56.98 0.1090 0.1106 0.1508 0.0962 

Maximum variation 0.0670 0.0369 0.0923 0.1179 

 

 Another interesting definition for geometrical modeling is the use of spring 

displacement instead of its length. Hence, assuming that the reference configuration is 
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that at which the SMA spring is free of both stress and strain, 𝐿1
0 = 0.089m, the SMA 

length can be written as 𝐿1 = 𝐿1
0 +  𝑢, where u is the SMA displacement. The same 

assumption can be made for the elastic passive spring: 𝐿2 = 𝐿2
0 + 𝑢𝐸 , where 𝑢𝐸  is the 

elastic spring displacement and 𝐿2
0 = 𝑔(𝐿1

0 + 𝑢0). Note that the reference configuration 

for the elastic spring is the built structure. It is important to highlight that the free stress 

and strain condition of the elastic spring depends on the structure initial configuration, 

being assumed at point P3, which means that 𝑢0 = 0.02m. 

 

7.1. Dynamical formulation 
 

Kinematics analysis established that symmetry assumptions define a 1 DoF 

system to describe origami movements. Therefore, a one degree of freedom reduced order 

model is able to describe the system dynamics. Initially, it is necessary to describe the 

thermomechanical behavior of SMA by considering a constitutive model. This work uses 

the polynomial constitutive model (see Appendix) to describe the constitutive behavior 

of the SMA. 

Aguiar et al. (2010) and Enemark et al. (2016) showed that force-displacement-

temperature relation of SMA springs is similar to one-dimensional stress-strain-

temperature relations when homogeneous behavior is assumed through the wire cross-

section. Therefore, considering a helical spring with NS coils with diameter D and wire 

diameter d, the SMA actuator restitution force, 𝐹𝑆𝑀𝐴, is given by:  

 

𝐹𝑆𝑀𝐴 =
𝜕𝐸𝑆𝑀𝐴

𝜕𝑢
= 𝑐1̅(𝑇 − 𝑇𝑀)𝑢 − 𝑐2̅𝑢

3 + 𝑐3̅𝑢
5        (7.1) 

 

where 𝐸𝑆𝑀𝐴 is the SMA potential energy (A.3); 𝑐�̅� , 𝑖 = 1,2,3 are model parameters and 

TM represents the temperature bellow which the martensite phase is stable. 

Concerning the passive elastic spring, a linear relation describes the restitution 

force, 𝐹𝐸, 

 

𝐹𝐸 =
𝜕𝐸𝐸

𝜕𝑢
=

𝜕𝑢𝐸

𝜕𝑢
𝜂𝑢𝐸          (7.2) 
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where 𝐸𝐸 is the elastic potential energy; 𝜂 =
𝐺𝑑𝐸𝐿

4

6𝐷𝐸𝐿
3𝑁𝐸𝐿

 and G is the shear modulus. 

The dynamical model assumes that the origami has a mass 8m, located as punctual 

masses around the middle row such that each SMA actuator is related to a mass m. 

Besides, each acrylic plate associated with the passive elastic spring half-length has a 

mass M. Based on that, it is possible to write the system energy, where EC is the kinetic 

energy and EP is the potential energy, defined as follows: 

 

𝐸𝐶 =
8𝑚�̇�𝑆𝑀𝐴

2

2
+
2𝑀�̇�𝐸𝐿

2

2

𝐸𝑃 = 8𝐸𝑆𝑀𝐴 + 2𝐸𝐸𝐿
         (7.3) 

 

𝑟𝑆𝑀𝐴 is the variation of the radii presented at equation (7.4), and it is related to the radial 

displacement of the mass associated with the SMA actuator (Figure 6-15): 

 

𝑟𝑆𝑀𝐴 = 𝑅 − 𝑅0 =
𝐿1

2sin𝜋
8

−
𝐿1
0

2 sin𝜋
8

=
𝑢

2 sin𝜋
8

     (7.4) 

 

Note that the expression of 𝑢𝐸  can be obtained by rewriting the solution 𝐿2 =

𝑔(𝐿1) as a function of the initial configuration and the SMA spring displacement. Since 

𝑢𝐸 = 𝐿2 − 𝐿2
0  and 𝑢 = 𝐿1 − 𝐿1

0 , it is possible to write 𝑢𝐸 = 𝑔(𝐿1) − 𝐿2
0 = 𝑔(𝐿1

0 + 𝑢) −

𝐿2
0 = 𝑓(𝑢).  

Using the chain rule on f(u) derivation:  

 

�̈�𝐸 =
𝑑

𝑑𝑡
(
𝑑𝑓

𝑑𝑢

𝑑𝑢

𝑑𝑡
) = 𝑓′�̈� + 𝑓′′�̇�2      (7.5) 

 

A linear viscous dissipation is included on the formulation, with coefficient ξ. 

External stimuli are also incorporated by considering an external force F(t) that is 

assumed to be symmetrically applied through the middle column of the origami-wheel, 

respecting the rotational symmetry. Under these assumptions, equations of motion are 

written as follows: 

 

{

�̇� = 𝑣                                                

�̇� =
𝐹(𝑡)−4𝐹𝑆𝑀𝐴−𝑀𝑓

′𝑓′′𝑣2−𝜂𝑓𝑓′−𝜉𝑣
𝑚

sin2
𝜋
8

+𝑀𝑓′
2            (7.6) 
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Table 7-2 shows mechanical and geometric properties of origami-wheel used on 

the numerical simulations. All simulations consider a dissipative system with a viscous 

damping constant 𝜉 =  1N s/m. 

 

Table 7-2: Material and system parameters. 

Inertial terms 
m (kg) M (kg)    

0.008 0.012    

Polynomial 

constitutive 

model 

𝑐1 (MPa/K) 𝑐2 (MPa) 𝑐3 (MPa)   

5 7.0104 7.0106   

Elastic spring 
𝑑𝐸 (m) 𝑁𝐸  𝐷𝐸  (m) 𝐺𝐸 (GPa)  

2.010-3 40 30.010-3 30.0  

SMA spring 
𝑑𝑆𝑀𝐴 (m) 𝑁𝑆𝑀𝐴  𝐷𝑆𝑀𝐴 (m) 𝑇𝑀 (K) 𝑇𝐴 (K) 

1.010-3 10 2.510-3 291.4 326.4 

 

7.2. Quasi-static analysis   
 

In order to evaluate the model capability to describe the origami behavior, a quasi-

static analysis is performed neglecting inertia and dissipation terms. This analysis is 

shown in Figure 7-2, that contains the origami resultant force. 

The SMA-origami system is temperature dependent, meaning that it is possible to 

change the origami-wheel radius with temperature variations. Different equilibrium 

configurations can be observed depending on the temperature: three configurations for 

low temperature (T<TM); five configurations for intermediate temperatures (TM<T<TA); 

and one configuration for higher temperatures (T>TA). Note that the increase of SMA 

temperature by 7 K induces the reduction of the larger origami radius (R2) from 0.147 m 

to 0.122 m (A→B indicated in Figure 7-2). The maximum radius reduction observed 

(C→D indicated in Figure 7-2) is around 0.058 m, representing a reduction of almost 

39%. The total reduction between limit configurations (points P1 → P2 in Figure 6-16) 

implies a reduction of about 56%, and these values matches with the experimental ones 

developed by Fang et al. (2017). 
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Figure 7-2: Quasi-static analysis of the origami wheel, considering the sum of the 

efforts of the SMA and elastic springs. 

 

Figure 7-3 shows changes in the configuration due to temperature variations. 

Basically, it is presented the time history for the temperature and the origami response, 

path C→B→C, indicated in Figure 7-2. At initial configuration, T0=288K, SMA actuators 

have an initial displacement u=0.02 m, meaning that the origami-wheel is half-opened. A 

thermal load from T =288K to T = 373K on SMA (Figure 7-3a) recovers the SMA residual 

strain folding (closing) the origami, as can be noticed by the radius reduction (Figure 

7-3b). Figure 7-3c shows the SMA and elastic spring displacements during the application 

of the thermal load. The first vertical dashed line indicates the beginning of the shape 

changing during the heating process. At this point (T=TM), the SMAs start the phase 

transformation from martensite to austenite, recovering the residual strain and closing the 

origami-wheel. This process takes around 4 seconds. 
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Figure 7-3: Origami structure quasi-static behavior due to temperature changes. (a) 

Thermal load; (b) External and internal radii evolution during heating/cooling process; 

(c) Displacements on elastic spring and on each SMA actuator; (d) Actuators’ length. 

 

The second and third vertical dashed lines define the beginning and the end of the 

origami reopening (unfolding) process that occurs when cooling the SMAs. This process 

takes around 15 seconds, and these results are in agreement with experimental data from 

the references Fang et al. (2017) and Lee et al. (2013). 

 

7.3. Dynamical analysis 
 

The origami-wheel, in an operational condition, is subject to thermal and 

mechanical loads, which modify the shape of the structure and its dynamic behavior. This 

section analyzes the origami behavior when subjected to external loads and 

environmental variations, such as thermal disturbances and oscillations. The numerical 

simulations performed consider a 4th-order Runge-Kutta to solve the dynamic system.  
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For the sake of simplicity, it is adopted an external mechanical stimulus 

represented by two terms: 𝐹(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡), where 𝐹1(𝑡) = 𝛿1 sin(𝜔1𝑡) and 

𝐹2(𝑡) = 𝛿2sin (𝜔2𝑡). The term 𝛿1 sin(𝜔1𝑡) represents different forms of the soil 

(sinusoid, for instance – Figure 7-4a). On the other hand, the second term, 𝛿2 sin(𝜔2𝑡), 

represents a perturbation over the original stimulus (Figure 7-4b), that could be related to 

floor irregularities.  

 

 

Figure 7-4: Representation of the external excitation represented by the force 𝐹(𝑡) =

𝐹1(𝑡) + 𝐹2(𝑡), where the contribution of each 𝐹𝑖(𝑡) is highlighted on the right, being (a) 

for 𝐹1(𝑡) and (b) for 𝐹2(𝑡).  

 

𝐹(𝑡) = 𝛿1 sin(𝜔1𝑡) + 𝛿2sin (𝜔2𝑡)      (7.7) 

 

The thermal load perturbation is related to environmental temperature oscillation, 

and its influence on the structure response is investigated. This perturbation is represented 

by a sine fluctuation of amplitude 𝛿𝑇, and frequency 𝜔𝑇, around the nominal temperature, 

TN, defined by the following equation, 

 

𝑇(𝑡) = 𝑇𝑁 + 𝛿𝑇sin (𝜔𝑇𝑡)        (7.8) 

 

The structure of equilibrium points is analyzed from basins of attraction presented 

in Figure 7-5, built from free vibration analysis of the dissipative system with different 

initial conditions. Each equilibrium point structure is associated with forces acting on the 

origami, presented in Figure 7-2, representing distinct origami-wheel configurations, 

showed in Figure 7-5a.  

𝐹1(𝑡) 

𝐹2(𝑡) 

(a) 

(b) 
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Figure 7-5: Origami-wheel basins of attraction. (a) Shape configuration for the three 

stable positions and its color representation; (b) Basin of attraction for 𝑇 < 𝑇𝑀; (c) 

Basin of attraction for 𝑇𝑀 < 𝑇 < 𝑇𝐴; (d) Basin of attraction for 𝑇 > 𝑇𝐴. 

 

Figure 7-5b shows a situation where T<TM, with three equilibrium points (two 

stable and one unstable) that can be reached changing initial conditions. By increasing 

the temperature for intermediate values (TM<T<TA), the system changes from three to five 

equilibrium points (three stable and two unstable), as can be seen at Figure 7-5c. By 

increasing the temperature above TA, the stable points get closer until they coalesce to 

each other. This causes a change from five equilibrium points to one stable equilibrium 

point (Figure 7-5d). Depending on the initial conditions, it is possible to reach different 

configurations, changing the origami-wheel radius. 

The origami slender characteristic is associated to a rich dynamic with strong 

sensitivity to either parameter changes or initial conditions. In this regard, it is important 
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to have a deep comprehension of the origami-wheel nonlinear dynamics, evaluating high 

periodic, quasi-periodic and chaotic behaviors. 

In order to perform a global analysis of the origami response, bifurcation diagrams 

are built varying the amplitude of the load perturbation δ2, keeping a constant frequency 

ω2 = 300rad/s, for δ1 = 10N and ω1 = 200rad/s. The objective of this analysis is to evaluate 

the system response under perturbations that represent soil roughness. Different 

temperature ranges are analyzed: T = 288K (T < TM), T = 315K (TM < T < TA), and T = 

320K (T > TA). 

 

 

Figure 7-6: Origami bifurcation diagrams varying perturbation forcing amplitudes: (a) 

𝑇 = 288 𝐾 (𝑇 < 𝑇𝑀); (b) 𝑇 = 315 𝐾 (𝑇𝑀 < 𝑇 < 𝑇𝐴); (c) 𝑇 = 327 𝐾 (𝑇 > 𝑇𝐴). 

 

Figure 7-6 shows bifurcation diagrams varying the load perturbation amplitude 

from zero (δ2=0, unperturbed excitation forcing) to δ2=1.2N. Note that for the 

intermediate temperatures (𝑇 = 315 𝐾) the chaotic response disappears with the 

increasing of the perturbation, changing to a periodic response of period-2 (Figure 7-6b). 
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A different behavior is observed for the low temperature case (T=288K), wherein the 

perturbation increasing tends to increase the response complexity, resulting in a chaotic 

response (Figure 7-6a). Under this condition, the bifurcation diagram shows bifurcations 

and crisis. For δ2 smaller than 1.1 N, the system presents a period doubling, from period-

1 to period-4. For δ2 > 1.1N, a crisis phenomenon is observed, presenting sudden changes 

from a periodic response to a chaotic-like behavior. For high temperatures (Figure 7-6c), 

when austenite is stable (𝑇 = 320𝐾 >  𝑇𝐴), the system has a period-2 behavior for the 

perturbed case (δ2≠0) and a period-1 response for the unperturbed case (δ2=0). It is 

possible to notice that the increase in temperature tends to simplify the behavior of the 

structure, reducing its periodicity and complexity. 

 

 

Figure 7-7: Bifurcation diagram for an intermediate temperature (𝑇M < 𝑇 = 300 𝐾 <

𝑇A). 

 

Note that the system response to an external force without disturbance is periodic 

of period 1 for 𝑇 = 288 𝐾 and chaotic for 𝑇 = 315 𝐾 (intermediate temperature). Due to 

the observed change in the behavior, a study on the system at intermediate temperature is 

carried out, aiming to evaluate the impact of the base of the external load function (𝐹1(𝑡)) 

on the system's behavior. A complex bifurcation diagram is noted for 𝑇 = 300 𝐾. Figure 

7-7 shows the bifurcation diagram for the system subjected to an external load without 

disturbance (𝛿2=𝜔2=0), with excitation frequency 𝜔1=200 rad/s, varying the forcing 

amplitude 𝛿1 from 0 N to 10 N. Again, the typically nonlinear phenomena cascade of 
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bifurcation and crisis are observed. The diagram starts with a periodic response of period 

1, with a bifurcation cascade around 3.5 N, later returning to a period 1 response. At 4.5 

N another bifurcation is observed, and the system suddenly shows a chaotic response 

(crisis phenomenon). It is possible to notice that for 𝛿1>5 N the system response is 

basically chaotic for the intermediate temperature 𝑇 = 300𝐾, even without disturbance 

in the external forcing, with some periodic windows in 7 N and 9.4 N. 

The influence of the soil roughness (or the external force perturbation) can be 

better understood in the sequence. Initially, it is considered a forcing amplitude δ1=10N 

and ω1=200rad/s with a constant low temperature T=288K (Figure 7-8a), without 

perturbation. Under this condition, the origami presents a period-1 behavior, oscillating 

around the closed configuration with small oscillation amplitude, as shown in the phase 

space and the Poincaré section contained within Figure 7-8b. 

   

 

Figure 7-8: Origami response subjected to mechanical forcing (δ1=10 N, ω1=200 rad/s) 

at T=288 K. (a) Mechanical load 𝐹(𝑡); (b) phase space and Poincaré section. 

 

A perturbation is now introduced into the system, considering δ2=1.5N and 

ω2=300rad/s (Figure 7-4). Figure 7-9a shows the original and the perturbed excitations. 

Under this new condition, the origami presents a chaotic motion, which is dramatically 

different when compared with the previous one. Figure 7-9b presents phase space 

together with Poincaré section that shows a strange attractor. The chaotic behavior is 

confirmed by the Lyapunov exponents estimated using Wolf et al. (1985) algorithm: 

{60, −80}. The use of Kaplan-Yorke conjecture points to a fractal dimension of 1.737. 

Figure 7-9c shows a phase space identifying some regions associated with stable 
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equilibrium point configurations. Note that the origami presents oscillations around 

several configurations, resulting in large radius variations. This kind of behavior 

represents an important issue to be considered during the design stage, since it can be 

related to unexpected oscillations or related to the structure integrity once high rate of 

folding process can induce damage on the creases. 

 

 

 

Figure 7-9: Origami response to a perturbed mechanical load at T=288 K. (a) 

Mechanical loading process (without and with a small perturbation); (b) Phase space 

and strange attractor; (c) Origami configurations. 

  

Origami sensitivity is important even when the system presents periodic behavior. 

Figure 7-10 shows three kinds of periodic response, obtained at T=288K: in the first case, 

𝐹(𝑡) is such that δ1=10N and ω1=180rad/s (𝐹1(𝑡)); in the second case, δ1=10N and 

ω1=280rad/s (𝐹2(𝑡)); in the third case, δ1=14N and ω1=200rad/s (𝐹3(𝑡)). When the 

system is subjected to 𝐹1(𝑡), the origami presents a period-1 response, oscillating around 
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a closed configuration, with small amplitudes. When the system is subjected to 𝐹2(𝑡), an 

external force with the same amplitude as the previous one but with a higher frequency, 

the origami opens and oscillates around an opened configuration, with a period-3 

response. Although the SMA displacement, u, is bigger in the second case, the external 

radius has a small variation, which means that the creases fold with smaller amplitudes 

when compared to the first case. By considering the forcing to 𝐹3(𝑡), the origami has a 

period-1 response, oscillating in the entire space, meaning that it opens and closes 

completely, repeatedly. Therefore, the external radius has large variations, and the creases 

are subjected to large oscillations. Thus, not only the frequency of the folding process can 

result in a rupture of the joints, but also its amplitude. 

 

 

Figure 7-10: Different periodic orbits for different external mechanical forces at T=288 

K. (a) Phase portraits; (b) External radius variation. 

 

The objective now is to study the base forcing, evaluating the system's response 

to a run-up and run-down test (frequency diagram). To this end, a study is made of the 

frequency of mechanical forcing for three different temperatures: 𝑇 =  288 𝐾 < 𝑇𝑀; 

𝑇𝑀 < 𝑇 = 315𝐾 < 𝑇𝐴 and 𝑇 = 320𝐾 > 𝑇𝐴. The frequency varies in the range of 𝜔1 =

(200, 2000) 𝑟𝑎𝑑/𝑠, without disturbance (𝛿2 = 0𝑁 and 𝜔2 = 0 𝑟𝑎𝑑/𝑠). Figure 7-11 

shows the frequency curve for the low temperature. The presence of dynamic jumps is 

noted, which usually defines regions of critical behavior (Oliveira et al., 2014; Bernardini 

& Rega, 2005). Thus, aiming at an operational condition, this behavior must be evaluated 

to avoid unwanted responses and possible damage to the integrity of the structure 

(Scheffer et al., 2001; Scheffer & Carpenter, 2003). 
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Figure 7-11: Frequency response of the origami for 𝑇 = 288 𝐾 (𝑇 < 𝑇𝑀) in a run-up 

and run-down simulation. Some phase spaces positioned in high dynamic regions are 

highlighted. 

 

The low temperature response has two dynamic jumps: the first jump is related to 

a chaotic behavior, while the second jump is related to a period multiplicity, as can be 

seen from the period 2 phase space shown in Figure 7-8. When raising the temperature 

for the same external force, the system does not present a chaotic response, but a change 

in periodicity (Figure 7-12). Note that the high temperature response does not show 

dynamic jumps, as the system response remains periodic for period 1 over the entire 

frequency range. These results show that the forcing frequency has a substantial influence 

on the shape of the origami, which can range from the closed configuration (𝑢 = 0 m) to 

the opened configuration (𝑢 = 0.027 m). 
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Figure 7-12: Frequency response of the origami for 𝑇 = 315K (𝑇𝑀 < 𝑇 < 𝑇𝐴) in a run-

up and run-down simulation. Some phase spaces positioned in high dynamic regions are 

highlighted. 
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Figure 7-13: Origami frequency response for 𝑇 = 320K (𝑇𝐴 < 𝑇) in a run-up and run-

down simulation. 

 

Besides mechanical fluctuations, thermal fluctuations also present some influence 

on the origami response. In order to show this kind of behavior, consider a case where the 

origami is subjected to an external force (δ1=10 N, ω1=200 rad/s) at T=288K, as the case 

discussed in Figure 7-8. Thermal perturbations are now introduced, being represented by 

a thermal oscillation: 𝛿𝑇 = 2K and 𝜔𝑇 = 100 rad/s. Under this new condition, the 

thermal oscillation induces a transient chaos that stabilizes in a periodic steady state 

(Figure 7-14). Figure 7-14a shows the time response evolution of the SMA displacement, 

where the origami starts with a transient chaos and stabilizes in a period-2 response 

approximately after 22 seconds (blue line). During the chaotic response, the structure 

presents large oscillations, changing between all possible shapes (from completely 

opened to completely closed). Figure 7-14b presents phase spaces for the whole period, 

showing the same behavior. Figure 7-14c presents the chaotic saddle during transient 

period, while Figure 7-14d shows the periodic steady state stabilized response where the 

origami oscillates around the closed configuration. 
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Figure 7-14: Origami response subjected to thermal fluctuation. Transient response is 

represented by a red line, while stabilized response is represented by a blue line. (a) 

SMA displacement time history; (b) phase space; (c) Poincaré section associated with 

transient chaos (chaotic saddle); (d) steady state periodic phase space. 
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8  Origami-Wheel Robot  
 

Autonomous mobile robots have several applications in the field of industry, 

military, and security environment. An interesting problem in the design of these robots 

lies in the control and autonomous movement, promoting an increasing study in the field 

of robotics. One way to produce these mobile robots is to use two-wheel drive with 

differential steering and a free balancing wheel (caster). Controlling the two engines 

independently makes these robots maneuverable and work well indoors (Malu et al., 

2014). 

The replacement of conventional wheels with deformable wheels allows the car 

to overcome obstacles more easily, from small cracks to the elevation in steps (Lee et al., 

2013). In addition, the trajectory control is done by acting directly on the wheels, using a 

small number of actuators, significantly reducing the weight of the structure. The 

response of the car submitted to specific fields can be predicted by a geometric 

description. 

This chapter proposes a mathematical model that describes the trajectory of the 

origami-wheel robot. The model is based on a dynamic analysis of the GC positioning of 

the car and each of the wheels. Each origami wheel is attached by the geometric center 

and has a symmetrical behavior in relation to the attachment point. In addition, all the 

origami symmetry hypotheses presented in Chapter 6 remain valid. The chapter begins 

with the proposal of a kinematic model and evolves to dynamic analysis. The model is 

developed independently of the geometric description of the origami and the constitutive 

models that describe the phase transformation of SMA springs. 
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8.1. Kinematics 
  

The robot is composed by a chassis with mass center, G, rigidly attached to 

weightless axes that are connected to two independent deformable origami wheels with 

mass centers GA and GB (Figure 8-1a). Additionally, the chassis touch the ground at the 

point H, where a roller is placed. The roller is touching the ground throughout the entire 

motion of the robot, avoiding a pendular motion of the chassis.  

There are basically two ways to attach the origami wheel to the axle: you can 

attach the axle to one of the acrylic plates, so that the GC of the origami wheel slides over 

the axle; or the origami can be attached by a support on the shaft, attached to the elastic 

spring. The analysis made here considers this second form of assembly.  

 

 

Figure 8-1: Origami-wheel robot of two deformable wheels. (a) Isometric view with 

indications of the mass centers for the wheels, GA and GB, and mass center of the 

chassis, G; (b) Superior view, with cuttings on the wheels, for details of the attachment 

of the wheels to the axes. 

 

(a) 

(b) 

Wheel 

A 

Wheel 

B 
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The chassis is built such that the mass centers GA, GB and G are always aligned 

and along the axle connecting the wheels. Besides, each wheel is attached to the axle in 

such a way that its mass center does not slide through the axle, i.e., the mass centers of 

GA and GB are symmetrically positioned with respect to G, kept at a constant distance d 

(Figure 8-1b). 

The yaw movement of the car is promoted by reducing the radius of one of the 

wheels, keeping the radius of the other wheel fixed. In this way, it is possible to perform 

a route control or a change of trajectory acting locally on one of the wheels, through the 

application of a thermal, electric, or magnetic field, depending on the actuator element 

used.  

The position of the car at any time, in relation to an observer fixed in space, is 

fully described by the positioning of the CG of the car body (𝑥, 𝑦, 𝑧) and by the inclination 

of the axle (Φ). Some of these variables, however, can be rewritten as a function of (or 

replaced by) 𝑅𝐴 and 𝑅𝐵, the spokes of the origami wheels. Figure 8-2 brings the referential 

frames (RFs) and the variables used to obtain the kinematic model. The robot movement 

is described with respect to a fixed observer, F, by the positioning of the G point (X, Y, 

Z) and the yaw angle (Φ). These variables can be written as a function of RA and RB, the 

A and B wheels radii, respectively. The reduction of the radius of one wheel promotes the 

yaw motion of the car, allowing maneuverability. The yaw motion is described by the 

reference frame C (𝑥1, 𝑦1, 𝑧1) attached to the G point (Figure 8-2-a). The roll movement 

of the car is characterized by a rotation θ (Figure 8-2-b), related to the wheel radius’ 

reduction, being described by the reference frame P (𝑥2, 𝑦2, 𝑧2). The kinematics 

description of the origami-wheel robot considers a reference frame attached to each 

wheel: reference frame A (𝑥3
𝐴, 𝑦3

𝐴, 𝑧3
𝐴), which describes the rotation of the wheel A, and 

B (𝑥3
𝐵, 𝑦3

𝐵, 𝑧3
𝐵), which describes the rotation of the wheel B (Figure 8-2-c and Figure 8-2-

d, respectively).  The reference frame A rotates following the point NA. Similarly, the 

reference frame B rotates following the point NB. Under these assumptions, the system 

kinematics can be described by eight variables: position of the chassis (G point) on plane 

(x, y), yaw angle (Φ), roll angle (θ), wheel radius (RA, RB) and wheel rotation (𝜙𝐴, 𝜙𝐵). 
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Figure 8-2: Representation of the referential frames to describe the origami-wheel 

trajectory. (a) indication of the yaw motion (Φ); (b) indication of the roll movement 

(θ); (c) and (d) indication of the referential frame attached to each wheel for spinning 

(ΦA, Φ𝐵). 

 

The rolling motion of the carriage (θ) occurs due to a difference between the 

spokes of the two origami wheels. Considering that there is no detachment of the wheels 

from the ground (the wheels remain in contact with the ground during the entire course), 

it is possible to extract the relation tan(𝜃) =
(𝑅𝐵 − 𝑅𝐴)

2𝑑
⁄ . 

The transformation matrices among these frames are presented in the sequence 

considering a general notation 𝑻𝑆2 
𝑆1 (ζ) that maps the transformation from reference 

frame S1 to S2, according to a rotation ζ. 

 

𝑻𝐶 
𝐹 = [

cos(Φ) − sin(Φ) 0
sin(Φ) cos(Φ) 0
0 0 1

]      (8.1) 
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𝑻𝑃 
𝐶 = [

1 0 0
0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)
]      (8.2) 

𝑻𝐴 
𝑃 = [

cos(𝜙𝐴) 0 sin(𝜙𝐴)
0 1 0

− sin(𝜙𝐴) 0 cos(𝜙𝐴)
]      (8.3) 

𝑻𝐵 
𝑃 = [

cos(𝜙𝐵) 0 sin(𝜙𝐵)
0 1 0

− sin(𝜙𝐵) 0 cos(𝜙𝐵)
]      (8.4) 

 

Inertial reference frame is denoted by F and therefore quantities described with 

respect to it are called absolute. Four other mobile referential frames are considered: C, 

P, A and B. The velocity and position of each mass of the car (wheels and chassis) are 

described on the referential frame that follows its entity, meaning that is preferable to use 

the least number of transformations. Based on that, the chassis is represented on the 

referential frame P and each wheel is represented at its own referential frame, A or B. 

The absolute linear velocity of the chassis, 𝒗𝐺 
𝑃 ,  and the absolute angular velocity 

of the chassis, 𝝎𝑃 
𝑃 , are given by 

 

𝒗𝐺 
𝑃 = [

−Φ̇𝑅 sin(𝜃) + �̇� cos(Φ) + �̇� sin(Φ)

�̇�𝑅 + cos(𝜃) (�̇� cos(Φ) − �̇� sin(Φ))

�̇� + cos(𝜃) (�̇� cos(Φ) − �̇� sin(Φ))

]    (8.5) 

𝝎𝑃 
𝑃 = [

−�̇�
−Φ̇ sin(𝜃)

Φ̇ cos(𝜃)

]        (8.6) 

 

where 𝑅 =
(𝑅𝐴 + 𝑅𝐵)

2⁄ . Besides, the absolute linear velocity of the center of 

mass of the wheel, 𝒗𝑖 
𝑃 , and the absolute angular velocity of the wheel, 𝝎𝑖 

𝑖 , are given by  

 

𝒗𝑖 
𝑃 = [

−Φ̇(𝑅 sin(𝜃) + 𝜌 cos(𝜃)) + �̇� cos(Φ) + �̇� sin(Φ)

�̇�𝑅 + cos(𝜃) (�̇� cos(Φ) − �̇� sin(Φ))

�̇� − 𝜌�̇� + sin(𝜃) (�̇� cos(Φ) − �̇� sin(Φ))

]   (8.7) 

𝝎𝑖 
𝑖 = [

−�̇� cos(𝜙𝑖) − Φ̇ cos(𝜃) sin(𝜙𝑖)

�̇�𝑖 − Φ̇ sin(𝜃)

−�̇� sin(𝜙𝑖) + Φ̇ cos(𝜃) cos(𝜙𝑖)

]     (8.8) 
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where it is assumed, for wheel A, 𝑖 = 𝐴, 𝜙𝑖 = 𝜙𝐴 and 𝜌 = 𝑑, and, for wheel B, 

𝑖 = 𝐵, 𝜙𝑖 = 𝜙𝐵 and 𝜌 = −𝑑. 

The robot performs a roll movement around the axis 𝑥1, defining the yaw motion, 

being 𝐻 the contact point between the chassis and the floor (Figure 8-2b). The absolute 

linear velocity 𝒗𝐻 
𝐶   is given by, 

 

𝒗𝐻 
𝐶 = [

�̇� cos(Φ) + �̇� sin(Φ)

�̇� cos(Φ) − �̇� sin(Φ)
0

]       (8.9) 

 

The velocity of point 𝑁𝑖 𝑖 = (𝐴, 𝐵) is described on the referential frame that 

follows the wheel rotation. Hence, the velocity of 𝑁𝑖 of the wheel 𝑖, 𝑖 = 𝐴, 𝐵, is given by 

𝑣𝑁𝑖 
𝑖 = [𝑣𝑥3 𝑣𝑦3 𝑣𝑧3]𝑇, where each component is presented in the sequence  

 

𝑣𝑥3 = [�̇� cos(Φ) + �̇� sin(Φ)] cos(𝜙𝑖) − [−�̇� sin(Φ) +

�̇� cos(Φ)] sin(𝜃) sin(𝜙𝑖) + �̇�𝑖 − �̇� sin(𝜙𝑖) + �̇�𝜌 sin(𝜙𝑖) − Φ̇[𝜌 cos(𝜃) cos(𝜙𝑖) +

𝑅 cos(𝜙𝑖) sin(𝜃)]                  (8.10a) 

                        

𝑣𝑦3 = cos(𝜃) [−�̇� sin(Φ) + �̇� cos(Φ) + Φ̇𝑅𝑖 cos(𝜙𝑖)] + �̇�[𝑅 − 𝑅𝑖 sin(𝜙𝑖)]       

                     (8.10b) 

 

𝑣𝑧3[�̇� cos(Φ) + �̇� sin(Φ)] sin(𝜙𝑖) + [−�̇� sin(Φ) + �̇� cos(Φ)] sin(𝜃) cos(𝜙𝑖) +

�̇� cos(𝜙𝑖) − �̇�𝑖𝑅𝑖 − �̇�𝜌 cos(𝜙𝑖) − Φ̇[𝜌 cos(𝜃) sin(𝜙𝑖) + (𝑅 sin(𝜙𝑖) − 𝑅𝑖) sin(𝜃)] 

(8.10c) 

   

where 𝜌 = 𝑑 and 𝑖 = 𝐴, for wheel 𝐴, and 𝜌 = −𝑑 and 𝑖 = 𝐵, for wheel 𝐵. 

 

8.1.1. Constraints 

The robot movement needs to be associated with constraints in order to be 

properly described. Five nonslip conditions are described in this formulation: each wheel 

roll without slipping in the direction of the motion; both wheels maintain contact with the 

floor during the entire motion, without penetration or jumping; and there is no slide on 
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the contact between the chassis and the soil, represented by the contact point 𝐻. The 

description of these constraints considers that, 𝜙𝐴 =
𝜋
2⁄  and 𝜙𝐵 =

𝜋
2⁄ ; 𝒆𝑧3 is the unitary 

vector on the motion direction 𝑧3
𝑖  (𝑖 = 𝐴, 𝐵), and 𝒆𝑧1 is the unitary vector on the direction 

perpendicular to the motion 𝑧1
𝐶.  

Considering the first nonslip condition, the velocity of the wheel vanishes at the 

point of contact of each wheel on the direction of the motion, 𝑧3
𝑖 . Therefore, the first 

nonslip condition is given by 𝑣𝑧3
𝑖 = 0 at 𝜙𝑖 =

𝜋
2⁄ . Therefore, the constraints are 

expressed by,  

 

𝑣𝑧3
𝐴 = 𝒗𝑁𝐴(𝜙𝐴 =

𝜋
2⁄ ) 

𝐴 ∙ 𝒆𝑧3 = 0 

𝑣𝑧3
𝐵 = 𝒗𝑁𝐵(𝜙𝐵 =

𝜋
2⁄ ) 

𝐵 ∙ 𝒆𝑧3 =  0
 

        (8.11) 

 

Based on these equations, the following constraints are defined, 

 

�̇� cos(Φ) + �̇� sin(Φ) − Φ̇[𝑑 cos(𝜃) − 𝐷 sin(𝜃)] = �̇�𝐴𝑅𝐴    (8.12) 

�̇� cos(Φ) + �̇� sin(Φ) + Φ̇[𝑑 cos(𝜃) − 𝐷 sin(𝜃)] = �̇�𝐵𝑅𝐵    (8.13) 

 

where 𝐷 =
𝑅𝐴 − 𝑅𝐵

2⁄ . 

Next step is to analyze the vertical component of each wheel velocity described 

on either 𝐶 or 𝑃 referential frame. In the contact point of each wheel with the soil, the 

vertical component of the velocity (𝑣𝑧1) vanishes. Therefore,  

 

𝑣𝑧1
𝐴 = 𝒗𝑁𝐴(𝜙𝐴 =

𝜋
2⁄ ) 

𝐶 ∙ 𝒆𝑧1 = 0

𝑣𝑧1
𝐵 = 𝒗𝑁𝐵(𝜙𝐵 =

𝜋
2⁄ ) 

𝐶 ∙ 𝒆𝑧1 = 0 
                                       

        (8.14) 

 

Considering the components described by equations (8.10a) to (8.10c) and the 

transformation matrixes (8.1 to 8.4), the vertical component of the velocity in the contact 

point (𝜙𝑖 =
𝜋
2⁄ ), 𝑖 = 𝐴, 𝐵, is given by 

 

𝑣𝑧1 = −�̇�[(𝑅 − 𝑅𝑖) sin(𝜃) + 𝜌 cos(𝜃)] + (�̇� − 𝑅𝑖
̇ ) cos(𝜃)    (8.15) 
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where 𝜌 = 𝑑 and 𝑖 = 𝐴, for wheel 𝐴, and 𝜌 = −𝑑 and 𝑖 = 𝐵, for wheel 𝐵. Since 

𝑅 =
𝑅𝐴 + 𝑅𝐵

2⁄  and 𝐷 =
𝑅𝐴 − 𝑅𝐵

2⁄ , and imposing the nonslip condition (𝑣𝑧1 = 0), the 

third constraint is reduced for a single equation given by 

 

−�̇�[−𝐷 sin(𝜃) + d cos(𝜃)] − �̇� cos(𝜃) = 0     (8.16) 

 

Finally, the nonslip condition considers the contact between the chassis and the 

soil. Since there is no sliding motion in the direction perpendicular to the motion, the 

constraint is obtained by imposing that the lateral absolute velocity vanishes,  

 

𝑣𝑦1
𝐻 = 𝒗H 

𝐶 . 𝒆𝑧1 = 0        (8.17) 

 

Therefore, based on the previous definitions, (8.17) is represented by the 

following equation 

 

�̇� sin(Φ) − �̇� cos(Φ) = 0        (8.18) 

 

Therefore, the kinematics is described with 8 variables (𝑥, 𝑦, Φ, 𝜃, 𝑅𝐴, 𝑅𝐵, 𝜙𝐴, 𝜙𝐵) 

and 4 constraints (Equations 8.12, 8.13, 8.16, 8.18), resulting in a 4-DOF model. 

 

8.2. Dynamical formulation 
 

The dynamical model is obtained by energetic approach, considering Lagrange 

multipliers on the constraints. By considering the Lagrangian as the difference between 

the kinetic, 𝐸𝑘, and potential, 𝐸𝑝, energies (ℒ = 𝐸𝑘 − 𝐸𝑝), described as a function of 

generalized coordinates, 𝑞𝑖
∗ = [𝑥, 𝑦, Φ, 𝜃, 𝑅𝐴, 𝑅𝐵, 𝜙𝐴, 𝜙𝐵]

𝑇, the Lagrange formulation is 

given by  

 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
∗) −

𝜕ℒ

𝜕𝑞𝑖
∗ = 𝑄𝑖 + ∑ 𝜆𝑗𝑓𝑖𝑗

𝑁𝑣𝑎𝑟−𝑁0
𝑗=1    (𝑖 = 1, . . , 𝑁)    (8.19) 
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where 𝑄𝑖 are the generalized forces, 𝑁𝑣𝑎𝑟 is the number of variables that describe 

the system, 𝑁0 is the number of degrees of freedom, 𝜆𝑗 are the Lagrange multipliers and 

 𝑓𝑖𝑗 are the multiplier factors for the constraint equation.  

Nonslip conditions are defined as non-holonomic restrictions, being expressed by 

the following equation.  

  

∑ 𝑓𝑖𝑗𝛿𝑞𝑖
∗𝑁

𝑗=1 = 0   (𝑖 = 1, . . , 𝑁 − 𝑁0)      (8.20) 

 

The multiplier factors for the Lagrange equation are obtained by comparing 

Equation (8.20) with each one of the four restrictions (Equations 8.12, 8.13, 8.16, 8.18), 

and they are expressed in Table 8-1. 

 

Table 8-1: Multiplier factors for the constraint equations associated with each Lagrange 

multiplier. 

𝑓𝑖𝑗 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

𝑖 = 1 cos(Φ) cos(Φ) 0 sin(Φ) 

𝑖 = 2 sin(Φ) sin(Φ) 0 −cos(Φ) 

𝑖 = 3 
𝐷 sin(θ)

− 𝑑 cos(𝜃) 

𝑑 cos(𝜃)

− 𝐷 sin(θ) 
0 0 

𝑖 = 4 0 0 
𝑑 cos(𝜃)

− 𝐷 sin(θ) 
0 

𝑖 = 5 0 0 cos(𝜃)
2⁄  0 

𝑖 = 6 0 0 −cos(𝜃)
2⁄  0 

𝑖 = 7 −𝑅𝐴 0 0 0 

𝑖 = 8 0 −𝑅𝐵 0 0 

 

The Lagrange method requires the explicit definition of system energy (Lanczos, 

1966). The kinetic energy can be divided into translational, 𝐸𝑘
𝑇, and rotational 𝐸𝑘

𝑅 

energies, presented in the sequence,  
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𝐸𝑘
𝑇 =

𝑚𝑡

2
{�̇�2 + �̇�2 + �̇�2 + [Φ̇2 sin2(𝜃) + �̇�2]𝑅2 − 2Φ̇𝑅 sin(𝜃) [�̇� cos(Φ) +

�̇� sin(Φ)] + 2[�̇�𝑅 cos(𝜃) + �̇� sin(𝜃)][�̇� cos(Φ) − �̇� sin(Φ)]} + [
(𝑚𝑡−𝑚𝐺)

2
𝑑2 +

𝑀(𝑓𝐴
2 + 𝑓𝐵

2)] [Φ̇2 cos2(𝜃) + �̇�2] + 𝑀(𝑓�̇�
2 + 𝑓�̇�

2)      (8.21) 

 

𝐸𝑘
𝑅 =

�̇�2

2
(𝐼𝐴1 + 𝐼𝐵1 + 𝐽1) +

Φ̇2

2
[(𝐼𝐴1 + 𝐼𝐵1 + 𝐽3) cos

2(𝜃) + (𝐼𝐴2 + 𝐼𝐵2 +

𝐽2) cos
2(𝜃)] − Φ̇ sin(𝜃) (

�̇�𝐴𝐼𝐴2

2
+
�̇�𝐵𝐼𝐵2

2
)       (8.22) 

 

where 𝑚𝐺 is the mass of the chassis, 𝑀 is the mass of each acrylic plate and 𝑚𝑡 

is the total mass of the robot, including chassis and wheels; 𝐼1
𝑖 , 𝐼2

𝑖  and 𝐼3
𝑖  are the principal 

inertia moments of the origami wheel (𝑖 = 𝐴 or 𝐵) related to the axis 𝑥3
𝑖 , 𝑦3

𝑖  and 𝑧3
𝑖 , 

correspondingly; and 𝐽1, 𝐽2 and 𝐽3 are the principal inertia moments of the chassis related 

to the axis 𝑥2, 𝑦2 and 𝑧2, correspondingly. 

The potential energy of the system is a function of the actuators potential energy 

(SMAs and elastic passive spring) and the gravitational energy, being expressed as,  

 

𝐸𝑃 = 𝐸𝑆𝑀𝐴𝐴 + 𝐸𝑆𝑀𝐴𝐵 + 𝐸𝐸𝐴 + 𝐸𝐸𝐵 +𝑚𝑡𝑔𝑅 cos(𝜃)    (8.23) 

 

where the potential energy of each shape memory alloy spring (𝐸𝑆𝑀𝐴) and the elastic 

passive spring (𝐸𝐸) depends on the constitutive model chosen to describe their behavior, 

and g is the gravitational constant. Thus, ℒ = 𝐸𝑘
𝑇 + 𝐸𝑘

𝑅 − 𝐸𝑃. 

The SMA has its behavior described by the polynomial constitutive model 

presented at subsection A.2, and the elastic passive spring has its behavior described by 

the elastic model presented at section A.4. 

By employing the Lagrange equation (8.19), considering the constraints expressed 

in Table 8-1, and the non-conservative forces acting on the system, it is possible to obtain 

the following equations. Note that external forces applied to the wheels are represented 

by 𝐹𝐴(𝑡) and 𝐹𝐵(𝑡), 𝜉 is the damping coefficient that represents the general dissipation of 

the systems, 𝜉𝑤 is the viscous damping coefficient from the wheel rotation on the massless 

axes and 𝜏𝐴 and 𝜏𝐵 are the torques acting on each wheel. 
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𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�1
∗) −

𝜕ℒ

𝜕𝑞1
∗ = 𝜆1 cos(Φ) + 𝜆2 cos(Φ) + 𝜆4 sin(Φ)

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�2
∗) −

𝜕ℒ

𝜕𝑞2
∗ = 𝜆1 sin(Φ) + 𝜆2 sin(Φ) − 𝜆4 cos(Φ)

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�3
∗) −

𝜕ℒ

𝜕𝑞3
∗ = (𝜆1 − 𝜆2)[𝐷 sin(𝜃) − 𝑑 cos(𝜃)]

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�4
∗) −

𝜕ℒ

𝜕𝑞4
∗ = −𝜆3[𝐷 sin(𝜃) − 𝑑 cos(𝜃)]

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�5
∗) −

𝜕ℒ

𝜕𝑞5
∗ = 𝐹𝐴(𝑡) − 𝜉�̇�𝐴 + 𝜆3

cos(𝜃)
2⁄

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�6
∗) −

𝜕ℒ

𝜕𝑞6
∗ = 𝐹𝐵(𝑡) − 𝜉�̇�𝐵 − 𝜆3

cos(𝜃)
2⁄

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�7
∗) −

𝜕ℒ

𝜕𝑞7
∗ = 𝜏𝐴 − 𝜉𝑤�̇�𝐴 − 𝑅𝐴𝜆1

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�8
∗) −

𝜕ℒ

𝜕𝑞8
∗ = 𝜏𝐵 − 𝜉𝑤�̇�𝐵 − 𝑅𝐵𝜆2

   (8.24) 

 

Eliminating the Lagrange multipliers of the set of equations (8.24), four equations 

of motion describe the origami robot movement 

 

(
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�1
∗) −

𝜕ℒ

𝜕𝑞1
∗) cos(Φ) + (

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�2
∗) −

𝜕ℒ

𝜕𝑞2
∗) sin(Φ) =

𝜏𝐴−𝜉𝑤�̇�𝐴−(
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�7
∗)−

𝜕ℒ

𝜕𝑞7
∗)

𝑅𝐴
+

𝜏𝐵−𝜉𝑤�̇�𝐵−(
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�8
∗)−

𝜕ℒ

𝜕𝑞8
∗)

𝑅𝐵
                (8.25a) 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�3
∗) −

𝜕ℒ

𝜕𝑞3
∗ = (

𝜏𝐴−𝜉𝑤�̇�𝐴−(
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�7
∗)−

𝜕ℒ

𝜕𝑞7
∗)

𝑅𝐴
−
𝜏𝐵−𝜉𝑤�̇�𝐵−(

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�8
∗)−

𝜕ℒ

𝜕𝑞8
∗)

𝑅𝐵
) [𝐷 sin(𝜃) −

𝑑 cos(𝜃)]                 (8.25b) 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�5
∗) −

𝜕ℒ

𝜕𝑞5
∗ = 𝐹𝐴(𝑡) − 𝜉�̇�𝐴 −

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�4
∗)−

𝜕ℒ

𝜕𝑞4
∗

𝐷 sin(𝜃)−𝑑 cos(𝜃)

cos(𝜃)
2⁄           (8.25c) 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�6
∗) −

𝜕ℒ

𝜕𝑞6
∗ = 𝐹𝐵(𝑡) − 𝜉�̇�𝐵 +

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�4
∗)−

𝜕ℒ

𝜕𝑞4
∗

𝐷 sin(𝜃)−𝑑 cos(𝜃)

cos(𝜃)
2⁄           (8.25d) 

 

Equations of motion (8.25a) to (8.25d) can be rewritten in a matrix form as 

follows, 

 

𝑴(𝒒)�̈� + 𝑪(�̇�, 𝒒)�̇� + 𝑫(𝒒)�̇� + 𝒈(𝒒) = 𝒇𝑒𝑥𝑡    (8.26) 

 

where  𝒒 = [𝑥,Φ, 𝑅𝐴, 𝑅𝐵 ]
𝑇 is the independent generalized coordinate vector, 

𝑴(𝒒) is the inertia matrix, 𝑪(�̇�, 𝒒) is the matrix containing the higher-order terms on �̇�, 
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𝑫(𝒒) is the damping matrix, 𝒈(𝒒) is the stiffness and gravitational vector and 𝒇𝑒𝑥𝑡 is the 

vector with the external forces. The inertia matrix is composed by terms that evolve on 

time with the form. 

 

𝑴(𝒒) = [

𝑚11

𝑚21

0
0

𝑚12

𝑚22

0
0

0
0
𝑚33

𝑚34

0
0
𝑚34

𝑚44

]       (8.27) 

 

with determinant det(𝑴(𝒒)) = (𝑚11𝑚22 −𝑚12𝑚21)(𝑚33𝑚44 −𝑚34
2 ).  

 

Since its determinant is always non-zero, it is possible to invert the inertia matrix, 

resulting in the following equation. 

 

�̈� = 𝑴−𝟏(𝒒)[𝒇𝑒𝑥𝑡 − 𝑪(�̇�, 𝒒)�̇� − 𝑫(𝒒)�̇� − 𝒈(𝒒)]     (8.28) 

 

This equation of motion is solved using a fourth order Runge-Kutta method with 

fixed steps using the equation in its canonical form. 

 

�̇�𝑖 = 𝑧𝑖+1
�̇�𝑖+1 = 𝑴𝑖𝑝

−1[𝐹𝑝 − [𝑪 + 𝑫]𝑝𝑗𝑧2𝑗+1 − 𝐺𝑝]
         ,

𝑖 = 0,2,4,6
𝑗 = 0,1,2,3

     (8.29) 

 

The terms of inertia presented in (8.27) are functions of the geometry of the 

constituent elements of the system, and some simplifications are considered. The 

moments of inertia of origami wheels are a function of origami and acrylic plates. The 

acrylic plates are regular octagons, by construction, making the rotation inertia in the 𝑧3 

and 𝑥3 directions equal. Thus, for an apothem octagon 𝑙𝑝, we have 𝐼1 = 𝐼3 =

4

3
(4√2 − 5)𝑙𝑝

4 and 𝐼2 = 2𝐼1. The inertia of the origami is calculated as eight masses, 

distant from 𝑅𝑖 from the center of the wheel, with 𝑖 =  𝐴, 𝐵. The body of the car is 

considered to be a parallelepiped in width, length and thickness l, c and e, respectively. 

Thus, 𝐽1 =
𝑚𝐺

12
(𝑐2 + 𝑙2), 𝐽2 =

𝑚𝐺

12
(𝑙2 + 𝑒2) and 𝐽3 =

𝑚𝐺

12
(𝑐2 + 𝑒2). 
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8.3. Dynamical analysis 
 

This section presents the study of the dynamics of the car with origami wheels 

and the behavior of the system is evaluated for usual operating conditions, regarding the 

soil conditions (flat or irregular) and temperature (without and with disturbances). The 

purpose of the analysis is to verify the influence of dynamics on the car's behavior, 

especially on the car's trajectory. 

 

8.3.1. Different driven cases 

 

The movement of the robot is driven by the motors attached to each one of the 

wheels, described by a torque 𝜏𝑖 (𝑖 = 𝐴, 𝐵). Alternatively, the motion can be driven by 

the robot linear velocity, instead of prescribing the torques. The two driving possibilities 

are represented in Figure 8-3. 

 

 

Figure 8-3: Driven situations of the robot: (a) driven torques at each wheel; (b) robot 

linear velocity. 

 

Based on that, consider a situation where the torques are prescribed. The 

resistance to rotation is assumed to be the same for both wheels, being represented by 

𝜉𝑤�̇�𝑖. In this regard, the torque driven motion of the robot has the following velocity, 

 

𝑣𝐺 =
𝑣𝐴+𝑣𝐵

2
=

𝜏𝐴𝑅𝐴

2𝜉𝑤
+
𝜏𝐵𝑅𝐵

2𝜉𝑤
        (8.30) 
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Alternatively, by considering a motion driven by the robot linear velocity, since 

the wheels radius change, the linear velocity is a function of the angular velocity of the 

wheel and the radius rate variation, given by  

 

𝑣𝑖 = �̇�𝑖𝑅𝑖 + 𝜙𝑖�̇�𝑖 (𝑖 = 𝐴 or 𝐵)       (8.31) 

 

By considering the dynamic equilibrium of a single wheel under rotation, the 

torques 𝜏𝐴 and 𝜏𝐵 are obtained as follows: 𝜏𝑖 − 𝜉𝑤�̇�𝑖 = 𝐼𝑖�̈�𝑖 (𝑖 = 𝐴 or 𝐵). By calculating 

�̇�𝑖 and �̈�𝑖 from kinematics argues, the following equation is obtained, 

 

𝜏𝑖 = −
𝐼𝑖

𝑅𝑖
𝜙𝑖�̈�𝑖 − 2

𝐼𝑖

𝑅𝑖
�̇�𝑖�̇�𝑖 −

𝜙𝑖𝜉𝑤

𝑅𝑖
�̇�𝑖 + 𝜉𝑤

𝑣𝐺

𝑅𝑖
  (𝑖 = 𝐴 or 𝐵)   (8.32) 

 

Figure 8-4 presents a comparison between the velocity driven and torque driven 

cases, considering the temperature cycles presented in Figure 8-4-a. Figure 8-4-b presents 

both paths followed by the origami robot, showing dramatic differences. During the 

heating/cooling process, each wheel individually reduces/increases its radius, promoting 

a change on the origami robot velocity. Note that the velocity driven case is associated 

with torques that change their values during the heating/cooling process. The torque of 

the wheel under the temperature variation increases its value to compensate the radius 

reduction, keeping the velocity constant at 2 m/s. Once the SMA is cooled down and the 

initial shape is restored, the torque goes back to the initial value of 0.0141 Nm, as can be 

seen at Figure 8-4-c. On the other hand, for the torque driven case, a reduction on the 

wheel radius results on a reduction of the wheel velocity to compensate it and keep the 

torque constant (Figure 8-4-d). 
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Figure 8-4: Origami wheel robot movement for different driven conditions. (a) Thermal 

load; (b) Path; (c) velocity driven motion: time evolution of the velocities of the chassis 

and wheels and time evolution of the torques; (d) torque driven motion: time evolution 

of the linear velocities of the chassis and wheels and time evolution of the torques. 

 

From now on, all simulations are performed considering the velocity driven case 

with |𝒗𝐺| = 2 m/s. 

 

8.3.2. Free vibration system – definition of a 

preferred path 

 

The free vibration analysis aims to study the route taken by the car after applying 

a thermal load to the SMA actuators. Initially consider that the origami robot moves with 

a known initial speed of |𝒗𝐺| = 2 m/s, with the wheels half-opened (𝑢0 = 0.02 𝑚) at 

low temperature (𝑇 =  288 𝐾).  

(a) (b) 

(c) (d) 
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Figure 8-5: Representation for an arbitrary desired path of the origami wheel robot. (a) 

Thermal load applied to each wheel individually, promoting a turn counterclockwise 

and then clockwise; (b) desired arbitrary path, starting with a straight line and ending on 

a straight line, shifted vertically from the original one; (c) zoom on the region I pointed 

at (b), where the car follows a straight line; (d) zoom on the region II, where the car 

turns left (counterclockwise turn from wheel B to wheel A). 

 

Figure 8-5 shows the behavior of the origami car when subjected to a history of 

thermal loading considering a viscous dissipation of 5 Ns/m. The car's trajectory is 

controlled by heating the SMA actuators on each wheel. Figure 8-5a presents the thermal 

cycles applied to the wheels and Figure 8-5b shows the path followed by the origami 

robot. The origami robot starts moving forward, in a straight path (excerpt I in Figure 

8-5b, zoom at Figure 8-5c). A heating/cooling cycle is then applied to the wheel A. During 

the heating process, the SMA recovers its residual displacement, reducing the wheel 

radius, promoting a path change of the robot to the left (counterclockwise rotation – 

excerpt II in Figure 8-5b, zoom in Figure 8-5d). When it is cooled, the elastic spring 
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induces a displacement like the initial one, recovering the original origami shape. Since 

both radii are the same, the car returns to a straight path (excerpt III). The same process 

is then applied to the wheel B, turning the origami car to the right (clockwise rotation – 

excerpt IV), and putting it back to a straight path (excerpt V) on a subsequent cooling 

process. Note that both heating/cooling cycles have the same rate, and the phase 

transformation martensite-austenite is completed during the heating process and the 

reverse austenite-martensite is completed during the cooling process, which makes the 

final excerpt (V) and the first one (I) parallel to each other. This route will be defined as 

a preferred or desired route, and the subsequent analysis assess disturbances in this 

trajectory promoted by different thermal loading cycles and by mechanical efforts. 

Different thermal loads are investigated, considering that the origami wheel robot 

path is described by the projection of the G point (path followed by the mass center of the 

robot). Basically, four cases are treated: a desired reference path, Case I (Figure 8-6a); 

both wheels are heated in the same way inducing a partial phase transformation, Case II 

(Figure 8-6b); heating induce incomplete phase transformation on wheel A and complete 

on wheel B, Case III (Figure 8-6c); and heating induce the opposite case of the previous 

one, complete phase transformation on wheel A and incomplete on wheel B, Case IV 

(Figure 8-6d).  

When the thermal cycle is applied symmetrically, with the same rate and limits 

on both wheels, the origami robot follows a similar path (final straight line is parallel to 

the excerpt V in Figure 8-5b), despite of the path curvature, returning to the initial 

orientation (X axis). The partial phase transformation promotes a smaller radius curvature 

that makes the origami robot to follow a straight path either towards south-east (Case III) 

or towards north-east (Case IV) with the same inclination related to X axis. After the 

heating cycle is finished, a plateau of constant temperature is reached where T>TA. Under 

this condition, it is possible to find a linear relation between the length of the plateau (time 

that the high temperature is kept constant) and the path curvature described by origami 

robot. 
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Figure 8-6: Thermal cycles (a) to (d) and path (e) described by the projection of G point 

on the fixed frame (𝑋, 𝑌, 𝑍). 
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8.3.3. Forced vibration system – origami-soil 

interaction and temperature variation 

 

This sub-section discusses the origami robot subjected to forced vibrations applied 

to the origami wheels, simulating soil disturbances. This forcing causes changes to the 

wheels’ radii, as seen in Section 7.3. The radius change is reflected in changes in the 

robot's trajectory since the difference in wheel radius promotes rotations 𝜃 and Φ. If 

radius 𝑅𝐴 is smaller than radius 𝑅𝐵, there is a yaw motion to the left (counterclockwise). 

On the other hand, if 𝑅𝐵 < 𝑅𝐴, there is a yaw motion to the right (clockwise). Initially, 

the change in the origami robot's trajectory is evaluated considering that it is only 

subjected to mechanical loading, at constant temperature, but with the wheels placed on 

different soils. 

The origami-soil interaction is a difficult problem to be described. The essence of 

the interaction is the nonlinearity in contact mechanics, where the contact reaction and 

contact surface can only be specified after contact (Nishiyama et al., 2016). Usually, the 

wheel-soil interaction takes into account the contact area between the wheel and the soil, 

the wheel flexibility, soil malleability and wheel sinkage (Chen et al., 2020). Flexible 

wheels, however, require a modified study of the pressure-sinkage models, once that the 

wheel flexibility might lead to larger sinkage areas when comparing a rigid and a flexible 

wheel with same radius (Favaedi et al., 2011; Nishiyama et al., 2016; Sharma et al., 

2018). A simplified description of origami wheel-soil interaction can be represented by 

an external mechanical stimulus shaped as an external force. In this regard, soil interaction 

can be described by different harmonic excitations, representing the main excitation and 

the soil roughness, for instance. 

Dissipative aspects are represented by the general term presented in Chapter 7 . 

This approach allows one to exploit deviations of the robot desired path. Hence, for the 

sake of simplicity, it is adopted an external stimulus represented by two terms: 𝐹(𝑡) =

𝐹1(𝑡) + 𝐹2(𝑡), where 𝐹1(𝑡) = 𝛿1 sin(𝜔1𝑡) and 𝐹2(𝑡) = 𝛿2sin (𝜔2𝑡). The term 

𝛿1 sin(𝜔1𝑡) represents different forms of the soil (sinusoid, for instance – Figure 8-7a). 

On the other hand, the second term, 𝛿2 sin(𝜔2𝑡), represents a perturbation over the 

original soil (Figure 8-7b). 
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Figure 8-7: Representation of the external mechanical excitation shaped as a 

force 𝐹(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡), where the contribution of each 𝐹𝑖(𝑡) is highlighted on the 

right, being (a) for 𝐹1(𝑡) and (b) for 𝐹2(𝑡). 

 

Nonlinear characteristics of the origami wheel robot can provide complex 

dynamical behavior, and small perturbations can either lead the system to a chaotic 

behavior or dramatically change its response. In order to explore the influence of these 

perturbations, a soil interaction is considered and represented by an external mechanical 

stimulus (external force). Simulations are performed considering 𝛿1 = 10 N, 𝜔1 = 200 

rad/s and 𝜔2 = 300 rad/s. The value of the parameter 𝛿2 is chosen to represent different 

perturbations, changed on each simulation. 

Figure 8-8 presents an analysis of the influence of the perturbation on the origami 

wheel robot path in four cases, evaluating deviations from the desired path previously 

defined with a constant velocity, 𝐹(𝑡) = 0 and the thermal cycle presented in Figure 8-5a. 

 

𝐹1(𝑡) 

𝐹2(𝑡) 

(a) 

(b) 
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Figure 8-8: Path followed by the origami-wheel robot when passing through different 

soils, represented by hatched regions and described by an external stimulus. A zoom 

from the first dashed region is also presented. 

 

The hatched regions on the domain represent perturbation zones related to 

different soils that excite the wheel with a force 𝐹(𝑡). Four situations are treated 

considering different levels of perturbation: 𝛿2 = 0 (force is a pure sine, without 

perturbation), 𝛿2 = 0.5N, 𝛿2 = 1 N and 𝛿2 = 1.5 N. For all cases, the origami-wheel 

robot passes through the dashed region at least once, promoting a deviation of the original 

path. Depending on the angle that the robot entries the dashed region, it can have either 

one or both wheels over the perturbed soil. Figure 8-8 also shows a zoom that illustrates 
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an example situation for the case 𝛿2 = 1 N. Note that initially, only the wheel A is 

subjected to the external force and afterward, both wheels are over the dashed region, 

being subjected to the same perturbation. When 𝛿2 = 0 N, after the cooling process of 

wheel A, the wheel A stabilizes at an opened configuration, while wheel B stabilizes at a 

closed configuration (see Figure 6-16), which promotes a curved path. A similar behavior 

occurs for the case 𝛿2 = 1.5 N, although the origami robot passes through a second 

dashed region, changing its initial deviation. 

 

 

Figure 8-9: Binary representation of the wheels related to the dashed region in Figure 

8-8. 

 

Figure 8-9 presents a better idea of the external stimulus considering a binary 

representation of the wheel with respect to the region. This binary representation 

a) b) 

c) d) 
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evaluates only if the wheel is contained within a dashed region or not. For all four cases 

from Figure 8-8, represented respectively in Figure 8-9, the wheel A is represented by a 

blue line, while wheel B is represented by a red line. If the wheel is outside the region, it 

is given a value 1. Otherwise, if the wheel touches the dashed region such that an external 

force acts on it, it is given a value 0. Note that for all four cases, both wheels reach the 

dashed region. For the cases 𝛿2 = 0 N, shown in in Figure 8-9a, and 𝛿2 = 0.5 N, shown 

in Figure 8-9b, wheel A is the first to reach the dashed region and also the first to leave 

it. Besides, for these two cases, only one dashed region is reached. For the case 𝛿2 = 1 

N, shown in Figure 8-9c, two dashed regions are reached by the wheels. On the first 

region, wheel A is the first to enter and the first to leave. On the second region, however, 

wheel A is subjected to an external force longer than wheel B, once that wheel A is the 

first to enter and the last to leave that region. This second region is highlighted. Finally, 

for the case 𝛿2 = 1.5 N, shown in Figure 8-9d, two regions interfere with the car motion. 

The first one acts similarly to the other three cases, where wheel A is the first to enter and 

the first to leave the dashed region. However, on the second region, wheel B is subjected 

to an external force longer than wheel A, once that it stays longer on that dashed region. 

The external stimulus acting on the wheels due to the soil interactions promotes 

oscillations on the wheels, as can be observed in Figure 8-10, that shows time evolution 

of radius RA and RB. The dashed lines indicate regions where the wheel is passing through 

the perturbation region (hatched regions in Figure 8-8). Note that the largest deviation 

related to the desired path occurred on cases where the wheels stabilize at different radius 

after the first cooling process, indicating that a correction on the path can be made by 

controlling the reverse phase transformation, austenite-martensite. 
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Figure 8-10: Time evolution of the wheels’ radius for the cases (a) 𝛿2 = 0 N; (b) 𝛿2 =

0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N. 

 

The dynamical behavior of the origami wheel A for each one of the cases is 

represented in Figure 8-11, where the phase portraits and Poincaré sections are taken 

considering the first region marked in Figure 8-10 (between 12 and 18 seconds). 

Similarly, the dynamical behavior for the wheel B is presented in Figure 8-12. Note that 

both wheels have the same qualitative behavior for each case. For 𝛿2 = 0.5 N, the system 

has a period-2 response, while the other three cases have a chaotic response. These 

oscillations can be critical for the origami structure since the creased regions are being 

continuously bended/released (Francis et al., 2013). 
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Figure 8-11: Phase portrait and Poincaré section of wheel A for 𝑚𝐺=0.1 kg subjected to 

𝐹(𝑡) for the cases (a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N. 

 

 

Figure 8-12: Phase portrait and Poincare section of wheel B for 𝑚𝐺=0.1 kg subjected to 

F(t) for the cases (a) δ2=0 N; (b) δ2=0.5 N; (c) δ2=1 N and (d) δ2=1.5 N. 
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It is clear that the origami-wheel robot has a strong sensitivity to parameter 

change. Based on that, its design needs to be properly developed in order to avoid 

undesirable behaviors. In this regard, previous simulations in Figure 8-8 are revisited 

considering a different inertia, 𝑚𝐺 = 0.2 kg. Under this new condition, the small 

perturbation case (𝛿2 = 0.5 N) presents a deviation on path that is less aggressive than 

the one presented by the previous case since the change altered the robot stabilization 

capacity, stabilizing the wheels after the heating/cooling process (Figure 8-13). Besides, 

the increase on the inertia reduces the sensitivity of the system to external stimulus.  

 

 

Figure 8-13: Path followed by the origami-wheel robot when passing through different 

soils considering 𝑚𝐺=0.2 kg. 
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Figure 8-14: Time evolution of the wheels’ radius considering 𝑚𝐺=0.2 kg for the cases: 

(a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N. 

 

For all cases, both wheels stabilize at the same configuration after the first 

heating/cooling cycle (Figure 8-12a to d), allowing the robot to keep following a straight 

path. The higher perturbation cases (𝛿2 = 1 N and 𝛿2 = 1.5 N) promote a deviation to 

the right (clockwise rotation) during the second heating/cooling process, once that wheel 

B stays in an intermediate configuration before stabilizing at an opened one, resulting in 

a yaw motion clockwise. By changing the inertia, the dynamic response changes from 

chaotic to period-1 response for the case 𝛿2 = 0 N and to a period-2 for the other cases. 

Phase portraits and Poincaré sections for each one of these cases are represented by Figure 

8-13 for wheel A and Figure 8-14 for wheel B. 
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Figure 8-15: Phase portrait and Poincare section of wheel A considering 𝑚𝐺=0.2 kg for 

the cases: (a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N. 
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Figure 8-16: Phase portrait and Poincare section of wheel B considering 𝑚𝐺=0.2 kg for 

the cases: (a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N. 

 

From now on, all simulations are carried out considering that 𝑚𝐺=0.1 kg. Chaotic 

systems present a high sensitivity to initial conditions and, as a result, responses starting 

at two close initial conditions might develop divergent trajectories. By considering the 

origami wheel robot, this sensitivity can be represented by small changes at position 

where the soil interaction starts, leading to drastic changes on the system behavior, 

influencing the path described by the origami robot. Previously, the soil perturbations are 

evaluated through the robot path that crosses different soils and, therefore, changes the 

external stimulus that causes the dynamic behavior of the system. Now, a different 

situation is of concern, considering that the perturbation is kept constant, a case where the 

system has a periodic response (𝛿2 = 0.5 N), and the phase of the external excitation 

changes. Under this assumption, consider a situation where both wheels are excited by 

the same external force: 𝐹(𝑡) = 10 sin(200𝑡 + 𝜌) + 0.5 sin(300𝑡 + 𝜌), where 𝜌 

represents a phase. In order to evaluate the influence of this phase 𝜌, a spectrum diagram 
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is generated monitoring a cut along one period of the external force (Figure 8-17-a), 

starting from the case 𝜌 = 0 and increasing the phase until 𝜌 = 2𝜋. Note that when 𝜌 =

0 the system presents a period-2 response (Figure 8-11-b). It should be noted that the 

increase of the phase causes a change on the system response to a chaotic behavior (Figure 

8-17-b). In both conditions no thermal cycle is applied, meaning that the origami robot 

must follow a straight line. Figure 8-18 shows robot paths by considering two different 

phases: 𝜌 ≅ 0.765 rad, associated with a periodic behavior of the wheel; and 𝜌 ≅

0.558 rad, associated with a chaotic behavior. For the periodic response, the robot 

follows a linear path, while it presents a large deviation on the path for the chaotic case. 

The upper diagrams in Figure 8-17-a are representations of the instant that the wheel 

enters the perturbed soil, which impacts on the first interaction between the wheels and 

the soil. On the upper-left diagram, a representation for the chaotic motion, the wheel 

enters the soil on an instant such that the interaction is similar to an excitation on the 

wheel starting near the maximum achievable value for the 𝐹(𝑡). On the upper-right 

diagram - a representation for the periodic motion - the wheel enters the soil on an instant 

such that the interaction between the rough soil and the wheel is similar to an excitation 

on the wheel starting at the maximum achievable value for 𝐹(𝑡), i.e., the peak. This first 

interaction is important to define the general behavior of the car while rolling over the 

rough soil. 
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Figure 8-17: Dynamic response of the system when subjected to the force 𝐹(𝑡). 

(a) Force on time with a selection of one period (T) with the phase going from 0 to 2π; 

(b) Spectrum diagram for RA evaluated on ρ. 
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Figure 8-18: Path described by the G point for the chaotic and the periodic 

responses. 

 

Origami wheel robot has its paths defined by the dynamical behavior of the 

wheels. Therefore, it is essential to understand their global dynamical behavior. An 

interesting phenomenon related to the origami dynamics is the synchronization of the 

wheel behaviors. This means that there is a trend that both wheels have the same 

qualitative response in steady state. According to the previous simulations, it is concluded 

that a perturbation of 𝛿2 = 0.5 N is associated with a periodic behavior of the wheel while 

a perturbation of 𝛿2 = 1.5 is related to a chaotic behavior. Now, a situation where each 

wheel is subjected to a different perturbation is of concern. Under this condition, it is 

expected that one wheel presents a periodic response, while the other presents a chaotic 

response. The coupling between the wheels promotes a synchronization of their 

dynamical behavior, leading to similar responses of both wheels.  
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Figure 8-19: Synchronization between wheels A and B. (a) Time evolution of 

wheels’ radius with a zoom at the permanent regime; (b) phase portrait of wheels A and 

B at the synchronized configuration; (c) path described by the origami-wheel robot; (d) 

radius manifold showing the synchronization. 
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Therefore, consider a situation where 𝐹𝐴(𝑡) = 10 sin(200𝑡) + 0.5 sin(300𝑡) and 

𝐹𝐵(𝑡) = 10 sin(200𝑡) + 1.5 sin(300𝑡). Thermal effects are not considered which means 

that a constant temperature is applied to both wheels (T=288 K). Figure 8-19 presents 

results of this simulation showing that the system presents a transient chaos during 

approximately 22 seconds and, afterwards, the wheels synchronize, presenting a period-

2 response (Figure 8-19-a). Through the zoom of the steady state, it is noticeable that the 

system presents a phase synchronization, which corresponds to a locking of phases of 

chaotic oscillators (Rosemblum et al., 1996). Figure 8-19-b presents phase space of each 

wheel confirming the differences of both orbits. The path followed by the origami robot 

is shown at Figure 8-19-c, where the final configuration is highlighted at the dotted line, 

and, since both wheels stabilize at the same configuration (both closed), the origami-

wheel robot follows a straight line after the synchronization. Figure 8-19-d shows the 

radius space illustrating the transient response (in black) and the synchronization 

manifold 𝑅𝐴 = 𝑅𝐵 (in red). 

By considering a condition where 𝐹𝐴(𝑡) = 10 sin(200𝑡) + 1.0 sin(300𝑡) and 

𝐹𝐵(𝑡) = 10 sin(200𝑡) + 1.5 sin(300𝑡) with constant temperature to both wheels (T=288 

K), the system presents a chaotic steady state response (Figure 8-20). Figure 8-20-a shows 

the radii evolution; Figure 8-20-b presents phase space of each wheel confirming the 

chaotic-like response. The path followed by the origami robot is shown at Figure 8-20-c, 

illustrating the difference between this path with the previous one. Figure 8-20-d shows 

the radius space illustrating the chaotic behavior that tends to occupy all the space. 
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 Figure 8-20: Chaotic behavior of wheels A and B. (a) Time evolution of wheels’ 

radius with a zoom at the permanent regime; (b) phase portrait of wheels A and B at the 

synchronized configuration; (c) path described by the origami-wheel robot; (d) radius 

manifold. 
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9  Final Remarks and Future 

Works 
 

This work presents an analysis of the complex behavior of origami structures, with 

a focus on the waterbomb pattern and related tessellation. It starts with a kinematic 

formulation of the equivalent mechanism for the 6-creased waterbomb pattern, 

considering a unit cell. The three dimensional behavior is evaluated through a workspace 

analysis that provides an interesting approach for the evaluation of the origami 

configuration and movement during the opening/closing process. This approach allows 

the identification of necessary actuations and/or restrictions of the folding process to 

achieve a specific configuration or maintain a specific behavior. It is observed that a no-

penetration condition needs a restriction of the vertex movement from a spherical space 

to a spherical arc, conferring a plane-symmetric condition for the waterbomb 

configuration. Symmetries reduce the origami behavior complexity and consequently the 

necessary number of Degrees of Freedom (DoFs). 

Finite element analysis allows the evaluation of the rigid foldability hypothesis. It 

is verified that origamis can present folding process described by a purely kinematic 

formulation, since the panel deformation does not provide major changes to the origami 

configuration. In other words, the deviance observed in the inner angles, contained within 

1º, can be neglected for the general shape of the structure and actuation design. Using the 

rigid foldability hypothesis, reduced-order models are able to provide a proper description 

of the totally symmetric situation, resulting in a single degree of freedom description.  

The complex behavior of a waterbomb unit cell provides a rich variety of shapes 

and folding process for the waterbomb tessellation. It is verified that the tessellation 

presents hidden degrees of freedom and a complex snap-through behavior, which should 

be considered on the actuation design. As an example, a closed waterbomb tessellation 

named origami-wheel is investigated. It takes advantage of the natural strangulation effect 
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with an additional modification to avoid a negative Gaussian surface (strangulation index 

less than 1). 

The dynamical behavior of the origami-wheel actuated by SMAs is investigated, 

employing a reduced-order model based on geometric analysis and resulting in a one 

degree of freedom oscillator. A polynomial constitutive model is employed to describe 

the thermomechanical behavior of the SMA actuator. Different mechanical and thermal 

excitations associated with distinct operational conditions are investigated. It is verified 

the high complexity of such slender structure showing the degree of malleability and the 

great applicability potential of origami concepts and origami-like structures. The 

transition between the configurations assumed by the origami is carried out by SMA 

actuation, and the return to the original configuration is promoted by the linear passive 

elastic spring. The origami wheel has a rich dynamic behavior, with multiple periods and 

chaos, and some observations are worth of being highlighted: 

 

• The applied mechanical forcing represents the functioning of the structure under 

conditions of external stresses, simulating an uneven ground. It appears that this type of 

effort can promote the closing or opening of the origami, changing its shape. Note that 

chaotic behaviors are critical, since the structure enters an opening/ closing cycle that can 

lead to fatigue of the material, promoting even more complex behaviors not contemplated 

in this work, such as the flexing of the origami panels and asymmetry of efforts due to 

the edge break. 

• The bifurcation diagrams show that the change in the SMA temperature allows 

the modification of an origami behavior from chaotic to a periodical, desirable one, for 

the same mechanical effort. In addition, the level of soil irregularity dictates the 

complexity of the origami wheel behavior. 

• Another interesting result observed is the dynamic jump in the resonance curves. 

Typical of non-linear systems, this behavior can be problematic depending on the 

application of the structure. Considering that the origami-wheel is in an application that 

requires opening restriction, the increase in the frequency of external efforts, representing 

an increasing on soil roughness, can be critical since the contact between the origami-

wheel and the restriction contour can produce impacts or dry friction, which can again 

change the dynamics of the system, culminating even in chaotic behavior or in the flexing 

of the origami walls. 
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Finally, this work brings the dynamic analysis of a two-wheeled robot that uses 

deformable wheels. The origami folding process is driven by alloys with shape memory 

effect and the robot maneuverability is obtained through the radii change. The origami-

robot is interesting since it allows the route control with the use of few actuators. Due to 

strong nonlinearities involved, it is important a deep nonlinear dynamics analysis that 

allows a later trajectory control based on the observed effects. The following points can 

be highlighted: 

 

• The thermal cycle defines the recovery of residual deformation of SMAs, 

reflecting in the spokes of the origami-wheels. When observing from the point of view of 

the route, it appears that this cycle defines how open or closed the trajectory of the car 

will be in relation to a reference trajectory. In addition, the combination of thermal cycle 

and uneven ground promotes significant path deviations, requiring the use of a controller 

in these cases. 

• Note that uneven ground has a great influence on the trajectory followed by the 

car, being more prominent in cases where the wheels are on different soils, since the 

difference in radii promotes the car's camber (left or right curvature). In addition, even if 

the individual behavior of each wheel is of high periodicity, the car's trajectory only 

changes if there is a lag between the oscillations of the wheels, that is, if the spokes differ 

at some point. 

• The chaotic behavior is critical in the case of the isolated wheel, in which the 

focus is on the integrity of the folds, as well as in the analysis of the trajectory. It was 

observed that when both wheels are subjected to the same mechanical forcing and present 

chaotic behavior, the path followed by the car undergoes a large deviation, becoming 

irregular, being necessary in this case to control both wheels. 

 

The dynamic richness presented by origami reinforces the importance of these 

elements for the increase of engineering applications. Origami inspired elements have a 

high compaction and spend low energy to move between possible configurations, which 

makes their use with smart alloys feasible. 
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Chaotic behavior and shape change make the control analysis relevant in origami 

applications. In this sense, a continuation for this work is the study of chaos control, 

aiming to avoid undesirable chaotic dynamics for a controlled periodic response, with the 

objective of maintaining the determined preferential trajectory. A thermally controlled 

system is a possible way to control the large deformations presented in chaotic responses, 

as could be seen in the bifurcation diagrams presented. 

Nonlinear dynamics of asymmetric systems is another interesting investigation to 

be performed. Since high efforts can promote panel bending, non-rigid origami analysis 

is necessary to be evaluated. This certainly increase the system complexity and 

accelerates the origami wear. It is also worth mentioning the study of some conditions not 

covered in this work, such as dry friction in applications with restricted opening of the 

structure and the effect of origami thickness. 

Another interesting investigation is the closer look on the creases on the dynamic 

application. Since the oscillation induced by mechanical efforts and/or thermal 

fluctuation promotes a constant and repetitive folding/unfolding process of the creases, 

they are subjected to failure by fatigue, resulting in a crease breaking or softening. This 

change on the crease properties might be critical for the structure and its influence on the 

dynamic behavior should be considered.  
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APPENDIX 
The appendix brings the constitutive models applied in this work. It starts with a 

brief explanation about shape memory alloys, followed by thermomechanical aspects, 

general formulations and the formulation considered in this work. In the sequence, there 

is a brief explanation regarding the constitutive models used for the mechanical 

formulation. 

A.1. SMA Constitutive Models 
 

Shape memory alloys belong to a class of smart materials, as also piezoelectric, 

magnetorheological fluids, and electromagnetic materials. These alloys can recover up to 

8% of deformation through crystallographic phase transformations induced by thermal, 

mechanical, or magnetic fields, depending on the alloy. 

SMA properties vary according to the microstructure (Lei & Wu, 1991) and 

chemical compounds. That involves properties such as phase transformation temperatures 

(Funakubo, 1987). Among the different alloys, it is important to highlight (Proft & 

Duerig, 1990): Coper-Aluminum-Titanium (CuAlTi) and Coper-Zinc-Aluminum-

Manganese (CuZnAlMn). Besides, there is a more commercially popular alloy, Nickel-

Titanium (NiTi), that is used in this work.  

Phase transformations undertaken by these materials (between phases Austenite – 

A and Martensite – M) are solid non-diffusive processes, that happens at a high speed, 

which conceives them an essentially crystallographic feature (Christian, 1975; 

Wasilevski, 1975). The major characteristics of these transformations are a strong 

dependency on temperature, an independency on the loading rate and reversibility. 

 

A.1.1. Thermomechanical aspects of SMA 
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Twinned martensite (M) is a crystallographic phase stable at low temperatures 

that, under stress free state, has up to 24 variants (Funakubo, 1987), defined by the 

combination between of habit planes (total of 8) and orientation (total of 3). A mechanical 

load applied to the alloy starts the process of reorientation of the habit planes along the 

stress application direction, resulting on the single variant detwinned tractive martensite 

(M+), for traction load, and detwinned compressive martensite (M-), for compression load. 

Austenite phase (A) is stable on high temperatures in a stress-free state only, and it has a 

single variant. 

These crystallographic transformations can be induced by either temperature or 

stress, or a combined load, and the thermomechanical coupling propitiate phenomena like 

pseudo elasticity and shape memory (Figure A-1).  

The application of a thermal field on a stress-free state induces the thermoelastic 

phenomenon (Figure A-1a). A SMA at a high temperature (Austenitic crystallographic 

phase, 𝑇 > 𝐴𝐹) is cooled down and passes through a crystallographic phase 

transformation 𝐴 → 𝑀 (section AB). This process starts at 𝑇 = 𝑀𝑆 and ends at 𝑇 = 𝑀𝐹. 

For temperatures 𝑇 < 𝑀𝐹, twinned martensite is the stable phase. By heating up again the 

SMA, an inverse transformation is induced 𝑀 → 𝐴 (section CD). This second 

transformation starts at 𝑇 = 𝐴𝑆 and goes until 𝑇 = 𝐴𝐹. For temperatures 𝑇 > 𝐴𝐹, 

austenite is the stable phase. Note that this process promotes a thermal expansion on the 

material, associated to a deformation. The inverse transformation recovers this 

deformation. 

Pseudo elasticity and shape memory phenomena are related to the application of 

stress fields for constant temperatures. The first one, pseudo elasticity (Figure A-1b), 

happens for samples at 𝑇 > 𝐴𝐹 undergoing mechanical solicitations. The SMA under 

stress behave as a linear material until a critical tension (mark A) is achieved and the 

transformation 𝐴 → 𝑀+ takes place (section AB). After the completed transformation, 

the material behaves again as a linear one, where the crystallographic phase is 𝑀+. Note 

that 𝐴 and 𝑀+ have different crystallographic arrangements and, therefore, might have 

different mechanical properties. By unloading the SMA, it behaves as a linear material 

until a limit stress is achieved (mark C) and, once that for 𝑇 > 𝐴𝐹 austenite is the stable 

phase, the material undergoes an inverse transformation (section CD), and all deformation 

is recovered. 
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On the other hand, if the sample is at a temperature 𝐴𝑆 < 𝑇 < 𝐴𝐹, the total 

recovery will not be complete, resulting in a residual deformation. This deformation can 

only be recovered through the application of a stress-free thermal field. This behavior is 

also called partial pseudo elasticity (Figure A-1c), and is analogous to the shape memory 

effect, despite of the temperature, that is 𝑇 < 𝐴𝑆 for the shape memory effect (SME).  

For the SME, the stable crystallographic phase at a stress-free state is twinned 

martensite. The mechanical load for this case promotes only a reorientation of the habit 

planes, going from twinned martensite (M) to detwinned martensite (M+ or M-). The 

unloading process recovers part of the deformation, and a residual deformation associated 

to the habit planes reorientation can be noticed. This deformation can only be recovered 

through a thermal cycle for the sample at a stress-free state, once that M+ is stable for low 

temperatures (Figure A-2a). Additionally, the SMA can be built as a BIAS system, in 

opposition to a BIAS spring. In this configuration, the shape memory effect (SME) is 

described as shown in Figure A-2b. On a BIAS system, the mechanical load applied 

deforms the shape memory spring at the lower temperature. The SME works against the 

force from of the bias spring and, when the SMA spring is cooled down, the bias actuator 

promotes the reorientation process and therefore, the SMA spring changes between two 

configurations – low and high temperature. 

 

 

Figure A-1: SMA thermoelastic (a), pseudo elastic (b) and partial pseudo elastic, for 

𝐴𝑆 < 𝑇 < 𝐴𝐹, or shape memory effect, for 𝑇 < 𝐴𝑆 behavior. 
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Figure A-2: Typical Stress-Strain-Temperature curves for SMA springs: (a) shape 

memory effect (SME); (b) SME on a bias system.   

 

A.1.2. Overview of constitutive models  

 

The constitutive model of an alloy with SME depends on the approach chosen to 

describe the material’s behavior observed or expected. The microscopic approach 

considers metallurgic aspects of the alloys, such as phase nucleation, habit planes 

organization and the growing function of martensite crystals. Mesoscopic approach uses 

micromechanics to describe the alloy behavior on micro and meso scales. On the 

macroscopic approach, the alloy behavior is described according to phenomenological 

observations, micro-macro simplified thermomechanical analysis or even experimental 

fitting of parameters. 

The thermomechanical state of a material can be fully defined through its state 

variables, that are subdivided into internal and observable. If the phenomenon allows 

reversibility, it does not depend on internal variables (Eringen, 1967), once that they are 

associated to dissipative phenomena, such as plasticity and hysteresis, and depend on the 

material history (Lemaitre & Chaboche, 1990). 

Constitutive models based on plasticity theory assume that phase transformation 

and detwinning process are ruled by loading functions and flow rules like those from 

classic plasticity theory (Cisse et al., 2016).  Some of the authors that proposed plasticity-

based constitutive models are Souza et al. (1998), Auricchio & Reali (2007), Auricchio 

et al. (2009) and Arghavani et al. (2010b). Ashrafi et al. (2015a, b) proposed a 

(a) (b) 
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generalization of the work developed by Souza et al. (1998) for porous SMA, with 

validation through experimental data from Zhao et al. (2005). 

Constitutive models with internal constraints assume that the phase 

transformation kinetics is described by known mathematical function. The first model 

with this approach was proposed by Tanaka & Nagaki (1982), and assume, besides 

observable variables (such as elastic deformation, 𝜀𝐸𝐿, and temperature, 𝑇), an internal 

variable associated to martensite volumetric fraction, 𝛽). In view of the non-diffusive 

nature of martensitic transformations (Tanaka, 1985), the internal variable β is described 

by a temperature and stress instantaneous function. Different solutions for this function 

can be found in the literature (Liang & Rogers,1990; Brinson, 1993; Ivshin & Pence, 1994 

a; b; Boyd & Lagoudas, 1996; Hartl & Lagoudas, 2009; Hartl et al., 2010). Lagoudas et 

al. (2012) describes the smooth response of polycrystals of SMA through nonlinear 

hardening functions. 

On the case of elements with high structural rotations (Reese & Christ, 2008) and 

distortions (Ziolkowski, 2007), some models with formation in finite strain deformation 

(FSF) were developed to improve the precision of numerical simulations (Helm, 2007; 

Pan et al., 2007; Ziolkowski, 2007; Thamburaja, 2010; Stupkiewicz & Petryk, 2013). 

Models based on statistic physics are developed through local equilibrium 

considerations for monocrystalline SMAs (Bhattacharya & Lagoudas, 1997; Müller, 

2012; Fischlschweiger & Oberaigner, 2012). 

One of the simplest macroscopic models is a polynomial based formulation (Falk, 

1980; 1983) for the Helmholtz free energy. 

The model proposed by Paiva et al. (2006) is based on the one developed by 

Fremond (1987), with the addition of distinct austenite and martensite elastic modules, 

using the mixing rule through the austenite volumetric fraction, and the addition of a 

fourth phase related to the twinned martensite (M). This model is studied in other works 

(Savi et al. 2002; Baêta-Neves et al., 2003) and has an alternative tridimensional 

formulation (Oliveira et al., 2010, 2016, 2018). 

 

A.2. Polynomial constitutive model 
 

 The polynomial constitutive model is unidimensional and based on the Landau 

free energy, applied previously by Devonshire (1954), that defines a free Helmholtz 
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energy on the polynomial form to describe the behavior of ferroelectric elements. This 

approach is adopted due to similarity of SMA stress-strain curves to the polarization 

curves of ferroelectric. Besides, the martensitic transition if of first order (Falk, 1980). 

The energetic formulation of the unidimensional model is as follows: 

 

𝜌Ψ(𝜀, 𝑇) =
𝑐1

2
(𝑇 − 𝑇𝑀)𝜀

2 −
𝑐2

4
𝜀4 +

𝑐3

6
𝜀6    (A.1) 

 

Where ε is the SMA the deformation, T is the temperature, 𝑇𝑀 is the temperature 

below which martensite is the thermodynamically stable, 𝑇𝐴 is the temperature above 

which austenite is thermodynamically stable, and 𝑐1, 𝑐2 and 𝑐3 are fitting parameters of 

the model. 

The stress, 𝜎, is defined as follows: 

 

𝜎 = 𝜌
∂Ψ(𝜀,𝑇)

𝜕𝜀
= 𝑐1(𝑇 − 𝑇𝑀)𝜀 − 𝑐2𝜀

3 + 𝑐3𝜀
5    (A.2) 

 

Figure A-3 brings the general behavior described by this constitutive model, 

including the free energy and the relation stress-deformation for different temperatures.  

 

 

Figure A-3: Polynomial constitutive model describing SMA behavior for 𝑇 =

283 K (𝑇 < 𝑇𝑀), 𝑇 = 298 K (𝑇𝑀 < 𝑇 < 𝑇𝐴) and 𝑇 = 323 K (𝑇 > 𝑇𝐴). (a) Free 

energy; (b) Stress-strain relations 

 

Twinned martensite is not stable on this formulation, and there are only two stable 

phases for 𝑇 < 𝑇𝑀: detwinned tractive (M+) or compressive (M-) martensite. For 
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temperatures 𝑇 > 𝑇𝐴, there is one stable crystallographic phase associated to austenite 

(A). For intermediate temperatures 𝑇𝑀 < 𝑇 < 𝑇𝐴 there is one metastable phase associated 

to austenite (A). 

Based on this potential energy for an SMA sample, it is possible to define an 

analogous expression for an SMA spring, employed as actuator. Aguiar et al. (2010) 

showed that a similar expression 𝐸𝑆𝑀𝐴(𝑢, 𝑇), where 𝑢 is the displacement, can be 

obtained assuming a homogeneous phase transformation on the SMA wire. Therefore, 

constitutive coefficients are replaced for new parameters that depend on the SMA spring 

diameter, 𝐷𝑆, the number of spirals, 𝑁𝑆, and the diameter of the SMA wire, 𝑑𝑆. Based on 

that, three macroscopic phases are treated: austenite, A, stable at elevated temperatures, 

and two variants of the martensite, 𝑀+ and 𝑀−, induced by tension and compression, 

respectively. 

 

𝐸𝑆𝑀𝐴 = 𝐸𝑆𝑀𝐴(𝑢, 𝑡) =
𝑐1̅(𝑇−𝑇𝑀)𝑢

2

2
−
𝑐2̅𝑢

4

4
+
𝑐3̅𝑢

6

6
      (A.3) 

 

where 𝑇𝑀 is the temperature below which martensite is stable and 𝑐�̅� are defined 

as follows: 𝑐1̅ = 𝑐1 (
𝑑𝑆

𝜋𝐷𝑆
2𝑁𝑆

⁄ )
2

, 𝑐2̅ = 𝑐2 (
𝑑𝑆

𝜋𝐷𝑆
2𝑁𝑆

⁄ )
4

 and 𝑐3̅ = 𝑐3 (
𝑑𝑆

𝜋𝐷𝑆
2𝑁𝑆

⁄ )
6

, 

where 𝑐𝑖 (𝑖 = 1, 2, 3) are constitutive model parameters. Another important parameter is 

the temperature 𝑇𝐴 that defines the region where the energy curve has only one minimum, 

representing the temperature above which only austenitic phase is stable on a stress-free 

state. 
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A.3. Hyperelastic constitutive model 
 

A versatile and simple model to describe elastic materials is an hyperelastic 

formulation (Ogden, 1997), which nonlinear behavior allows to represent different 

materials. The strain energy density function of the hyperelastic model is defined as a 

function of the principal stretches 𝜆𝑗, as follows 

 

𝑊(𝑬) = �̂�(𝜆1, 𝜆2, 𝜆3) = ∑
𝜇𝑗

𝛼𝑗
(𝜆1
𝛼𝑗 + 𝜆2

𝛼𝑗 + 𝜆3
𝛼𝑗 − 3)

𝑁𝑚𝑎𝑡
𝑗=1     (A.4) 

 

where 𝛼𝑗, 𝜇𝑗 and 𝑁𝑚𝑎𝑡 denote the material constants. The parameter 𝑁𝑚𝑎𝑡 defines the 

nonlinearity order assumed to the system, i.e., the number of parameters to be determined. 

The constitutive parameters 𝜇𝑗 and 𝛼𝑗 have to be determined experimentally, but two 

associated conditions must always be taken into account: the first condition to be obeyed 

is that the constitutive equation has to reduce to Hooke law for small strains, i.e., it has to 

be linear. The second condition is related to existence of solutions in finite elasticity.  

 

∑ 𝜇𝑗𝛼𝑗 = 2𝜇
𝑁𝑚𝑎𝑡
𝑗=1

𝜇𝑗𝛼𝑗 > 0
         (A.5) 

 

where 𝜇 is the shear modulus. A stronger demand for this second condition to fulfill 

polyconvexity is that either 𝜇𝑗 > 0 and 𝛼𝑗 > 0 or 𝜇𝑗 < 0 and 𝛼𝑗 < 0. 

It is possible to write the energy density 𝑊(𝑬) as a function of the bar stretches 

instead of deformations by rewriting the Green-Lagrange strain tensor. 

 

𝑬 =
1

2
(𝑪 − 𝑰) =

1

2
(𝑼2 − 𝑰)        (A.6) 

 

where 𝑪 is the right Cauchy-Green tensor and 𝑪 = 𝑼2 (the right stretch tensor 𝑼 is 

symmetric by definition). By considering one-dimensional media, the Green-Lagrange 

strain is reduced to 𝐸𝑥, being possible to rewrite (A.6) as follows 
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𝐸𝑥 =
𝜆1
2−1

2
          (A.7) 

 

The one-dimensional form of the second Piola-Kirchhoff (P-K) tensor, 𝑆𝑥, is 

obtained from the energy density function 𝑊(𝑬). 

 

𝑊(𝐸𝑥) = ∑
𝜇𝑗

𝛼𝑗
[(√2𝐸𝑥 + 1)

𝛼𝑗
− 3]

𝑁𝑚𝑎𝑡
𝑗=1

𝑆𝑥 =
𝜕𝑊

𝜕𝐸𝑥
= ∑ 𝜇𝑗(√2𝐸𝑥 + 1)

𝛼𝑗−2𝑁𝑚𝑎𝑡
𝑗=1

      (A.8) 

 

The hyper elastic constitutive model also considers a tangent modulus 𝐶𝑡, that 

represents a tangent stiffness constant. This modulus is obtained from the second P-K 

tensor as follows. 

 

𝐶𝑡 =
𝜕𝑆𝑥

𝜕𝐸𝑥
= ∑ 𝜇𝑗(𝛼𝑗 − 2)(√2𝐸𝑥 + 1)

𝛼𝑗−4𝑁𝑚𝑎𝑡
𝑗=1      (A.9) 

 

Note that the undeformed state is also a stress-free state, i.e., all bars and springs 

are free of both stress and strain, and the tangent modulus must attend this condition. The 

stress-free condition (𝑆𝑥 = 0) results in a constraint for 𝜇𝑗. 

 

𝑆𝑥 = 0 → ∑ 𝜇𝑗
𝑁𝑚𝑎𝑡
𝑗=1 = 0                (A.10)  

 

The constraint (A.10) associated with the conditions (A.5) restrict and conduct the 

fitting of the model parameters. By considering that 𝑁𝑚𝑎𝑡 = 2, the stress 𝑆𝑥 is be given 

by 

 

𝑆𝑥 =
𝐶𝑡0

𝛼1−𝛼2
(√2𝐸𝑥 + 1

𝛼1−2
−√2𝐸𝑥 + 1

𝛼2−2
)              (A.11) 

 

where 𝐶𝑡0 is the tangent modulus at the initial state (stress-free and undeformed). 
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Figure A-4: Four different materials represented by the Ogden model considering 

different sets of (𝛼1, 𝛼2). 

 

Figure A-4 brings an example of four different materials that can be represented 

by (A.11) if we consider four different sets of (𝛼1, 𝛼2), remembering that they must attend 

the conditions (A.5). Note that the sets (2, 0) and (8, 1) represent materials with opposite 

behaviors. The first one represents a material that is stiffer under compression then under 

tension, while the second is stiffer under tension then under compression. The set (5, 1) 

represents a material that has a quasi-linear behavior, and the set (2, −2) represents the 

Mooney-Rivlin material. 

 

A.4. Elastic constitutive model 
 

Lv et al. (2014) attest that the elastic energy related to the folding process of an 

origami with N dihedral angles per unit can always be expressed as the sum of the energy 

of N linear elastic springs. Besides, the linear formulation of the resistive moment of the 

folding process does not detect local penetration of origami panels and, to avoid that, 

additional kinematic constraints are considered as an increasing stiffness as the origami 

reaches limit configurations, defined by limit angles 𝜃lim1
 and 𝜃lim2

. So, the constitutive 

model used to describe the mechanical behavior of the springs from the bar-and-hinge 

formulation on section 3.3 is as follows: 
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𝑀𝑟𝑒𝑠 =

{
 
 

 
 𝑘(𝜃lim1

− 𝜃0) + (
2𝑘𝜃lim1

𝜋
) tan (

𝜋(𝜃−𝜃lim1)

2𝜃lim1
)

𝑘(𝜃 − 𝜃0)

𝑘(𝜃lim2
− 𝜃0) + [

2𝑘(2𝜋−𝜃lim2)

𝜋
] tan (

𝜋(𝜃−𝜃lim2)

4𝜋−2𝜃lim2
)

, 𝜃 ∈ ]0, 𝜃lim1
[

 
, 𝜃 ∈ [𝜃lim1

, 𝜃lim2
]

 
, 𝜃 ∈ ]𝜃lim2

, 2𝜋[

(A.12)  

 

Figure A-5 shows the relationship moment-angle described in (A.12). Note that 

as the angle 𝜃 gets outside the linear region, being either bigger than the superior limit 

angle 𝜃lim2
 or smaller than the inferior limit angle 𝜃lim1

, the spring gets increasingly 

stiffer following an asymptotic curve. 

 

 

Figure A-5: Relationship between the resisting moment per unit length and the dihedral 

angle 𝜃, considering the additional kinematic restrictions 

 

Considering now the applied study, the elastic passive spring presented at the 

origami-wheel has its mechanical behavior also described by a linear elastic constitutive 

model. The difference is that the non-penetration condition is already contemplated on 

the geometric formulation and the system geometric parameters, which means that the 

response is purely elastic linear for the entire folding process. Thus, the passive bias 
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actuator is considered to be a linear elastic with a quadratic energy, expressed by the 

following equation 

 

𝐸𝐸 =
𝑘𝑢2

2
                    (A.13) 

 

where 𝑘 =
𝐺𝐸𝑑𝐸

𝜋𝐷𝐸
2𝑁𝐸

⁄  is the stiffness defined by the spring diameter, 𝐷𝐸 , the 

wire diameter, 𝑑𝐸, the number of spirals, 𝑁𝐸, and the tangent coefficient of the material 

component of the spring, 𝐺𝐸.


