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A transcrição musical automática pode ser definida, de maneira geral, como
o processo inverso à execução musical, visando à representação de seus elementos
principais (e.g., aspectos temporais, timbres) em alguma forma de notação. Esta
tese propõe o desenvolvimento de metodologias de processamento de sinais e apren-
dizagem de máquina que auxiliem na transcrição automática, ampliando o escopo
cultural desta tarefa ao tratar o samba como objeto de estudo. Para tanto, nós
curamos e anotamos dois conjuntos de dados de samba: BRID e SAMBASET.

A primeira parte do trabalho é dedicada à classificação de sons percussivos. Nosso
foco é o reconhecimento das articulações produzidas ao percutir a membrana ou o
corpo do instrumento. Sugerimos um descritor de modulação que, juntamente com
descritores temporais tradicionais, apresentou o melhor resultado na classificação
das articulações de repique e tantã. Também investigamos a classificação de toques
arquetípicos nesses instrumentos, obtendo uma medida F de 89%.

A segunda parte trata da tarefa de descrição rítmica. Discutimos alguns des-
critores da literatura e a percepção que fornecem sobre os padrões encontrados na
BRID. Constatamos a incapacidade de generalização para o samba dos sistemas
do estado da arte em rastreamento de métrica musical. Por isso, propomos uma
metodologia para a adaptação destes modelos, a partir de um pequeno esforço de
anotação, a conjuntos de dados não vistos durante o treinamento, considerando a
homogeneidade destes conjuntos. Mostramos que, anotando-se menos de 1,5 minuto,
pode-se obter resultados comparáveis ao de estratégias tradicionais de treinamento.
Também descrevemos uma técnica para determinar quais amostras são informativas
para se anotar. Finalmente, apresentamos um sistema para a inferência de pulsos
musicais e microtempo, que corresponde a desvios temporais em pequena escala.
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Automatic music transcription can be broadly defined as the “inverse” of mu-
sic performance, aiming to represent its defining elements (e.g., timing, timbres)
in some form of notation. This thesis proposes developments to signal processing
and machine learning methodologies that facilitate the task of automatic transcrip-
tion, widening the cultural scope of the task by investigating samba as a subject.
For this reason, we curate and annotate two datasets of samba music: BRID and
SAMBASET.

The first part of this work is dedicated to the classification of drum sounds,
focusing on the recognition of the articulations produced by striking the drumhead
or shell of two instruments: repique and tantã. We propose a modulation-based
descriptor that, when combined with traditional temporal descriptors, displays the
best performance in classifying articulations from each instrument. Additionally,
we explore the classification of archetypal strokes on both instruments, obtaining an
F -measure of 89% in this task.

The second part deals with the task of rhythmic description. We discuss a few
descriptors from the literature and the insights they provide on patterns found in
BRID. We verify that state-of-the-art meter tracking models are unable to generalize
to samba music. Therefore, we propose a methodology for adapting these models,
with a small annotation effort, to work on out-of-corpus datasets given their ho-
mogeneity. We show that by annotating less than 1.5 min, an end user can train
a model with this data and achieve results comparable to those using traditional
training schemes. We also describe a pipeline for determining which informative
samples to annotate. Lastly, we present a system for the inference of beats and
microtiming, which corresponds to small-scale temporal deviations.
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Chapter 1

Introduction

“Long before time, before hours and minutes and seconds, on the continent of Africa,
the rhythm of the earth beat for the first people” — it is with these words that
Daddy Wes begins telling his story to Mat and Martha in the book “To be a drum”1

by COLEMAN [1]. Wes teaches his children about the importance and symbolisms
surrounding the drum and its ties to their African roots. He explains that, even
when their ancestors were enslaved by men who “could not listen to the rhythm of
the earth”, even when their families were torn apart, even when they had the drums
taken from them: “We were the earth’s people, we were the living drums, we would
always be free”.

Percussion instruments are among the first instrument ever built by human
hands. They could be seen as a prolongation of men themselves, who had to live
by their ability to strike for food or for survival [2]. Percussion continued to carry
an important role in many aspects of life in the ancient civilizations. They were
used for music, for communication and war, and for religious practices. There were
drums everywhere, drums of every shape and size. From Sumeria (Figure 1.1),
Mesopotamia, Egypt, China, India... In the Western world, we can cite the tam-
bourine (tympanon) of Ancient Greece [3], which was initially used in rites for the
gods, and later incorporated in theatrical music [2]. In the Middle Ages, the combi-
nation of tabor — a double-headed drum with a single snare on the batter head [3]
— and pipe, played by a single musician, was widely used as accompaniment to
dancing performances.

In Africa, the popularity of drums cannot be understated. After all, music and
drums are, alongside dance, the elements of unity beneath all the diversity seen in
the continent [4].2 In dance music practices of Ewe people, for instance, we have:
the dancers; the clapping; the gangoki (double clapperless bell) that establishes the

1An audio version of this book can be appreciated, in the powerful voice of James Earl Jones,
here: https://www.youtube.com/watch?v=7BVBBe56MUg.

2We note that there are rare cases of tribes that do not use drums in dance music practices [4].
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Figure 1.1: Vase aux musiciens (AO 5682), vessel fragment (Neo-Sumerian, 2250–
2000 BC). Photograph by RMN-Grand Palais (Musée du Louvre)/Mathieu Rabeau.

rhythmic matrix; and the drums, the most important part of the orchestra [4]. In
Africa, the drums do indeed “speak”! Not only the dùndún, the variable-pitch talking
drum of the Yoruba people, which is used for long-distance communication [2]:
African drummers can produce differently-sounding notes by hitting the drumhead
in certain locations, with the hand or the drumstick [4].

Despite the diversity in the musical expressions across Africa, some common
traits can be identified in most of them [3]: (1) full spectra, with rattles, snares, and
jingles adding to this broadband characteristic; (2) cyclic form in rhythm, harmony,
and melody; (3) polyrhythms, where two or more contrasting rhythms are superim-
posed (e.g., three over two); and (4) offbeat phrasing, when the space in-between
beats is accentuated. All of these elements of African drumming can also be found,
in some form or another, in the music of the diaspora. This is particularly true in
the rhythms used in Afro-Brazilian religious (e.g., candomblé) and music practices
(e.g., coco). Of course, this is also holds for samba, which is recognized as part of
Brazil’s intangible cultural heritage.

In this thesis, we approach the melo-rhythmic properties of samba’s percus-
sion from a computational perspective and attempt to contribute to the automatic
analysis of music from within this selected musical context. Since the research in
computational music analysis has lacked in producing multicultural or generalizable
approaches, except for more recent efforts, our aim is that the methodologies and
models developed in this work apply to other underrepresented music genres or, at
least, that it provides valuable insights for the promotion of a larger diversity in

2
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the field. In this chapter, we set the research context for this thesis and present its
motivation. We also discuss our objectives in more detail and provide a summary
of the organization of this manuscript.

1.1 Research Context

The amount of data that is produced and shared through the Internet and especially
in social platforms grows more and more rapidly each year. For example, it is
estimated that, in 2022 YouTube had surpassed the mark of 500 hours of video
content uploaded each minute, against 60 hours per minute in 2012. It is clear that
information technology (IT) has to advance in order to be capable of matching this
pace — helping users not only to create, but also to organize, visualize, and interpret
this increasing volume of data. Since we live in a plural world, designers of IT tools
must take care in allowing for the capture of multicultural contexts.

Music has always been one of the most important expressions of human culture.
It is a physical, sociocultural, emotional, and artistic phenomenon that has always
shaped the way we connect to one another and has created group identities through-
out the world. Thus, it is no surprise that music material is also currently being
produced and consumed at an increasing rate, which was facilitated by the develop-
ment of recording and storage techniques in the 20th century. We now have large
music collections available in digital format on the internet and simple ready-to-
install apps on mobile phones allow the user to easily interact with music, creating
samples and even complex musical structures, among other things.

Music Information Retrieval (MIR) is a relatively new research field that is thriv-
ing in this paradigm. It encompasses many tasks within music technology and has
several industrial and academic applications, such as genre recognition, tempo and
beat tracking, chord recognition, music transcription, and music structure analysis,
just to name a few [5]. MIR is known for its interdisciplinarity; it combines efforts
from music theory and musicology, signal processing, machine learning, statistics,
information theory, etc. The end users of MIR technologies go from the researchers
themselves (e.g., programmers, musicologists) to sound engineers and music teach-
ers, and, finally, to anyone who is interested in or even simply listens to music
— recommender systems like the ones used by Last.fm3 and Spotify4 apply MIR
techniques to analyze audio content and predict the users’ preferences.

We have recently reached an understanding that information technology data
and models in general present a strong cultural bias due to years of short-focused
research on aspects and problems of the Western world [6]. In the case of MIR re-

3http://www.last.fm/
4http://www.spotify.com/
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search, the usage of Western corpora has conditioned both the problems we work on
and the solutions that are found [6]. Even though there are still developments being
made within the research with this kind of music, novel works have arisen with the
objective of modeling musical expressions from different cultural traditions under a
fresh perspective, since current MIR models may not be appropriate to analyze this
data [7]. These efforts have put the computational approaches in contact with eth-
nomusicological and antropological practices. A recent article by HUANG et al. [8]
recognizes data diversification as a first but insufficient step, calling MIR to reeval-
uate its ontological, epistemological, methodological, and axiological assumptions.
This goes in tandem with current trends putting into question technical, legal, and
ethical aspects of artificial intelligence (AI) systems.

1.2 Motivation

Rhythm is one of the innate and fundamental aspects of music. It is usually un-
derstood as a kind of “macro” descriptor that incorporates all aspects of movement
in music with respect to its organization in time [3, 9]. In a specific sense, rhythm
can also indicate the succession of notes in a established pattern, which might be
constrained by meter and tempo [3]. An automatic system that attempts a full
description of rhythm has to deal with all of these aspects as they occur in specific
musical realizations [10]. Moreover, it also has to consider the cognition of rhythm.
We all subconsciously use temporal and structural regularities in music as cues to
learn what to expect from succeeding musical events. For example, if we listen to
a recording of a Classical piece with lively tempo or a modern pop song, we can
readily “synchronize” to the music and start tapping to it. If many people repeat
this same experiment, there is usually a consensus as to where tap positions are,
which indicates that they are related to events in the music (even if they do not
coincide with physical events — notes or other sounds — in the recording) [11].

In the seminal work “A Generative Theory of Tonal Music” (GTTM), LERDAHL
and JACKENDOFF [12] borrowed elements from linguistics, Schenkerian analysis,
and Gestalt psychology, to formally describe the musical “intuitions” that a listener
has when exposed to a musical “idiom” he is versed in. They observe that: “when
hearing a piece, the listener naturally organizes the sound signals into units such as
motives, themes, phrases, periods, theme-groups, sections and the piece itself” [12].
Thus, the cognition of musical rhythm can be regarded as a multilevel process.
At the surface level, we have the organization in time of duration patterns; the
meter is deployed at deeper levels and involve our perception and anticipation of a
hierarchical structure inferred from the music surface [13]. Models used in music
cognition to discern the metrical structure are generally based on rule systems,
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which describe the possible structural descriptions (interpretations) and establish
the criteria for the evaluation of such possibilities [11, 12]. These rules usually
presume an evenly spaced (isochronous) structure at all levels [14]. This is, of course,
not feasible in actual performances; musicians are bound to both physical/technical
limitations and implicit stylistic/personal requirements, i.e., mistakes and timing
fluctuations (enforced or not) occur naturally. Even in those cases, a certain amount
of regularity is to be expected. However, some musical traditions are characterized
by non-isochronous rhythms — this is the case of the music from Southeast Europe
and from Africa and the African diaspora [14], for example. This non-isochrony is
usually regarded as genre-defining temporal deviations at a very small scale [15].

As stated before, another important aspect of African and Afro-diasporic music
is the fact that, when in full play, the rhythmic patterns executed on the drums
have almost a melodic component to them. Musicians do in fact control the sound
production by changing the placement of the attack (e.g., on the center of the
membrane, near the rim, on the shell) and its velocity, by muting the sound (e.g.,
leaving the drumstick or hand on the skin), among others.

The area of automatic music transcription (and more specifically, the subarea
of automatic drum transcription — ADT) encompasses all of the aforementioned
problems. It looks for the “inverse” of the performance, i.e., from the acoustic real-
ization, retrieve the pitches, timings, sources, or more simply all of the constituents
of the produced sound [16]. Despite the name, ADT research usually deals with
both membranophones and idiophones.5 Most works are dedicated to the transcrip-
tion of the components of modern drum kits — snare and kick drums, tom toms,
hi-hats and other cymbals —, with a few exceptions analyzing instruments from
non-Western cultures (e.g., Indian mridangam and tabla drums; Chinese drums,
cymbals, and gongs). An application of ADT techniques to African drumming has
to deal with more than simple instrument recognition and onset detection, it also
has to be able to identify how the sound was produced, e.g., where the membrane
was struck, to be culturally-aware of the nuances in sound production of this kind
of music.

Another large subtask of transcription is rhythmic description. This involves
discovering the underlying meter and being able to automatically synchronize with
the music signal as humans are capable of. As we mentioned above, African and
Afro-diasporic music have very particular rhythmic characteristics. The implicit
Western bias in MIR research has led to the elaboration of datasets that mostly
exhibit stable tempo, and in which drums clearly indicate the positions of the tem-
poral grid [17]. Since state-of-the-art rhythmic description algorithms have been
trained on such datasets, they have a hard time in estimating meter of music with

5We will also use the word “drum” to refer to instruments from both families.
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Figure 1.2: Components of rhythmic expression in percussive music that are inves-
tigated in this work. Adapted from [18].

very different characteristics [7], unless further refined on these contexts.
Figure 1.2 presents the main elements of expression in percussive music that are

of interest to this work.

1.3 Scope, Objectives, and Main Contributions

The primary aim of this thesis is to improve and develop signal processing and ma-
chine learning tools that facilitate the automatic transcription of music from audio
recordings, widening the cultural scope of the MIR field by investigating samba as a
subject in this task. In particular, we emphasize the analysis of musical expressive-
ness within the context of drum articulation recognition and rhythm description,
which includes both meter and microtiming tracking. It is in our interest that these
techniques be generalizable to other musical contexts with few modifications mo-
tivated by domain-specific knowledge. Moreover, we hope that our work can lead
to a better understanding of the musical phenomenon of samba (and other under-
represented genres in MIR) by enabling and supporting new findings from experts
musicologists and allowing culturally-aware analyses even in face of a paucity of
data.

Our objectives can be described as follows:

• To curate music datasets of samba and related genres that cover a wide range
of years and instruments, enabling this work and future research.

• To annotate the curated datasets with usual MIR targets (e.g., beats, down-
beats, onsets), storing relevant metadata.

• To investigate features for the automatic classification of note articulations in
this cultural context.
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• To assess the suitability of state-of-the-art methods for tracking meter, beat
and downbeat in these datasets.

• To develop novel methods for the description of rhythmic expression at a fine
timescale (microtiming).

Our main contributions can be summarized as follows:

• Two datasets representing samba music in various contexts — from solo per-
formances to full commercial recordings — along with annotations for beat,
downbeat, and onset positions.

• An adaptation for a state-of-the-art onset detection function and a proposed
modulation-based feature for classifying drum note articulations.

• An adaptation for the training of state-of-the-art beat and downbeat track-
ing models in small data scenarios and a methodology for the selection of
informative samples in this situation.

• A model for joint estimation of beats and microtiming.

1.4 Publications

We list here all the publications that were produced within the context of this thesis.

1.4.1 Papers accepted in peer-reviewed conferences

[19] MAIA, L. S., DE TOMAZ JÚNIOR, P. D., FUENTES, M., et al. “A Novel
Dataset of Brazilian Rhythmic Instruments and Some Experiments in Com-
putational Rhythm Analysis”. In: Proc. 2018 Latin American Congr. Audio
Eng. Soc. (AES-LAC), pp. 53–60, Montevideo, Uruguay, Sep. 2018.

[20] MAIA, L. S., FUENTES, M., BISCAINHO, L. W. P., et al. “SAMBASET: A
Dataset of Historical Samba de Enredo Recordings for Computational Mu-
sic Analysis”. In: Proc. 20th Int. Soc. Music Inform. Retr. Conf. (ISMIR),
pp. 628–635, Delft, The Netherlands, Nov. 2019.

[21] FUENTES, M., MAIA, L. S., ROCAMORA, M., et al. “Tracking Beats and
Microtiming in Afro-Latin American Music Using Conditional Random
Fields and Deep Learning”. In: Proc. 20th Int. Soc. Music Inform. Retr.
Conf. (ISMIR), pp. 251–258, Delft, The Netherlands, Nov. 2019.
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[22] MAIA, L. S., ROCAMORA, M., BISCAINHO, L. W. P., et al. “Adapting
Meter Tracking Models to Latin American Music”. In: Proc. 23rd Int. Soc.
Music Inform. Retr. Conf. (ISMIR), pp. 361–368, Bengaluru, India, Dec.
2022.

1.4.2 Articles published in peer-reviewed journals

[23] MAIA, L. S., ROCAMORA, M., BISCAINHO, L. W. P., et al. “Selective
Annotation of Few Data for Beat Tracking of Latin American Music Using
Rhythmic Features”, Trans. Int. Soc. Music Inform. Retr., v. 7, n. 1,
pp. 99–112, Mar. 2024.

1.5 Organization and Outline

This thesis is structured in three parts as follows.
In Part I, we lay the foundations for this work. With this intent, in Chapter 2

we briefly describe the history of samba, its the main instruments and rhythmic
elements. Chapter 3 presents the datasets that were curated and annotated for
this work. The basic transforms that are applied to audio signals in this thesis are
discussed in Chapter 4.

In Part II, we approach the problem of drum sound classification. We start
with Chapter 5 reviewing the main features used in the literature on this topic, and
introducing our proposed features. In Chapter 6, we skim over this literature, high-
lighting the main works that deal with the classification of percussion instruments
and their articulations. In Chapter 7, we present an investigation on the classifi-
cation of articulations, going through the entire pipeline: from the detection and
segmentation of note onsets to the feature extraction and classification processes.
We apply this pipeline and assess how the available and proposed features deal with
the nuances of sound production in two samba instruments: tantã and repique.

In Part III, we tackle the problem of rhythmic description from a few perspec-
tives. First, in Chapter 8, we discuss this topic in the light of two features for
compactly representing the temporal organization of music, allowing for the direct
comparison of rhythmic patterns. Chapter 9 reviews the literature on two subtasks:
meter and microtiming tracking. In the latter case, we give special attention to works
that perform analyses on samba and other genres from the African diaspora. Chap-
ter 10 contains an investigation of the beat and downbeat tracking performances of
state-of-the-art algorithms in the datasets compiled for this work. In particular, we
show the limitations in the direct application of these tracking systems to music for
which they were not developed (or on which they were not trained). This means
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that different assumptions may be needed for these systems to work effectively with
such music. In Chapter 11, we propose an approach for adapting deep-learning-
based beat and downbeat trackers with few data. This is presented as an attempt
to alleviate the burden of annotation when state-of-the-art models fail to accurately
track “out-of-corpus” music. With the suggested methodology, under certain homo-
geneity constraints, the end user would be able to annotate few minutes of data,
train the neural network, and obtain tracking results on the remainder of the dataset
that are on par with those of more traditional training schemes (e.g., separating the
dataset in folds). We also present a scheme for selecting an informative portion
of the dataset for annotation. Chapter 12 first assesses the microtiming profile of
samba-enredo as expressed by the tamborim, and then presents our model for auto-
matically tracking these systematic deviations. We perform inference in the model
using exact and approximate methods, and show that approximate can be used to
obtain estimates for the evolution of small-scale deviations during a performance.

Chapter 13 discusses our main contributions and presents the perspectives of
future work.

Additionally, we have included two appendices. Appendix A contains a detailed
description of all files in our purely instrumental samba dataset. Appendix B clarifies
part of the terminology used for describing instruments by succinctly presenting the
history of organology and of the taxonomy of musical instruments.
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Chapter 2

Samba Carioca

Samba plays a huge role in Brazil’s imaginary overseas, right alongside soccer (and
soccer players like Pelé and Ronaldinho) and the country’s rich fauna and flora, com-
monly associated with the Amazon rainforest. Every year, Brazil receives hundreds
of thousands of international tourists for the activities of carnaval in the cities of
Salvador, São Paulo and Recife, for example. The domestic tourism also increases
during this period, as many Brazilians go see the “Greatest Show on Earth” — how
the desfiles (parades) held in Rio de Janeiro’s Sambadrome are usually called by
media outlets. Happiness, dance, music, the feast where “anything goes” — when
reflecting upon these modern images of carnaval, it might be perplexing to learn that
samba was disesteemed and faced repression during the late nineteenth and early
twentieth centuries. In order to understand why today’s samba can be regarded
as Brazil’s quintessential rhythm and how the festivities of carnaval acquired their
considerable importance in the country’s urban centers, we first need to peer at the
circumstances that led to their formation as sociocultural activities.

Similarly to what occurred in most of the former European colonies in the Amer-
icas, the development of Brazil during its Colonial, Royal, and later Imperial rules
relied heavily on extractive activities (e.g., pau-brasil in the sixteenth century, gold
and diamonds in the mid-eighteenth century), on the plantation economy (at first
the sugarcane, which was then succeeded by coffee, but also other agricultural prod-
ucts like tobacco and cotton) and on the slavery system. In the first years that
followed the “discovery” of Brazil (1500), the Portuguese colonizers used indigenous
people as labor, mainly for the extraction of pau-brasil (brazilwood). These workers
were then rewarded with unimportant manufactured objects such as mirrors, combs,
knives, etc., in a barter economy. Shortly after, however, a system of capture and
enslavement of indigenous people was established, although, due to many factors —
including legal impediments (that only permitted the imprisonment in situations of
“just war”), the epidemics brought by Europeans (for which the natives’ immuno-
logical systems were not prepared), and captivity escapes (Native Americans had a
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Figure 2.1: Nègres a fond de calle, lithographic print (Rugendas, 1827 [25]). En-
graved by Laurent Deroy after a drawing by Johann Moritz Rugendas. It displays
a group of Africans in the cargo hold of a slave ship headed to Brazil. The condi-
tions were very poor and many slaves died before reaching the Americas. The poet
Antônio Frederico de Castro Alves (1847–1871) described the sufferings of these en-
slaved men and women in the famous poem “O Navio Negreiro” (“The Slave Ship”):
“Yesterday, the Sierra Leone / The war, the lion hunting, / The sleep sleeping
peacefully... / Under the tents of amplitude... / Today... the dark basement, deep
/ Infected, crowded, filthy, / Housing the plague instead of a jaguar... / And sleep
always interrupted / By the sudden pull of a deceased / And the crashing of a body
into the sea...” [26].

good knowledge of their land) —, it was somewhat short-lived. In the mid-sixteenth
century, indigenous labor started to decline, and was substituted by the African slave
trade (cf. Figure 2.1). This exploitation system, which was used throughout Ameri-
can colonies (not without nuances in the British, Portuguese, and Spanish controlled
territories), allowed the consolidation of Brazil’s economy in the Atlantic, since its
production was mostly intended for the northern hemisphere. For three centuries,
enslaved Africans (and their descendants) were the main source of manpower for the
agricultural production. Practices associated with Africa in the country were thus
assessed as being “manifestations of slaves” [24] and were typically depreciated.

It was at the then capital, Rio de Janeiro, that following many decades of alien-
ation the religious and festive practices of Afro-Brazilian populations found fertile
grounds on which to grow. The samba that was developed after the Abolition of
Slavery (1888) allowed black and mulatto people — “lower class citizens” —, who
then fought repression in expanding urban centers [27, 28], to exert a new cultural
power. As many anthropologists put, it was mainly through samba and the commu-
nities built around it that a set of “symbolic negotiations” [24] aiming for equality
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began to take place. When Carmen Miranda — the Portuguese-born “Brazilian
bombshell” — hit Hollywood in the 1940s, back in Brazil carnaval was already a
“national ritual”: a ritual of inversion, in which rules and social hierarchies are tem-
porarily suspended [29]. In this ritual, the samba urbano (urban samba), also known
as samba carioca1 refers to both the dance and the music of carnaval, but it is not
accessory neither delegated to the background like a soundtrack; instead it is the
very means by which such inversions seem to occur [29].

This chapter is dedicated to presenting a brief history of samba as a dance and
music genre, its subgenres and its relation to carnaval. In Section 2.1, we examine
the meaning of the word “samba”. Sections 2.2 and 2.3 trace samba and carnaval
back to their origins and provide insights on how they became a part of Brazil’s
identity. Finally, Sections 2.4 and 2.5 discuss the idea of ritmo (rhythm) in a bateria
(drum ensemble), and describe the instrumentation and a few rhythmic patterns
that are used in samba music. We also refer the interested readers to corresponding
musicological and anthropological literature.

2.1 Meaning of “Samba”

Despite its importance as cultural practice, there is little consensus on what the word
samba really means. Scholars agree that, due to its origins among circle dances of
people of African (Bantu) descent, “samba” would have been derived from a word of
one of the Bantu languages. It could, therefore, have come from the Kimbundu verb
“semba”, meaning “to court”/“to please” [28], or even the homographic Kimbundu
noun that defines a choreographic navel gesture of certain dance practices (in Por-
tuguese, embigada or umbigada) [30, 31]. It could also have come from the Kikongo
word “sàmba”, designating another dance practice where dancers touch their chests
together with force [28]. Another hypothesis is that it comes from the Chokwe,
again as verb, “samba”, and meaning “to caper”/“to play like a goatling” [28].

Whichever its origin may be, samba is most definitely a very broad term. For
a long time in Brazil, it was synonymous with batuque — from the verb “bater”,
meaning “to hit, to beat” (a drum) — as the collective of folkloric practices of
Afro-Brazilian people particularly in enslaved communities (see Figure 2.2). These
festive activities were usually expressed in the form of circle dancing, accompa-
nied by singing and instrument playing, and characterized by the umbigada.2 They

1Carioca is the demonym used to designate anything related to the city of Rio de Janeiro.
2In fact, scholars point out three different historic batuque areas in Brazil, with some super-

position [32]: the coco zone (Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas); the
samba zone (Maranhão, Bahia, Rio de Janeiro, São Paulo, Minas Gerais); and the jongo zone
(Rio de Janeiro, São Paulo, Minas Gerais, Goiás). This is not to say, however, that batuques in
a given area are homogeneous in terms of form. Instead, these varieties exhibit a combination of
different characteristics. They can have the typical shape of a dance of umbigada (as seen in the
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Figure 2.2: Danse Batuca, lithographic print (Rugendas, 1827 [25]). Engraved by
Louis Villeneuve after a drawing by Johann Moritz Rugendas. It depicts typical
dance practices for people of African descent that Rugendas witnessed during his
1822–1825 stay in Brazil.

spread throughout the country and acquired different flavors depending not only on
the region they were developed but also on the origin of the enslaved populations.
Examples of such practices include, but are not limited to [30, 33, 34]: tambor-
de-crioula, in the state of Maranhão; coco, in Ceará and Paraíba; coco-de-zambê
or bambelô, in Rio Grande do Norte; coco-de-parelha, coco-travado, coco-de-roda,
in Pernambuco; samba-de-parelha in Sergipe; samba-de-roda, bate-baú, samba-de-
chave, and samba-corrido, in Bahia; jongo in Espírito Santo, Rio de Janeiro and
Minas Gerais; caxambú, partido-alto, and samba-duro (batucada or pernada) in Rio
de Janeiro; samba-lenço or samba-de-bumbo in São Paulo.

Later, “samba” would come to be used in hybrid music genres primarily aimed at
the carnaval season: samba-tango carnavalesco, samba-jongo, samba-choro, samba-
rumba, samba-canção, samba-macumbeiro [24]. Nowadays, many different rhythm
variants can be found, such as: samba-de-breque, samba-exaltação, samba-de-terreiro,

Luanda region), which we describe in more detail in Section 2.2, but suffice it to say here that it
is a somewhat free dance started by a male or female in the center of a circle and ended when this
dancer chooses a substitute through the sign of the umbigada. They can also be pair dances, when
it is a couple that starts the dance together. Finally, they can be circle dances in which the chore-
ography is fixed (varied only in rhythm) or even line dances. In all these cases, the umbigada sign
is executed (in full or in a simulated manner) or not observed at all [32]. From the examples given
in the text, we highlight: samba-lenço (samba zone, line/pair dance with umbigada); partido-alto
(samba zone, dance of umbigada/circle dance with umbigada); and jongo (pair/circle dance where
the umbigada is replaced by a bowing movement).
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samba-enredo, sambalanço, samba-de-quadra, sambalada, samba-chulado, samba-
raiado, samba-coco, samba-choro, samba-canção, samba-batido, samba-de-partido-
alto, samba de gafieira [33]. The bossa-nova (famously known due to Tom Jobim’s
“Garota de Ipanema” — “The Girl from Ipanema”) and the pagode are also counted
among samba’s subgenres. The term “pagode” itself was used, from the early twenti-
eth century, to designate a kind of festive gathering, which took place in the houses
of the tias baianas [24].

As one can see, the definition of the “music genre” of samba is not straightfor-
ward, being at least as convoluted as its connection to generic dance practices. To
illustrate this, we can look at the history of the genre’s phonographic recordings.
The first samba to be recorded is usually considered to be “Pelo Telefone”, which
dates from 1917. Before it, however, many sambas had already been recorded with
the same genre indication (the first one possibly in 1908 [31]). As CABRAL [34]
points out, also before “Pelo Telefone”, there were recordings that did not carry
the “samba” name, despite being sambas while others showed “samba” on their
covers even though they were clearly examples of other genres. Still, many crit-
ics declare that only the music produced starting in the late 1920s can receive the
title “samba” [31], and previous recordings (and probably also the music matrices
they meant to register) were more akin to other rhythms (e.g., maxixe). In contrast,
Pixinguinha (1897–1973), instrument virtuoso and one of the greatest Brazilian pop-
ular music composers, once went on record saying that the “true” samba and the
“true” sambistas were much older than “Pelo Telefone” [34].

We end this section with a short anecdote showing how convoluted this nomen-
clature problem can be even for insiders. In 1995, samba singer/songwriter Zeca
Pagodinho was interviewed by comedian Jô Soares in his talk show. We transcribe
in the following a symbolic excerpt from this encounter:

Jô – Zeca, which samba do you like the most: partido-alto, samba-
de-roda, or pagode? And what are the differences — from pagode to
partido-alto, for example?

Zeca – (clears throat) Well, pagode is this thing... Samba... Samba is
that batucada, but pagode is the same thing. For example, we could make
a samba here, right? But we wouldn’t make a samba-enredo. Samba-
enredo is that which a layman think about when someone says “samba”,
that batucada and the Avenida [of the Sambadrome]. But it isn’t that.
There are several types of samba. There’s pagode, there’s partido-alto,
which is improvised...

Jô – Samba-enredo...
Zeca – But samba-enredo... Samba-enredo is February...
Jô – (sarcastically) February...
Zeca – And pagode is the whole year.
Jô – So pagode is not very different from partido-alto, is it?
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Zeca – (hesitates) ...
Jô – Ok, I see that it is...
Zeca – [To make pagode] you must know... Know how to versar [to

make verses], to improvise.
Jô – And partido-alto?
Zeca – Também [same thing]!
Jô – So, Zeca, which one do you prefer?
Zeca – You know, Jô, it’s hard to answer this question. I’ve been

asked this for the last eight years and I still can’t answer. So I say
“yes, it is...”, “no, it isn’t...”, “I don’t know...”. You ask me “What’s
the difference?”. There’s no difference, it’s the same thing, and yet it’s
different.

All the confusion aside, throughout this thesis the term “samba” will be used in
specific reference to the samba urbano carioca, i.e., the samba that was developed in
the city of Rio de Janeiro at the turn of the twentieth century, but also to partido-
alto and samba-enredo, unless otherwise noted. These genres’ ties are clearly and
abundantly described in the musicological literature [28]. This delimitation of the
term brings, of course, many “imperfections” since we will not be considering many
historical and cultural aspects that have had their fair share in the sound formation
of today’s samba; it is done, therefore, given the broadness of the word, in a conscious
effort to limit the study subject to a coherent “minimum”. This is also why we found
it important to give, in the following, a brief description of the transformations
and mixes that led to the emergence of samba in the twentieth century, and the
metamorphosis it went through shortly after.

2.2 History and Evolution

As we mentioned before, the roots of samba dance and music practices can be traced
back all the way to the umbigada family of dances. More specifically, scholars usu-
ally recognize the lundu, a dance of umbigada that was brought to Brazil by enslaved
Bantus from the Congo–Angola region in the late eighteenth century [31] (cf. Fig-
ure 2.4), as the “grandfather of samba” [35]. In this kind of batuque — the main
generic (and somewhat derogatory) term used to refer to black community dance
practices throughout Colonial and Imperial periods in Brazil —, all participants
(musicians inclusive) are gathered in a roda (circle). They clap, stamp their feet,
play the guitar, and sing choruses in response to a soloist’s improvised verses, while
a dance takes place, one pair at a time [31]. The lundu was a common style both in
Brazil and in Africa, despite its consideration as an insinuating and lascivious dance
form [27]. In any given dance of umbigada, one participant stands out in the center
of the circle and starts to dance, usually performing moves with agility and rhythm.
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If desired, he can choose a partner of the opposite sex; the soloist couple then shares
a choreography,3 and the first dancer returns to the circle [32]. The term umbigada
denotes the bumping of navels (in Portuguese, “umbigo”) by the soloist with the
person chosen to replace them [32].

In spite of its African origins, the lundu dance would not be restricted to the black
communities in rural areas. In fact, it was adopted in urban centres and modified by
white and pardo groups. The lundu is thought to have been eventually exported to
the metropolis by Domingos Caldas Barbosa (ca. 1740–1800), palace minstrel and
catholic priest, where it gained popularity, specially in the Portuguese court. The
dance was further “Iberianized and Atlanticized” [36], incorporating elements from
the fandango, such as the snapping of fingers, the raising of arms or the resting
of hands at the hips [35]. By the time of Brazil’s Independence, the lundu had
been transformed into what SANDRONI [31] calls “lundu-canção” (literally, lundu-
song), a salon music genre closely related to the modinha and usually containing
humorous allusions to the sexual interplay between lord and slave [31]. In Figure 2.3,
two lithographic prints based on drawings by Johann Moritz Rugendas display the
“landu” (sic) in different circles, the top one showing distinct Iberian elements such
as raised arms and castanets.

Around the 1830s, Brazil’s standpoint on slavery started to shift, as the country
had its hand forced by one of its main commercial partners, the United Kingdom.
The UK outlawed international slave trade in the 1807 Slave Trade Act. The prac-
tice would not be entirely stopped, however and, in 1833, the country expanded on
its previous act by means of an Abolition Act, making both slave purchase and own-
ership illegal. The British, once major participants in the slave trade, were now very
eager to replicate the abolition laws worldwide. Brazil achieved its sovereignty in
1822, with the Independence from Portugal, but was indebted to and relied greatly
on the economic trade agreements made with the British. Their external pressure
to end slavery was intensified in the late 1860s, during the Paraguayan war, when
Brazil’s debt rose, yet the UK’s demands where met with great inertia from the
part of the Brazilian government. The two countries had signed a treaty in Novem-
ber 1826 (with effects starting on March 1827), which gave Brazil three years to
declare extinct the slave trade [37]. A law was passed in 1831 to bring the treaty’s
requirement into action, but it wasn’t rigorously applied and local judges generally
absolved the illegal traffickers. This is possibly the origin of the idiomatic expres-
sion “para inglês ver” (lit. “for the Englishmen to see”), meaning “for the sake of
appearances, without validity”. A few bills were enacted the following years and
actually put into effect — notably the Eusébio de Queirós Law in 1850 (prohibiting

3Differently from partner dances such as the waltz and the polka, in lundu the couple performs
choreographic elements while dancing separately.
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Figure 2.3: Danse Landu, lithographic prints (Rugendas, 1827 [25]). Engraved by
Jules Monthelier (above) and Louis Villeneuve (below) after drawings by Johann
Moritz Rugendas. In the early nineteenth century, both batuque (see Figure 2.2)
and lundu where recognized by foreigners as Brazilian national dances [36].
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international slave trade), the Rio Branco Law in 1871 (known as the “Free Womb
Law”), and the Saraiva–Cotegipe Law in 1885 (the “Sexagenarian Law”, granting
freedom to slaves who reached the age of 60). Another law, dating of 1866, also
granted freedom to slaves who fought in the Paraguayan war [37]. Despite all this
legislative work, the country would only completely abolish slavery in 1888, when
Isabel, Princess Imperial of Brazil, signed the Lei Áurea acting as regent to Emperor
Pedro II, who was in Europe at the time. Figure 2.4 depicts the four main slave
trade routes used to bring people to Brazil from the African continent from the
1550s until the Eusébio de Queirós Law.

During the same period, in the beginning of the nineteenth century, the weak-
ening of Brazil’s sugar economy in face of external competitors shifted the focus
of the country’s commercial endeavors to the production of coffee [27]. The grain,
which was not native to the Americas, had arrived in the country at the start of the
eighteenth century, but it would only have a big economic “boom” later, to meet
an increasing demand on the international market. As a result, the labor force was
abruptly transferred from the sugar farms in the north to coffee plantations down
south in the provinces of Rio de Janeiro, São Paulo and Minas Gerais. This move-
ment initially consisted primarily of enslaved people (when internal trafficking was
still not abolished), whereas later governors would try to import workforce from an
overpopulated Europe [27].

Many emancipated slaves were attracted by the life in the capital (at the time,
Rio de Janeiro). In the pre-Abolition era, they would form guilds that helped buy
freedom for other slaves (e.g., their own relatives) [28], and established themselves
in city center bairros (neighborhoods) like Gamboa and Saúde, then at the outskirts
of the city. The flux of migrants towards Rio de Janeiro was intensified after the
Abolition as people were hopeful to find opportunities there. A diaspora from Bahia
settled in the capital’s port region and later in the Cidade Nova neighborhood —
areas that would come to be known as Pequena África (lit. “Little Africa”) [27].
The Abolition also marked the end of the Brazilian monarchical regime. With
each constitutional law towards the end of the slavery system, large-scale farmers
grew dissatisfied at the monarchy, from whom eventually they withdrew all support.
This was one of the tipping points that allowed a military coup to declare Brazil
a republic in November, 1889. Despite its constituent ideals, the post-Abolition
newly-born republic did not see an improvement in the quality of life of black and
mulatto people. Instead, the choice of immigrant labor force in the plantations and
the lack of opportunities in other areas of the economy left these communities in a
delicate situation [37]. They were also met with prejudice and seen with distrust,
which fed and was fed by this aforementioned social inequality; their descendants
still face these challenges today in Brazil and, as some authors argue, in yet greater
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Figure 2.4: The four main slave trade routes from Africa to Brazil and ports (six-
teenth through nineteenth centuries). It is estimated that over four million en-
slaved Africans, the majority young males, were brought to Brazil between 1550
and 1855 [37]. Almost a quarter of this trade took place in the span of only twenty
years, from 1811 to 1831, with the destination port being the Valongo Wharf in
Rio de Janeiro. The map also shows their main ethnolinguistic group of origin —
Niger-Congo (from which Bantu, in lighter color, is a subgroup) —, but enslaved
Africans actually came from many different kingdoms and tribes, such as: Fulani,
Fanti, Ashanti, Bakongo, Ambundu, Yoruba and also Hausa (Afro-Asiatic ethnic
group, not represented). The region of provenance for enslaved Africans in Brazil
was dependent on the time period — the trade organization and local conditions
in the continent — and, to a lesser extent, on slave owners’ preferences [37]. In
the sixteenth century, first the Guinean (blue, going through Cape Verde) and then
the Mina routes (green, departing mostly from Elmina) were the main sources of
slaves [37]. Starting at the seventeenth century, slaves were exported to Brazil pri-
marily from the more southern Congo-Angola region, departing from the ports of
Luanda and Benguela (orange), for example [37]. The Mozambique route (pur-
ple) was mostly unexplored until the nineteenth century when, due to the United
Kingdom’s influence in Abolition fights, Portugal abolished all slave trade north of
the Equator and Brazil signed the 1826 treaty on the slave trade ban. An illegal
trade would continue until a bit after the Eusébio de Queirós Law (1850), when the
central government ratified further sanctions on local authorities that ignored this
legislation. Internal traffic, however, was not banned until 1888: from 1850 until the
Abolition, it is estimated that between 100 000 and 200 000 slaves where displaced
in interprovincial trades motivated by the coffee “boom” [37]. Information on slave
trade routes from Africa to other parts of South America, especially the Platine
region, can be seen in [38].
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proportions [24]. Figure 2.5 displays a map of the capital in 1885, few years prior to
the Abolition and the Proclamation of the Republic. This map indicates the main
historic entry points for Africans in the port area of Rio de Janeiro, the Alfândega
and the Valongo region, and also the Pequena África, where the black community
would settle and grow.

With this influx of people, the city of Rio suffered an unorganized growth. Prices
were high due to real estate speculation practices; newcomers — black people, mul-
tiracial and poor whites —, had to house themselves in the highly compartmental-
ized cortiços (tenements), where epidemics were not infrequent. In the first years
of the twentieth century, the city’s mayor, Francisco Pereira Passos, initiated a pro-
cess of “embellishment and sanitation” in European/Belle Époque molds that would,
among other things, end up demolishing most of the cortiços.4 The “lower class” was
faced with no other option than to move — many searched for habitation on Cidade
Nova and on the city outskirts or went up the morros (hills), forming the first fave-
las (slums) [27]. Figure 2.5 also shows the Morro da Providência (lit. “Providence
Hill”), which would become Rio’s first favela. A group of emancipated baianos,5 their
descendants and aggregates formed an “elite” amongst those expelled from the city
center, becoming a reference in this heterogenous community [27]. Most of them
came from Yoruba nations and remained unified under traditional religious prac-
tices. This group is also credited as being the one who brought the samba-de-roda
baiano to the capital and who modified it in this urban environment.

As the city grew and specially after the reforms in Pereira Passos tenure, Cidade
Nova became Rio’s most populous neighborhood, while also being deemed the city’s
place for infamous amusements [31]. In the gafieiras6 of this neighborhood, the
black communities’ musical traditions would again be mixed with “Western” popular
rhythms. This effervescent environment, secretly in the beginning, popularized a
new dance style — the maxixe [31]. The style’s precise origin is uncertain, but it is
believed to have been greatly influenced by polka and waltz, dance forms that arrived

4This embellishment project became known as “bota-abaixo” (lit. “knockdown”), referring to
the forced evictions and subsequent demolitions.

5Baiano is the gentilic used to designate people from the state of Bahia.
6The gafieiras were dance clubs that started appearing in Rio at the end of the nineteenth

century. They were frequented mostly by the lower classes, migrants from rural parts of the
country (in its majority, formerly enslaved people), who procured new forms of amusement in
the capital [39]. The gafieiras provided them a middle ground between folkloric festivities and
high-society balls of the urban environment [39]. The first clubs would open in the city center,
especially in Cidade Nova, examples being Aristocratas da Cidade Nova and Kananga do Japão
(where Sinhô would work for over a decade) [39]. The desire for social mobility was such that the
balls had entry fees and owners would generally impose very strict rules and dress codes — these
would not prevent beginning dancers to make real gaffes (which, legend has it, is the origin of
the name “gafieira”, “the place where many gaffes are committed”). At first, the music played in
gafieiras consisted of mainly piano pieces (waltzes, polkas and maxixes); later, sambas, fox-trots
and even jazz music would become crowd favorites [39].
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Figure 2.5: Map of Rio de Janeiro’s city center in 1885 (adapted from [40]). (Continued on the following page.)
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Figure 2.5: (Continued from previous page.) We indicate (in blue, top) the Alfândega
(custom house) and the Rua Primeiro de Março, formerly known as Rua Direita, by
then the capital’s main road (dashed blue line). In purple (left), we show the Cais
da Imperatriz (lit. “Empress Wharf”, former Cais do Valongo and later renamed as
Praça Municipal) and the Rua da Harmonia (lit., “Harmony Street”, former Rua do
Cemitério, “Cemetery Street”, where enslaved men and women were buried). We
also highlight (in a pinkish hue, left) the region of Gambôa and Saúde in which
the poor black migrants first settled; it eventually expanded and reached the Praça
11 de Junho (yellow, bottom), in Cidade Nova, where maxixe and samba would
be born. The hatched area corresponds to the current city limits. Before 1779,
all enslaved men captured in Africa entered Rio through the Alfândega and were
sold to slave owners mostly from the markets in the Rua Direita [41]. A law was
introduced in 1758 prohibiting the commercialization of slaves inside the city in view
of the many epidemics it was facing [41]. This law was mostly ignored, possibly due
to traffickers’ pressure, up until the rule of D. Luís de Almeida, the Marquess of
Lavradio, as Viceroy in the Portuguese colony (1769–1779). Landing and commerce
were transferred to the Valongo region, in the city outskirts. By 1831, almost a
million slaves had entered the city via this port and, with the first official ban on
slave trade, the Cais do Valongo became obsolete. In 1843, the Cais was buried and
gave place to the Cais da Imperatriz — it was through this new construction that
D. Teresa Cristina de Bourbon, Empress consort of Emperor D. Pedro II, arrived.
The site would be buried again during the revitalization of the port in the tenure of
Mayor Pereira Passos (1902–1906), accompanied by many demolitions of low-income
houses in the area, only to be rediscovered through excavations held in 2011.

in Brazil in the 1840s [31]. Regardless of its origin, the fact is that, at the start of the
twentieth century, maxixe would take lundu’s place as Brazil’s “national dance”.7 It
was considered unsophisticated and sensual, due to the intense and abundant thigh
and hip movements of the performers, but, unlike lundu, in maxixe, the couple dances
together and simultaneously with other pairs. Also, the music accompaniment is
purely instrumental (i.e., there is no singing) with the piano serving as base, instead
of the viola or the guitar. With these characteristics, maxixe was able to conquer the
variety entertainment theaters and clubes carnavalescos (carnaval clubs). At that
time, these clubs were the city’s main associations for carnaval practices, managed
not by the poorest, but by medical students, civil servants and merchants [31].

The mix between European ballroom dances and Brazil’s characteristic rhythm
lead to hybrid genres such as polka-lundu, polka-maxixe, and tango-maxixe, which
could arguably be grouped under the general label of “maxixe” music [31]. As
mentioned above, this genre was often associated with vulgarity, which could explain
why many composers that took interest in it (e.g., Chiquinha Gonzaga, Ernesto
Nazareth) preferred to tag their pieces as tangos or tangos brasileiros (Brazilian

7Around the same time the word “samba” would replace “batuque” as the placeholder name for
black community folk dances and festivities.
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Figure 2.6: Black women in traditional baiana attire. Photographs by Marc Ferrez
(ca. 1870–1899) [43].

tangos). The Platine rhythm was a contemporary of maxixe and they both bore
rhythmic and choreographic similarities, at least until the 1920s when the tango went
through a few transformations [31]. For a meticulous analysis of the appearance of
the name “maxixe” and the uprising and persecution of this dance in the Abolition’s
aftermath, the reader is referred to a research by EFEGÊ [42] published in “Maxixe
– A Dança Excomungada” (lit. “Maxixe – the Excomunicated Dance”). For the
purpose of this work it suffices to mention that maxixe’s popularity slowly faded
away after the “birth” of samba in 1917.

As lundu and maxixe, samba will walk into the clash between “popular” and
“elite” cultures at the turn of the century, suffering a good deal of prejudice and
discrimination [27, 31]. Initially considered an alien in the urban scenery — “samba”
was associated with the country’s Northeast region (specially with the state of
Bahia), with the rural environment, and, of course, with “people of color” and
dance of umbigada performances —, the genre will ferment in parties thrown at the
houses of tias baianas;8 slowly breaching through society’s barriers and eventually
invading the processions of carnaval, samba will spread from the capital throughout
the entire nation. It is necessary to distinguish between two samba traditions in the

8Tias baianas (lit. aunts from Bahia) were black women that came to Rio de Janeiro from the
state of Bahia. They were influencers and great supporters of the poor communities settled in
the Pequena África region. The character of the tia baiana is so important to the foundation of
carnaval and its traditions in Rio de Janeiro that still today they are annually honored by all the
competing escolas de samba in the ala das baianas. This ala (wing) is composed of older women
dressed in traditional baiana attires; in the first years of the competition, it also counted with the
participation of men (in the same costume). Figure 2.6 presents two women in the traditional
baiana attire.
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first decade of the twentieth century: the samba baiano or samba-de-roda — older,
folkloric and rural —, dance of umbigada whose first name will be used as a replace-
ment for “batuque”, as mentioned before; and the urban samba, the samba carioca
— popular pair dance without umbigada (i.e., in samba couples dance together) —,
which is maxixe’s successor in Rio’s cultural scene after 1917. This is not to say
that these two sambas are unrelated. In fact, as MOURA [44] points out, the roda
should be credited as the “physical origin” of the first-generation samba carioca, the
locus where the fusion of its “aesthetic roots” (polka, maxixe, lundu, etc.) will be
unfolded. To put it another way, the samba-de-roda that came from the Bahian
diaspora will be stylized in the capital by virtue of its cultural contact with dances
that were popular in the city’s nightlife.

Tia Ciata (1854–1924), born Hilária Batista de Almeida, was arguably the most
famous tia baiana, whose life offers us a perspective on the genesis of samba. At
the age of 22, Ciata left Bahia for Rio, bringing a young daughter, and soon settled
with the Bahian colony in the Saúde neighborhood. Later she moved to Cidade
Nova (near Praça 11 de Junho, see Figure 2.7) to a house that is considered by
many researchers as the “capital” of Pequena África and birthplace of the samba
carioca [27, 28, 31, 44]. The tias baianas were known to host many famed and
intimate house parties — simply referred to as “sambas” — with food, drinks, mu-
sic, and dance, either to celebrate a specific event or to congregate family and
friends. In Tia Ciata’s house, these soirées were split into three environments, with
different atmospheres and entertainments, as listed here in an ascending order of
intimacy [31, 44]: the living room was where choro was played and “balls” were
held, with European-inspired dances where couples performed together; the dining
room was the place for samba-de-partido-alto (partido-alto), which by then strongly
resembled a dance of umbigada, according to written records [31]; finally, a batu-
cada or pernada — a variant form of capoeira — took place in the terreiro (i.e.,
the outside yard behind the house), due to its violent component. It was also in
the terreiro that spiritual ceremonies sometimes occurred. Ciata and her husband,
João Batista da Silva (?–1910), had amicable relations with the elite — he was a
public servant at the Alfândega; she was a sweets vendor and seamstress (and had
several other baianas working for her in these two occupations), mãe-de-santo,9 and
main acolyte to a major candomblé10 leader at the time. Later, through her healing
works as mãe-de-santo for the president of the Republic, Ciata would get her hus-
band a job at the office of the chief of police [27]. For these reasons, amongst her
parties’ invitees, one could find sambistas, intellectuals and journalists [44], officers

9Mãe-de-santo or ialorixá is a priestess of candomblé (see Footnote 10).
10Afro-Brazilian religion, derived from traditional religious practices first brought to Bahia by

enslaved Africans. While spreading throughout country, these practices suffered many adaptations,
including the adoption of syncretic elements from Catholicism.
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Figure 2.7: Praça 11 de Junho - Rio. Seen here in a photograph by Augusto Malta
(ca. 1922) [45], this praça (square) was at the center of Cidade Nova neighborhood.
It was named after the Battle of the Riachuelo (June 11, 1865), one of the major
victories of Brazil in the Paraguayan war. Cidade Nova was first urbanized in the
early nineteenth century, over a wetland, and by the 1850s, many factories would be
built there. With the increase in population density throughout the city, many rich
dwellers would abandon the region in search of more “salubrious” places [35]. At the
turn of the twentieth century, Cidade Nova was a “busy” place: many gafieiras were
established in the region (including Kananga do Japão). The square also became a
very important place for the samba carioca. One of the streets around it would house
tia Ciata, from 1899 until her death, and it would be used as a reference point for
the concentração11 of many ranchos and later escolas de samba. The Sambadrome
is located about 300 m to the east of where the square once stood.

and prestigious people [31].
The familiar environment provided by Ciata’s parties will be reproduced by rodas

de samba in other houses and sometimes on the streets. The police watched closely
these community gatherings, which were viewed by the dominant classes with much
suspicion — not only the religious component of candomblé, or the dance–fight
capoeira which was deemed violent, but also the samba and other music practices
with an “African flavor”. As we mentioned above, considering that Ciata and her
husband had a good relationship with the elites, their parties stood in a very priv-
ileged position. However, in many other cases, the police will be called to action:
dispersing rodas, reprehending and even arresting musicians (a few anecdotal exam-
ples can be seen in [34]). Consequently, samba’s penetration power in society will
depend on the very same “upper class” and on the connections such as the ones es-

11Concentração is how insiders refer to the warm-up gathering that takes place immediately
before a parade.
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tablished in Ciata’s house. The first sambas would be immortalized in the voices of
acclaimed white singers/radio hosts [35]; and businessmen, observant to the trends,
would seek the opportunity to finance incipient samba groups [31]).

In 1916, Donga (Ernesto Joaquim Maria dos Santos) registered “Pelo Telefone”.
Erroneously considered the first recording labeled as “samba”,12 it was without doubt
the first “samba” hit, the one that put the genre on the map in the carnaval of
1917 [31, 34, 44]. The song’s authorship was contested by Ciata, Sinhô and others;
and Donga, who was a regular in Tia Ciata’s house, would later admit that lyrics
and melody were “developed from” the ones sung at those joyful meetings [31]. It
was recorded by Casa Edison in the voice of Baiano,13 yet this arrangement of “Pelo
Telefone” more closely resembles those of maxixe’s instrumental music. As SAN-
DRONI [31] observes, even though “Pelo Telefone” and the succeeding “sambas”
recorded before the 1930s present more syncopated events, specially between two
adjacent measures, when contrasted with the music sheets of older Brazilian genres
(lundu, for example), they still exhibit a remarkable similarity with respect to the
subjacent rhythmic structure. Its rhythmic cell was in fact so ubiquitous in the
Brazilian music of the nineteenth and twentieth centuries that Mário de Andrade
(1893–1945) — modernist writer and musicologist — commonly addressed it as the
“characteristic syncopation” of the national pieces. In Section 2.4, we delve a little
bit further into this structure, which is shown in Figure 2.12.

At the end of the 1920s, however, samba will witness the inauguration of a new
rhythmic standard, which presented more syncopation or contrametric structures.
The transformation into this second-generation samba was mainly lead by Ismael
Silva, Nilton Bastos, Alcebíades Barcelos (Bide), Sílvio Fernandes (Brancura) and
others, in the Estácio de Sá neighborhood, hence it is usually referred to as the
“Estácio paradigm” [31]. This “new” samba would rapidly be absorbed by composers
from other parts of the city, gaining terrain from the “old” samba represented by
Tia Ciata’s group. The confrontation between “old” and “new” can be synthesized
in an emblematic inquiry conducted by CABRAL [34] in the 1960s. Cabral asked
Donga and Ismael — exponents from each group — what was the true samba. The
following discussion is reported below, in a free translation:

Donga – Well, samba has long been this: “O chefe da polícia / Pelo
telefone / Mandou me avisar / Que na Carioca / Tem uma roleta para
se jogar” [lyrics to “Pelo telefone”].

Ismael Silva – This is maxixe.
12NETO [35] shows that, from 1908 to 1915, at least twenty other songs were sold in records and

labeled as “sambas”. However, according to today’s standards, given their arrangements, all these
songs would be classified in other styles: jongo, embolada, toada, choro and — as it is the case of
“Pelo Telefone” — maxixe.

13Interestingly enough, the first Brazilian recording of a song — the double entendre lundu “Isto
é Bom” — was also produced by Casa Edison and voiced by Baiano, in 1902.

27



Donga – What is samba then?
Ismael Silva – “Se você jurar / Que me tem amor / Eu posso me

regenerar / Mas se é / Para fingir, mulher / A orgia assim não vou
deixar” [lyrics to “Se você jurar”, a samba from 1931].

Donga – This is not samba, it is marcha.

The average opinion among researchers and music critics is that Ismael was right:
the pre-1930s samba is a “samba amaxixado” (i.e., that borrowed many elements of
maxixe with regard to its rhythmic properties) or even, in a more extreme opinion, a
false samba [31]. Sandroni gives an in-depth look at this discussion, contrasting the
slight differences in the specialists’ viewpoints (e.g., some argue that Sinhô’s com-
positions in the early 1920s can already be considered samba). In another interview,
Ismael told Cabral that this detachment from maxixe’s rhythm and influences was
planned [34]:

Ismael – When I started, samba wasn’t good for groups of carnaval
to walk the streets, like we see nowadays. [...] Samba was like this: tan
tantan tan tantan. [...] Then, we started to play samba like this: bum
bum paticumbumprugurundum.

We investigate this new paradigm in more detail in Section 2.4.
As we can see, the effect of the alterations introduced by this new style was thus

not limited to its rhythm or even to its faster pace, allegedly modified for the ease of
marching and dancing at the same time [35]. Additionally and more importantly, the
second-generation samba allowed black and low-income communities to gain terrain,
giving them voice in their fight for social justice. Samba’s venue had changed from
the roda to the streets, particularly to botequins (bars) and blocos carnavalescos.14

The sociability component — observable at the houses of the tias baianas — is still
there, but it was perhaps now even stronger, after all, the street is a public space and
everyone is invited to participate. Thus, the roda cedes its place to the botequim, the
ball is replaced by the desfile (parade). This opposition between the house and the
street is in the heart of Roberto DaMatta’s anthropological studies of the Brazilian
society. We refer the reader to the works by DAMATTA [29] and MOURA [44] for
more in-depth studies of carnaval and samba, respectively, through the lens of this
“Brazilian cultural dichotomy”.

The Estácio group made many other contributions to samba, for its populariza-
tion and commercialization. For example, it is credited to this group of sambistas the
invention of three typical samba instruments, surdo, cuíca [34] and tamborim [35],

14Blocos are a popular expression of carnaval in Brazil, and are usually organized by a street
band that parades while performing samba or marcha music. Countless revelers are attracted each
year to these block processions, which occur before, during, and after the carnaval days.
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though this inventorship was never proved.15 Most notably, they created “Deixa
Falar”, a carnaval association historically considered the first escola de samba [34].
Deixa Falar paraded from 1929 to 1931 and it paved the way for the modern escolas
de samba. Samba continued to be transformed in the twentieth century, but the
rhythmic framework established by the Estácio group subsists, so that the recent
transformations are not defining of the genre. Thus, after a bit of ear training, any
listener should be able to easily identify the majority of the sambas composed from
1930 to the present day as pertaining to the one and same genre, while in turn
classifying the collection of pre-1930 sambas in a separate group.

2.3 Carnaval
Brazilian carnaval practices originated in colonial times with the entrudo, shown
in Figure 2.8. From the latin introitus, meaning “entrance”, the entrudo lasted
about four days, from Saturday to Ash Wednesday, and served as prelude to the
Lenten season.16 Brought by the Portuguese from Europe probably in the mid-
seventeenth century, it was a playful (sometimes violent) period, a sort of war, in
which revelers would throw water, flour, limões-de-cheiro (wax or plastic balls filled
with scented water), and sometimes even bodily fluids [34] at one another. Needless
to say that the entrudo was strongly combated by civil authorities. In some cases,
the punishments given to revelers depended on their social status, and enslaved
people usually had the worst of it [34].

By the nineteenth century, after a series of prohibitions on the entrudo, several
other carnaval activities were being developed. This transformation of carnaval in
Brazil was first led by the upper classes, which, in search of a more civilized way
of enjoying the carnaval period, started mimicking the festivities that were com-
mon in Europe, especially in France and Italy. Thus, starting in 1840, Arlecchinos,
Colombinas and other commedia dell’arte characters flooded the masked balls that

15Conversely, the existence of large bass drums similar to surdos in African cultures was reported
by European explorers of the eighteenth century [35]. Likewise, friction drums were not uncommon
in the music of Angola, and a prototypical tamborim could already be found in northeast Brazilian
folklore [35].

16Lent, in Christian tradition, is the penitential period of preparation for Easter. During approx-
imately 40 days, a symbolic number in itself, the faithful are invited to join in and contemplate the
mystery of Jesus’ journey into the desert by partaking in ascetic and repentance practices. These
include prayer, fasting, and more distinctively the abstention from the consumption of meat. This
period is bounded by different celebrations: its beginning is the dies cinerum, the Ash Wednesday,
when the priest marks the forehead of each faithful with blessed ashes (“thou art dust and unto
dust thou shalt return”); and it leads to the paschal Triduum, the most solemn time and center
of the ecclesiastical year, where the institution of the Eucharist, the Crucifixion and Death, and
the Resurrection of Christ are celebrated. Shrovetide/“Carnival” practices such as the entrudo are
commonly celebrated just before Lent, as a “natural” and permissive counterpoint to this period
of penance.
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Figure 2.8: Scène de Carnaval (Dia d’entrudo), lithographic print (Debret,
1835 [46]). Engraved by Thierry Frères after a drawing by Jean-Baptiste Debret.
Debret describes the scene typically seen in Rio during the days of carnaval. Here,
a young black woman is seen balancing a basket of provisions on her head, while
being attacked by a young man and a moleké (sic), who throw polvilho (starch) and
water at her. Other characters are shown to the left, also marked by dirt and other
matters; some of them are readying a retaliation. A vendor of limões-de-cheiro and
polvilho is sitting on the step of a spices boutique.

30



were thrown in the large halls of hotels or in theaters, in the capital and later in
other urban centers. Around the same time, the carioca elite would also create the
first clubes carnavalescos, alternatively called sociedades carnavalescas (carnaval so-
cieties) or Grandes Sociedades (lit. Great Societies), which promoted this kind of
parties but also parades leading to them. These parades would soon become an
event in itself, either in a “simple” format with open cars (corsos), or a more com-
plex one, involving the use of music and allegorical floats. The press remarked how
Rio de Janeiro’s carnaval rivaled the festivities that took place in Nice, Venice and
Rome (qtd. in [34]). The “victory”, in the carioca society, of these practices over the
popular entrudo would be furthered by the Haussmannian renovations of Pereira
Passos (who was, in turn, honored in a few processions) [35], although traces of the
latter would survive until today. Hence, instead of liquids of dubious provenance,
the throwing of confete (confetti) and serpentina (serpentine), frequently seen at Eu-
ropean masked balls of the time, became common in carnaval activities, although
subject to the characteristic playfulness of entrudo customs.

Entrudo would fade out faster as other popular manifestations appeared in the
late-nineteenth-century Rio de Janeiro. These groupings would give people from un-
derprivileged neighborhoods a way to express themselves during carnaval; but sim-
ilarly to what happened with the entrudo, these popular practices faced repression
and were closely surveilled by the police, specially in the Belle Époque period. One
of these traditions, the cordões, were usually composed by masked revelers dressed in
different archetypal costumes (elders, clowns, kings, queens, etc. [34]), who danced
to percussive music while following a master [32]. The revelers of cordões were known
for disturbing the public order, their identities protected by the masks, and even for
attacking other cordões in an attempt to steal their banners [35]. The creation and
development of this movement was concomitant with that of ranchos, and in fact at
the beginning both were very similar in form; but eventually all cordões would ei-
ther disappear, converge with the latter (which became better organized and “more
civilized” with respect to singing, dancing and their creative aspects [47]), or change
names, becoming blocos [48].

Ranchos would pass through a series of adaptations in order to survive the chang-
ing times, reaching tremendous popularity and dominating Rio’s carnaval for over
30 years [34]. Many of these innovations would end up as significant contributions
to the carnaval as it is known and played today. They introduced, for example, the
use of string and woodwind instruments in the orchestra that accompanied their
activities. In 1908, one of the most famous ranchos, Ameno Resedá, would inaugu-
rate the structure of a complex parade: it involved an enredo (plot), which in turn
required plot-related music and costumes [47]. The following year, the first contest
between ranchos would be promoted by Jornal do Brasil, a traditional newspaper
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and publisher [47]. As a result of their aesthetic renovations, they were held by
society and authorities at a higher “moral ground” when compared to cordões —
and unlike those, many ranchos were given by the police official licenses for parad-
ing [47]. Cordões, ranchos, blocos would customarily perform at Praça 11 and many,
while parading, would pass in front of Tia Ciata’s house (and other baianas’) to pay
their respects to these important cultural characters of the time [34].

We now take a step back and look at the music being played at all these events.
In the case of the entrudo and other simple cultural manifestations, there was usually
no music at all or just a single musician playing his drum. At the end of the nine-
teenth century, the elite was dancing to waltz, polka, and other European rhythms
at the masked balls, but the avantgardist Grandes Sociedades would introduce mar-
chas and even maxixes in their parties and street parades. The marcha was also
the predominant rhythm in cordões, blocos, and ranchos,17 although maxixes were
rather common as well. As we mentioned before, samba would only be incorpo-
rated in parades and later take over as a fundamental rhythm in carnaval with the
transformation promoted by the Estácio group and Deixa Falar.

Deixa Falar was founded in the late 1920s under the name Escola de Samba
Deixa Falar. Despite its status as the first escola de samba, it paraded as a bloco
carnavalesco and, later, as a rancho, in 1932 [34]. The meaning behind this title —
“escola de samba” — is related to the founders’ intention of creating a new standard
for carnaval festivities. Ismael Silva suggested in an interview [34] that the name
might have been his idea, inspired by the normal school that was located near the
association’s headquarters. Instead of training high school teachers, the musicians
from Estácio were themselves “professores” (teachers) and “mestres” (masters) of
samba [34], thus deserving of their own school. The term became widespread and
many escolas were created the following years in morros and outskirts of Rio. Exam-
ples include escolas: Estação Primeira (from Morro da Mangueira); Azul e Branco,
Depois Eu Digo, and Unidos do Salgueiro (Morro do Salgueiro); Prazer da Ser-
rinha (Morro da Serrinha), from which stemmed Império Serrano; and Vai Como
Pode (from Oswaldo Cruz neighborhood), later Portela. These popular associations
for the practice of samba were then and still are strongly connected to a specific
community where their social events take place and to whom they provide several
services.

The first Desfile das Escolas de Samba — the organized competition between
escolas de samba — took place in 1932, promoted by journalist Mário Rodrigues
Filho [34]. Deixa Falar had already been “upgraded” to a rancho, and did not
take part in the competition [34]. During the parade, each escola presented two

17In the case of ranchos, due to, among other things, the different instrumentation, the rhythm
would be specifically called marcha-rancho [48].

32



Figure 2.9: Baianas parading for Mangueira (1987). Escolas de samba pay homage
to the matriarchs of samba in this obligatory ala. Compare the costumes shown
here (in green and pink, the escola’s colors) with the traditional attire of Figure 2.6.
Photo by Otávio Magalhães, on Flickr (CC-BY-SA).

to three sambas, structured with a fixed refrain and improvised verses [31, 34].
These sambas were not necessarily composed to the parade, and thus, in general,
they were not related to its plot. The samba-enredo — a samba composed to be
performed at the parade, and subject to the enredo (plot) — was only introduced
in the late-1940s, characterizing a new samba subgenre. As we already mentioned,
the Desfile is the high point of today’s carnaval in Rio de Janeiro, and arguably in
the entire country. Currently, it consists of a two-day parade (carnaval Sunday and
Monday) when the escolas that make up the Grupo Especial18 (lit. Special Group)
parade with their components, organized in alas. Examples of alas are the ala das
baianas (which pays homage to the matriarchs of samba) and the ala da bateria
(drum ensemble); these are respectively illustrated in Figures 2.9 and 2.10. There
are around three thousand members per escola in a parade, each dressed according
to the ala they’re in. Most members in a given ala will be dressed in the same
costume and parade on the Avenida (Avenue), while singing the samba-enredo of
the escola and dancing a choreography (also ala-specific); however, some members,
called destaques, dress in more expensive and personalized costumes and are carried
in carros alegóricos (allegorical floats), illustrated in Figure 2.11. The music, the
choreographic elements, and each set of costumes and floats help telling the enredo
(plot) chosen by each escola. During the desfile, each escola is subject to a series
of constraints (e.g., parade duration,19 number of members per ala and in total,

18The “Grupo Especial” is the first division of escolas de samba. Other escolas are arranged
in further divisions, which are commonly known as Grupos de Acesso (lit. Access Groups). The
second division also parades at the Sambadrome, but on a different date.

19From 60 to 70 minutes, in 2020.
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Figure 2.10: Cuícas from Paraíso do Tuiuti 2013 parade. All alas are dressed in
costumes tied to the parade’s enredo. Photograph by Circuito Fora do Eixo, on
Flickr (CC-BY-SA).

Figure 2.11: Águia da Portela. The symbol of this escola is the eagle (“águia”, in
Portuguese), which is always represented in the abre-alas, the first float. Photograph
by Fernando Frazão/Agência Brasil (CC-BY-BR).
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number of floats) and is evaluated by a committee with respect to a few criteria
(e.g., bateria, enredo and samba-enredo, costumes, singing, dancing) in a strict point
system. Evaluations are collected and the results are presented on Ash Wednesday
— the winning escola and a few runner-ups then parade again the following weekend
at the Desfile das Campeãs (lit. winners parade).

2.4 Rhythm

“Música, o samba caracteriza-se pelo constante emprego da síncopa” [Music, samba
is characterized by the constant use of the syncope] [49]. The opening statement of
Carta do Samba (lit. the Samba Letter) — the final document of the I Congresso
Nacional do Samba (First National Samba Conference) of 1962 — is very clear about
the main characteristic of this rhythm: the syncope. In fact, as we previously men-
tioned, the syncopation is one of the most prominent aspects of the music developed
this side of the Atlantic, fruit of the miscegenation of different — e.g., European,
African — rhythms. In the particular case of Brazil, this element of musical rhythm
has been broadly studied, in the popular genres from the eighteenth to the twentieth
century, by scholars such as Mário de Andrade, who carefully studied this notion
of a “characteristic” syncope (qtd. in [31]) and its origins. This motif, composed of
sixteenth note–eighth note–sixteenth note,20 can be seen in Figure 2.12.

�� �

Figure 2.12: The “characteristic” syncope.

CANÇADO [50] analyzes typical syncopated rhythms of Brazilian music and
their syntagmatic relations, by comparing modinhas, lundus, tangos, and choros
to traditional rhythm cycles from Angola and West Africa. In her findings, she
describes how both the “characteristic” syncope and the habanera rhythm (see
Figure 2.14e), another rhythmic cell very familiar to mid-nineteenth- and early-
twentieth-century Brazilian music, assume different functions in the studied corpus.
The “characteristic” syncope followed by two eighth notes, and the habanera rhyth-
mic cell serve as accompaniment; whereas two side-by-side “characteristic” syncopes
and other variants including habanera syncope normally act as the melody line [50].
Figure 2.13 presents a few examples where both functions can be observed.

20Our nomenclature in this section diverges slightly from that of Sandroni, who conducted a
highly recommended study in both his thesis and on “Feitiço Decente” [31]. Sandroni uses the
term “characteristic syncope” for the whole phrase/bar shown in Figure 2.14a, whereas we call
the same pattern “maxixe rhythm”. We, however, understand the “characteristic syncope” as the
short–long–short or 1+2+1 pattern (see Figure 2.12) that is featured on the first beat of the 2

4

measure, following the description given by CANÇADO [50].
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(a) Samba-lê-lê, folk song, first two phrases, adapted from [51]
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(b) O Corta-Jaca (1895), tango brasileiro, bars 5-8, adapted from [52]

�✁

✂✄

☎☎

☎☎

✆
✆
✆

✝
✝✝✆

✞✝✝

✝✝✆

✟✟✟✟
✟✟✟✟✟✟

✟
✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✟✟

✟
✟✟ ✟✟

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟
✟

✟✟
✟

✟✟✟
✟

✟✟✟
✟

✟✟
✟

✟

✟✟✠✠
✟✟✟✠✟ ✠✟✟✟✟✟✟

✟
✟✟
✟

✟✟
✟

✟✟
✟✟✟

✟
✟✟
✟

✟✟
✟

✟✟
✟✟✟

✟
✟✟
✟

✟✟
✟

✟✟
✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✠✠✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟

✡

✡

☛

☛

✆✆✆✆

✆✆✆✆

✆✆✆✆

✆✆✆✆

☞☞☞☞☞☞

☞☞

✌✌

✌✌

✌✌✌✌✌✌

✍

✎

✏✑✒✓✔✑ ✏✑✕✖

✑✏✓✔✑✏✏✖

✗✘✒✖
✙
✙

✙
✙

(c) Odeon (1909), tango brasileiro, bars 19-26, adapted from [53]
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(d) Tico-Tico no Fubá (1917), choro, bars 4-8, adapted from [54]
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(e) Pelo Telefone (1916), samba, bars 9-12, adapted from [55]

Figure 2.13: Excerpts from Brazilian music showing the use of the characteristic
syncope, the maxixe rhythm and the habanera rhythm both in the melody and in
the accompaniment.
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We shall take some time now to investigate the “characteristic” syncope, espe-
cially in the accompaniment scheme that was vastly featured in maxixes and first-
generation sambas, for example, and how it was transformed at the end of the 1920s.
We will henceforth refer to it as “maxixe rhythm”, not because it was exclusive to
this genre (as evidenced by Figure 2.13), but since it is in great part responsible for
the “amaxixado” adjective given to first-generation sambas. As Sandroni argues [31],
at first glance, it looks as though the maxixe rhythm is in a perfectly symmetric
subdivision of the 2

4 measure, as shown in Figure 2.14(b). However, when the first-
generation samba was in vogue, the “cultural reading” given to this characteristic
syncope was one of rhythmic imparity, i.e., when binary and ternary low-level pulsa-
tion groups are interpolated [31]. This is better expressed by Figure 2.14(c), where
the low-level events are agglutinated as (1+2)+(1+2)+2. The maxixe rhythm can
then be regarded as a variant of the 3+3+2 tresillo rhythm21 (Figure 2.14(d)) in
which the ternary figures have been further subdivided into (1+2) groupings. The
habanera rhythm can be understood in a similar fashion, when, starting with the
tresillo, the second ternary figure is divided into (2+1) instead. With an abundant
presence of these and yet more variants, the Brazilian music of the nineteenth cen-
tury and the first decades of the twentieth century was conformed in what Sandroni
calls a “tresillo paradigm” [31]. In particular, his analysis of sambas recorded from
1917 to 1921 indicates the presence of the paradigm variants in both the melody
and the accompaniment [31].

A different paradigm was established by the Estácio group, as alluded by Ismael
Silva in the interview transcribed before. The main property of this paradigm: its
rhythm is more complex (“bum bum paticumbumprugurundum”), that is, more con-
trametric, than those belonging to the tresillo family. The new rhythm had a basic
cycle of 16 sixteenth note pulses, spanning two measures in 2

4 time (against the 8 six-
teenth note-cycle and single measure of the tresillo). The literature usually presents
this cycle segmented in “unequal halves”, either as 7+9 or as 9+7. We present two
of these variants in Figure 2.15; yet, similarly to what we saw with the tresillo, the
groupings can be divided differently or replaced with dotted figures. SANDRONI
[31] also shows another variant, segmented as 5+11, which he associates with a tran-
sitional period between the two samba generations. All this variants were grouped
by him in what is called the “Estácio paradigm”. When listening to samba record-
ings dating from 1927 to 1933, Sandroni was able to find many examples of this
paradigm, not only in the percussion, but also in the melody. This means that syl-

21Despite being habitually associated with Cuban music, the tresillo it is in fact present in many
other Latin American countries marked by the Atlantic slave trade [31]. Its main characteristic
is a strong and contrametric accent at the fourth sixteenth note level pulsation; this creates a
sensation of imbalance (or imparity) of the syncope because this results in a segmentation of the
3+3+2 rhythm as 3+5.
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(b) In “divisive” notation, (1+2+1)+(2+2)
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(c) In “additive” notation, (1+2)+(1+2)+2
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(d) Tresillo, 3+3+2
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✁

(e) Habanera rhythm, 3+(1+2)+2

Figure 2.14: Tresillo paradigm and the maxixe rhythm, the main rhythmic pattern
in Brazilian music until the 1930s.

lables are articulated in a way that “suggests that [rhythm] of the batucada”, which
is highly contrametric. These rhythmic patterns from the Estácio paradigm (and
also the ones from the tresillo paradigm) can be interpreted in light of what, in
African and Afro-diasporic music, is called a “timeline” [56] — asymmetric rhyth-
mic motifs, produced by hand clapping or by instruments (e.g., bells, high-pitched
drums), that are repeated in ostinato and form a structural matrix around which
the performance is organized.

Still with respect to this matter of contrametricity/commetricity in samba, there
is a serious tendency in sambas-enredo and escolas de samba which is being detected
and debated by scholars and musicians for at least the last 30 years. Several musi-
cological studies [57, 58] have observed a considerable increase in the average tempo
of live samba-enredo performances, an effect that is attributed to an increase in
the number of paraders and to stricter parading time constraints. This has lead to
the presence of more commetric structures specially in the choruses melodies, in a
phenomenon called marcialização do samba [57] (i.e., the transformation of samba-
enredo into marcha) or even derogatorily marcha-enredo [58]. This goes against the
main postulates expressed at the beginning of Carta do Samba [49]: (1) to pre-
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(a) Fitted in two measures in 2
4 time, (2+2+3)+(2+2+2+3)
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✁ ✁
(b) Shifted with respect to the measure start point, (2+2+2+3)+(2+2+3)

Figure 2.15: Estácio paradigm variants. The pattern in (a) is also referred to as
“tamborim pattern”, since it corresponds to this instrument’s teleco-teco cycle (see
Figure 2.19c), despite also being found in lines produced by other instruments and
the melody. Adapted from [24, 31].

serve the traditional characteristics of samba we must value the syncope; (2) mixed
rhythmic forms (e.g., samba-choro), albeit legitimate, cannot replace samba.

As we have largely expressed in this section, the word “rhythm” relates to the
way events in music are organized in time. In a more specific sense, it can describe
a pattern of attacks “constrained overall by a meter or associated with a particular
tempo” [3] or yet patterns of duration, which are based on the inter-onset intervals
between successive events [13]. However, when we investigate the sound production
and the language used by members of escolas de samba, the notion of “rhythm”
(ritmo, in Portuguese) admits still another interpretation: it designates the main
sonorous organization of the bateria ensemble, i.e., how different instruments interact
and their sounds are superimposed [59].

The ritmo of a bateria, its sound organization “logic”, is regarded by scholars as
a practice

akin to much of the percussion ensemble practices spread throughout
sub-Saharan Africa. Generally speaking, cyclical individual parts are
assigned to each instrument (or, in the bateria case, multi-piece instru-
ment set), patterned upon a cluster of rhythmic, timbral, and, to a lesser
extent, pitch qualities. [24, p. 130]

Each individual part in this superposition is, therefore, a recurrent rhythmic/timbral
cycle that constitutes what performers call the instrument’s batida [24] or levada —
a term used not only for instruments in the percussion ensemble, but also for the
main harmonic accompaniments provided by the cavaquinho22 and the guitar, for
example.

22Cavaquinho is a small four-stringed instrument of the guitar family. Originated in Portugal,
it became very popular in Brazil, and was later introduced into Hawaii (where, in the nineteenth
century, it led to the development of the ukulele) [3].
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In the following section we describe the main instruments used in samba and,
in particular, in an escola de samba. We then present a few of the batidas that are
superimposed for the sonorous achievement of a bateria.

2.5 Instruments

Here we describe some of the main instruments used in samba. Even though we will
specifically define how each one is used in an escola de samba setting, most of these
instruments (or even better their functions) can be found in every samba urbano
performance, whether it is a roda or a bateria.

Being related to African music practices, samba is mostly known for instruments
of the membranophone class, such as tamborim and surdo. Nevertheless, one can
also find idiophones (e.g., agogô, reco-reco) and chordophones (guitar, cavaquinho,
etc.) in the usual practice, and even aerophones on rare occasions. Regarding their
construction process, instruments used in samba today are almost all industrially
made, but this has not always been the case [24]. For example, modern drumheads
are made from plastic or acrylic, while drum shells are made of metal. Older instru-
ments, however, were manufactured with membranes of calf or cat skin, and had
wooden structures. Oftentimes, instruments were improvised from materials and
even objects (e.g., tableware and cooking utensils, matchboxes) that were available
to the impoverished population. The newer technologies employed in mass-produced
samba instruments have also made the tuning process of these instruments more re-
liable, with the introduction of simple systems of bolts and counter hoops. In this
section, we will limit our scope to the set of percussion (membranophones and idio-
phones) instruments used in samba, which are the focus of this thesis, and, in the fol-
lowing, we particularly describe the main instruments in their more common, newer,
format (although some specifications also apply to older instruments) [24, 28, 60]:

• Agogô (Figure 2.16a): from the Yoruba word for “bell”, the agogô is an idio-
phone made by attaching together a few clapperless bells. The most common
agogô contains two bells connected by a U shape piece of metal — these are
also seen in rodas de samba. However, some escolas de samba employ agogôs
with up to four bells (e.g., Império Serrano). Each bell produces a different
pitch and, in the case of the two-bell agogô, the player can be press bells
together creating a metallic clicking sound.

• Chocalho (Figure 2.16b): an indirectly struck idiophone. In samba, chocalhos
are commonly found in two forms: ganzá, which is similar to a rainstick — a
hollow (single-, double-, or sometimes, triple-) tube that is partially filled with
grains, pebbles, beads or something of the like; and rocar (generally called
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simply “chocalho”), made with a wooden rod or an aluminium frame in which
a series of jingles are attached. This latter form is more frequently found in
baterias.

• Cuíca (Figure 2.16c): a friction drum, most commonly found with a 20 to 25

cm (8 to 10 in) single drumhead, although smaller and larger sizes can also be
seen. A wooden stick is connected to the drumhead and lies inside the drum.
Sound production is achieved by rubbing on this stick with a dampened cloth.
The free hand can be used to change the pressure on the drumhead, varying
the instrument’s pitch.

• Pandeiro (Figure 2.16d): similar to a tambourine, this is a large hand-held
frame drum with leather or synthetic head and jingles along its body. It is
struck with the thumb, the fingertips, the heel, or the palm of the hand. In
plays an important part in small settings; in baterias it is normally relegated to
choreographic devices, not playing an important part in the sound formation.

• Reco-reco (Figure 2.16e): a scraper instrument. It comes in tubular form
(made of wood) or as a metallic base over which one (or more) springs are
fastened. It is scraped with a wooden or a metallic rod. Seen in both roda
and escola settings, with the metallic instrument being more common in the
latter.

• Tamborim (Figure 2.16f): a small frame drum of 15 cm (6 in) in diameter and
a 4 cm deep frame. It is struck with a small wooden drumstick or two-/three-
stemmed plastic stick. Sound is produced by striking the drumhead with the
stick, while the fingers in the holding hand can be used to change the timbre.
Not to be confused with the tambourine (pandeiro).

• Caixa (Figure 2.16g): a snare drum. Caixas come in different sizes, regarding
not only the head diameter (10 to 14 in) but specially the distance between
the two heads (for tarol, about 9 cm; malacacheta or caixa-de-guerra, 15 to
20 cm). It is played with two drumsticks and the “snare effect” is usually
achieved by means of a set of strings placed across the top head. Fundamental
in a bateria, this instrument is rarely seen in a roda setting.

• Repique (Figure 2.16h): also called repinique or surdo repicador, it is a
medium-sized two-headed drum. Head size can vary from 8 to 12 in (more
common), with the distance between heads usually set at 30 cm. It is alter-
nately struck with a drumstick (on the center of the head, near the edge of
the instrument or simultaneously on the rim) and the free hand.
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• Surdo (Figure 2.16i): large bass drums, the surdos have the lowest pitch in
a drum ensemble. In baterias, this instrument is normally divided into three
sections — each tuned in a unique way and executing a different pattern:
surdo de primeira or de marcação (lit. first/marker surdo), surdo de segunda
or de resposta (lit. second/response surdo), and surdo de terceira or de corte
(lit. third/cutter surdo). They are played with a mallet and muffled with the
free hand.

• Tantã (Figure 2.16j): a cylindrical hand drum more commonly used in the
roda. It has only one head (12 to 14 in) and its use can be compared to that
of surdo de primeira in a bateria.

Other percussion instruments that have been historically used in baterias or in rodas
are: pratos (standard hand-held cymbal pairs, in baterias only), frigideira (frying
pan) and prato-e-faca (kitchen knife and fork), which have recently displayed a
reduction in usage. In rodas de samba and pagodes, we can also find repiques de
mão and repiques de anel (respectively, hand- and ring-repiques).

The bateria is widely considered the “heart” of an escola de samba, not only
for enlivening the other members in a desfile, but also because it is responsible for
keeping the balance between singing, dancing and the “flow” of the escola in the
Avenida [24]. The faster the bateria plays, the faster the members in other alas
(wings) will parade. In a desfile, a bateria usually has around 300 instrumentalists
(batedores or batuqueiros, “beaters”), several conductors — the mestres (masters
of percussion), and the diretor de ala (wing director) also called diretor de bateria
or primeiro-mestre (first master). Instruments in a bateria are referred to as peças
(pieces) and, usually, the mestres in an escola are required to learn how to play all
or most of the different peças [24], so that they can teach other instrumentalists and
also conduct them in rehearsals and competitions.

In a bateria, peças can be further classified into two groups: (1) miudezas (minu-
tiae) and (2) couros-pesados (lit. heavy leathers) [24]. Miudezas are all the hand-
held instruments (e.g., cuíca, tamborim, chocalho) while couros-pesados correspond
to the loudest segment of the drum section (caixas, repique and surdos), which act
in a lower to middle register. We can also categorize the peças with respect to their
function in a bateria [60]:

• Surdos de marcação are the foundation of the bateria, playing the second beat
of samba’s duple meter. Surdos de resposta play the first beat and surdos de
corte play along with the surdos de marcação, but in more complex patterns.
The three surdos are not featured in all the escolas (e.g., surdos de segunda
are not present in Mangueira’s bateria). The way these instruments are tuned
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(a) Agogô (b) Chocalho (c) Cuíca

(d) Pandeiro (e) Reco-reco (f) Tamborim

(g) Caixa (h) Repique

(i) Surdo (j) Tantã

Figure 2.16: A few percussion instruments used in samba.
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can also vary (e.g., surdos de primeira are usually tuned to a pitch lower than
that of surdos de segunda, but in Mocidade, this relation is inverted);

• Repiques back up the surdos and are used in many moments to cue the bateria;

• Caixas play rhythmic figures that are characteristic of certain escolas de samba
and (along with surdos de corte) play a great part in the bateria groove;

• Pandeiros, cuícas, agogôs, reco-recos help sustaining the rhythm and may also
improvise phrases;

• Tamborins not only sustain the rhythm (as the other miudezas, but also play
certain convenções (riffs) that highlight the melody of the samba-enredo.

Figures 2.17 to 2.21 illustrate a few patterns for the surdo–tamborim–cuíca trio,
which is representative of the second-generation samba, and also for the caixas,
which indicate an escola’s identity. These patterns were transcribed to a score nota-
tion, but this surely brings many limitations since notation practices are unfamiliar
to samba, which is traditionally transmitted in escolas without written aids [59].
Furthermore, traditional notation systems were developed for and describe well the
intricate melodic-harmonic relations expressed in the common-practice music, which
are without parallel in a bateria ensemble [59]. However, besides the rhythm, sev-
eral other aspects (e.g., melodic, dynamic) are involved in the performance of each
instrument’s batida, which makes this notation issue even more problematical. Nev-
ertheless, the aforementioned examples were notated in 2

4 time signature, widely
applied when notating samba, although some scholars prefer using quaternary me-
ters (see [59] for a discussion on this matter). In either structure, the sixteenth note
is normally associated with the fastest pulse.
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(b) Surdo de segunda

Figure 2.17: Cyclical parts for surdo de primeira and de segunda. Adapted from [60].
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Figure 2.18: Cyclical parts for surdo de terceira. These instruments usually play
the second beat of each measure like surdos de primeira, but are free to do fills and
more complex rhythms, either improvised or in convenções unique to each escola.
The symbol > indicates accented notes. Adapted from [60].
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(c) “Teleco-teco” deconstructed

Figure 2.19: Cyclical parts for tamborim. Two of the most common cycles are
called: (a) carreteiro (where all the sixteenth notes are played) and (b) teleco-teco.
The symbol ↓ indicates a virada (turn) of the instrument, which is then struck in an
upwards movement. The (×) note heads (below the line) correspond to a note softly
played with a finger of the hand holding the instrument, while notes on the line and
above show when the instrument should be struck with the drumstick. Score (c)
presents a deconstruction of the teleco-teco cycle, showing how to see the tamborim
cycle of the Estácio paradigm. Adapted from [24, 60].
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Figure 2.20: Cyclical parts for cuíca. The symbols + (note heads above the line)
and ◦ (note heads below the line) indicate, respectively, closed and open strokes, i.e.,
when fingers of the free hand press the skin from the outside while the other hand
rub the stick (producing a higher tone pitch) or when the stick is rubbed without
the pressing of the drumhead. Adapted from [60].
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(d) Caixa from Mangueira (older version)

Figure 2.21: Cyclical parts for caixa of different escolas. The ♢ note head is used
for rim shots, while diagonal strokes across note stems indicate drum rolls. Notes
below and above the line correspond to strong and weak hands, respectively. Caixa
patterns show the identity of an escola. They originate from the religious drum
playing associated to orixás (spirits in candomblé). Adapted from [60].
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Chapter 3

Datasets

Machine-learning-based systems in music information retrieval (MIR) are becoming
more complex to handle the increasing number of tasks and challenges they bring. As
a result, accurately estimating the parameters of their typically large models requires
a greater quantity and quality of data [61], especially because data must be often
separated into training, test, and validation sets. Even though data augmentation
techniques can be used to alleviate this bottleneck [61, 62], this kind of strategy is not
able to solely solve the cultural bias still present in existing MIR data, methodologies,
and conclusions [6].

Indeed, a great part of the research in this field focuses on musical traditions
usually labeled as “Western”. This is worrying, since by doing so we risk not being
able to fully evaluate and reproduce specific musical properties found in many other
cultures [6]. Some datasets attempt to be universal and to cover a large number
of music styles, but end up sacrificing the very representation of what they are
trying to portray. This is the case, for example, of the well-known Ballroom and
Extended Ballroom datasets, in which the “Samba” class contains a mixture of songs
of different origins.1 Of those, only a few examples correspond to Brazilian rhythms,
specifically identifiable as bossa-nova, pagode, and others [19]. In other datasets,
music from non-“Western” traditions is given generic labels such as “Latin”, or even
“World” [19]. This underscores the importance of increasing the efforts towards the
study of non-“Western” traditions found throughout this multicultural world.

Among the datasets devoted to non-“Western” music, one of the biggest projects
today is CompMusic [6], which focuses on five particular music cultures: Arab-
Andalusian, Beijing Opera, Turkish-makam, Hindustani, and Carnatic. Several

1There is a discussion to be had here regarding the origins and modern aspects of “ballroom
samba”. Without going into much detail, it is widely known that, despite its ties with early
twentieth-century maxixe, modern ballroom samba (sometimes called international samba) is com-
monly associated with many other different “Latin” rhythms and is significantly different from
the traditional samba styles still practiced in Brazil. It also differs, in both musical and dancing
aspects, from the samba de gafieira, which is heir to maxixe in the national ballroom scene.
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annotations are provided alongside the recordings, including melody (e.g., singer
tonics, pitch contours), rhythm and structure (e.g., tāl.a cycles), scores (e.g., for
percussion patterns), and lyrics. Some datasets of Latin-American music were also
organized for MIR research. For instance, the dataset released in [63] comprises an-
notated audio recordings of Uruguayan candombe drumming, suited for beat/down-
beat tracking. Aimed at music genre classification, the Latin Music Database [64]
has Brazilian rhythms — axé, forró, gaúcha, pagode, and sertaneja — and music
from other traditions: bachata, bolero, merengue, salsa, and tango. Focusing ex-
clusively on Brazilian music, and built for music genre classification, the Brazilian
Music Dataset [65] includes forró, rock, repente, MPB (música popular brasileira,
lit. Brazilian popular music), brega, sertanejo, and disco.

For the tasks of drum transcription and, more specifically, drum playing tech-
nique recognition, the data that are available in the literature were mostly built
around the standard drum kit (bass, snare, and tom-tom drums, hi-hats, and cym-
bals). We highlight the ENST-Drums dataset [66], which includes audio-visual
recordings of three professional drummers playing individual strokes, phrases in dif-
ferent styles, soli, and accompaniment to real and to synthetic examples. Ten differ-
ent labels were used in the annotations, encompassing brushing and stick techniques
(e.g., rim shot, cross stick), among others. The MDB Drums dataset [67], which
is comprised of drum kit annotations from a subset of the MedleyDB dataset [68],
reports playing techniques for the snare drum, hi-hat, and cymbals. Synthetic data,
which are present on a few datasets [62, 69], can also be used in this task; these ease
the problem of generating reliable annotations and allow the construction of very
large sets. Other datasets containing real-world playing techniques on the drum kit
and also on Indian drums (mridangam and tabla) are mentioned in Chapter 6.

As we can see, even though several datasets of different rhythmic styles are
available for use within the MIR community in its many tasks, samba is very poorly
represented. In this chapter, we describe the two datasets exclusively of samba
music that were organized and built for this research. We discuss the design criteria
for compiling each dataset as well as the production of annotations and metadata.
These datasets were originally reported in [19] and [20], the contents of which are
here partially reproduced and also expanded to include other useful information.
We also include in this chapter a brief description of two datasets that are also used
in our experiments, but were assembled by other authors.

3.1 Brazilian Rhythmic Instruments Dataset

As mentioned in Chapter 1, the purpose of this work is the development of tools
for the analysis and modeling of rhythm and rhythmic patterns using samba music
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as case study. The algorithms developed during the course of this thesis must thus
incorporate prior musicological knowledge and provide musical insights, even though
coming from a music technology perspective. To first test the effectiveness of such
algorithms, a more controlled environment is preferred over the real occurrences
of music phenomena, usually full of multilevel and interrelated information. The
Brazilian Rhythmic Instruments Dataset (BRID), which we have selected for use in
the initial steps of this project, complies with such requirement.

The BRID is a copyright-free dataset containing short solo- and multiple-
instrument tracks in different Brazilian rhythmic styles, including samba and two of
its subgenres. Currently, this dataset contains 367 short tracks of around 30 s on av-
erage, totaling 2 h 57 min (1.09 GB of data) at studio quality (44.1 kHz sample rate
and 16-bit resolution). It was originally developed in the context of sound source
separation [70], where the metronome-bound solo tracks were artificially mixed and
served as ground truth for the separation process of the mixture track. Separation
performance was also evaluated in the case of acoustic mixtures. However, the ap-
plicability of this dataset can most certainly be extended to other areas. In [19], we
presented a few experiments showing how it can be used in rhythm computational
analysis in particular.

Since this dataset does not contain singing voices, it is a good candidate for more
controlled experiments, where the complex interactions between the interpreter and
other melodic instruments with the percussive base may not be desirable. To the
best of our knowledge, this is the first dataset of its kind, i.e., dedicated to Brazilian
instruments and typical rhythms.

In the following sections, we briefly describe BRID and its contents. We also
discuss how this dataset was organized and annotated.

3.1.1 Instruments and Rhythms

The recorded instruments were selected among the most representative ones in
Brazilian music, more specifically in samba music. Ten different instrument classes
were chosen: agogô, caixa, chocalho (shaker), cuíca, pandeiro, reco-reco, repique,
surdo, tamborim and tantã. To provide a variety of sounds, both membranophones
and idiophones were featured. Also, whenever possible, instruments were varied
in shape (e.g., oval or cylindrical shaker), size (e.g., 10- or 12-inch pandeiro), ma-
terial (e.g., leather or synthetic drumhead), pitch/tuning (e.g., 1st, 2nd, and 3rd
surdos, which are usually tuned in different pitch ranges for a desfile de escola de
samba) and the way they were struck (e.g., with the hand, or with a wooden or a
plastic stick), spanning a total of 32 variations. For example, the dataset features
two caixa variations (diameter of 12 in and either 4 or 6 snare wires), six pandeiro
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variations (either 10-, 11-, or 12-inch diameter with a leather or nylon drumhead)
and three tamborim variations (one with a leather head struck with a wooden stick,
and another one with a nylon head struck with either a wooden or a plastic stick2).
We refer the reader to Figure 2.16, where all instrument classes considered are por-
trayed. Tables 3.1 and 3.2 specify, respectively, each variation and the number of
recordings each instrument is featured in.

Table 3.1: Instrument classes and variations (Var.).

Instrument Label Var. Size (in) Material Drumstick Additional info.

Agogô AG 1 - metal wood 2 notes

Caixa CX 1 12 nylon wood 4 wires
2 12 nylon wood 6 wires

Chocalho SK
1 - wood - cylindrical
2 - metal - cylindrical
3 - plastic - double

Cuíca CU
1 6 leather - -
2 8 leather - -
3 9.5 leather - -

Pandeiro PD

1 10 nylon - -
2 10 leather - -
3 11 nylon - -
4 11 leather - -
5 12 nylon - -
6 12 leather - -

Reco-reco RR

1 10 metal - 1 spring
2 10 metal - 2 springs
3 11 metal - 3 springs
4 11 wood - -

Repique RP
1 10 nylon - repique de mão
2 12 nylon wood repinique
3 12 leather - repique de anel

Surdo SU
1 16 leather mallet -
2 18 leather mallet -
3 20 leather mallet -

Tamborim TB
1 6 leather wood -
2 6 nylon wood -
3 6 nylon plastic -

Tantã TT

1 10 leather - tantã de corte
2 11 leather - tantã de corte
3 12 leather - tantã de corte
4 14 napa/nylon - tantã de marcação

2A leather-head tamborim is not played with a plastic single- or multiple-stemmed drumstick.
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Table 3.2: Number of solo- and multi-instrument tracks per instrument class.

Instrument Solo Multi Total

Agogô 12 14 26
Caixa 17 16 33
Chocalho 22 13 35
Cuíca 8 11 19
Pandeiro 85 44 129
Reco-reco 24 16 40
Repique 37 35 72
Surdo 26 42 68
Tamborim 20 24 44
Tantã 23 38 61

Table 3.3: Tempi/number of solo tracks per rhythm.

Rhythm Label Tempo (bpm) # Tracks

Samba SA 80 54
Partido-alto PA 100 55
Samba-enredo SE 130 60
Marcha MA 120 27
Capoeira CA 65 12
Samba (virada) VSA 75 or 80 3
Partido-alto (virada) VPA 75 or 100 36
Samba-enredo (virada) VSE 130 17
Marcha (virada) VMA 120 8
Other OT - 2

The recordings present instruments being played in different Brazilian rhyth-
mic styles. Although samba and two of its subgenres (samba-enredo and partido-
alto) have been favored, BRID also features marcha, capoeira, and a few tracks of
baião and maxixe styles. The number of tracks per rhythm is summarized in Ta-
bles 3.3 and 3.4, where tempo is given in beats per minute (bpm). All rhythms
are in duple meter; samba and related genres are traditionally notated in this type
of bar division, usually displaying a strong accent on the second beat [60]. During
recording, only instruments and rhythms that are traditionally used in Brazilian
music were considered to provide an authentic portrayal of each rhythm.

3.1.2 Dataset Recording

All recordings were made in a professional recording studio in Manaus, Brazil, be-
tween October and December of 2015. The recording room had rectangular shape
with dimensions of 4.3 m× 3.4 m× 2.3 m and was acoustically treated with a com-
bination of wood and acoustic foam. Both microphone model and positioning were
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Table 3.4: Number of tracks per rhythm in multi-instrument recordings.

Rhythm # Tracks

Samba 41
Partido-alto 28
Samba-enredo 21
Marcha 3

optimized to translate the sound of each instrument as naturally as possible in the
recording, considering the instrument size and the room acoustics. Most instruments
were recorded with dynamic microphones within a distance of around 20 cm. The
digital files were recorded with a sampling rate of 44.1 kHz and 16-bit resolution.

As mentioned before, there are two groups of tracks in the dataset. The first
one consists of instruments recorded solo, with the musicians performing in various
Brazilian styles following a metronome track. Three musicians (each with years
of experience in samba and other Brazilian genres) were recorded separately, each
playing around 90 different instrument–rhythm combinations. For each instrument
class, there is at least one track that consists of a virada of one of the main rhythms.3

These are free improvisation patterns (still subject to the metronome track) which
are very common in rodas de samba. It is worth mentioning that the musicians
brought their own instruments for the recording sessions. Although the general
characteristics of each instruments are the same, e.g., size and type of material,
subtle differences in construction bring additional timbre variability to the dataset.

The second set of tracks of the dataset gathers ensemble performances, with the
musicians playing together different rhythmic styles without a metronome reference,
but with an indication of expected tempo. The instruments were individually cap-
tured with directional microphones, which were strategically positioned to minimize
sound bleed, and two condenser microphones in omni polar pattern captured the
overall sound in the room. The performances were designed to emulate typical ar-
rangements of each style. Following this procedure, 19 recordings were made with
four musicians, 29 with three musicians, and 45 with two musicians playing at a
time. One of the musicians featured in solo tracks was also recorded in these group
settings. Table 3.5 summarizes musician participation in the recordings.

3.1.3 Track Labeling and Annotations

As previously informed, the recording of BRID was done for another work [70], and
its intended use was in source separation tasks. Our specific contributions to the
dataset were in its organization and cataloguing, together with the production of

3Except for chocalho (shaker) tracks.
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Table 3.5: Musician participation in solo- and multi-instrument tracks.

Musician Solo Multi Total

#1 91 - 91
#2 96 76 172
#3 87 - 87
#4 - 80 80
#5 - 78 78
#6 - 19 19

beats, downbeats, and onsets annotations, which allow it to be used in a wider range
of problems. For the organization process, first the instrument classes and variations
present in each track (solo recordings and acoustic mixtures in ensemble recordings)
were recovered and a system of labels was developed for a naming convention. Miss-
ing tempo indications (in solo tracks) and musician identifications (specially in the
case of multi-instrument tracks) were retrieved, as well as missing rhythmic style
data. Track filenames were codified according to the procedure explained next.

Each audio track is given a unique filename, which starts with a four-digit number
between brackets — a global identification number [GID#], sequential for the entire
dataset. In solo track (S) filenames, the GID# is followed by four groups of characters,
whose format is either SW-XXX-YY-ZZ or SW-XXX-YY-VZZ, where W is the number for
the musician playing in the track (see Table 3.5), XXX specifies the instrument class
and variation being played, YY consists of a counter for tracks with the same pair
musician–instrument, and ZZ (or VZZ) indicates the rhythmic style (or a virada for
that style).

For acoustic mixture tracks (M), the GID# is followed by three groups of char-
acters, whose format is MW-YY-ZZ. Here, W indicates the number of instruments
recorded in the track (i.e., the number of musicians in the ensemble), YY is the
counter for a given MW prefix, and ZZ means the same as in the case of solo tracks.
The unique identifier (label) for each instrument class and for each rhythm can be
found in Tables 3.1 and 3.3, respectively.

To exemplify, we can check two samples taken from the dataset: file [0192]
S2-PD3-01-SA, which contains a solo pandeiro (variation 3: 11 in; leather head)
recording, was executed by musician #2 in a samba style; and file [0010] M4-10-SE,
which is a samba-enredo track performed by four musicians. A detailed list of in-
struments and musicians in each track is provided in Appendix A. In Table A.1, we
can verify that in track [0010] the musicians were playing caixa (6 wires), surdo
(18 in), pandeiro (11 in, nylon head), and reco-reco (metal, 2 springs).

Metronome tracks for solo recordings were made unavailable after the recording
process and were not used in the case of ensemble recordings. Given that beat
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position is fundamental for some of the analyses conducted within the MIR domain,
we carried on with the manual production of these targets. Downbeats were also
annotated in this process. All time instants were procedurally aligned with the
nearest onset — whenever the later was present —, defined as the local maximum of
the spectral flux function [71] over a neighborhood of the annotated instant. Later,
since another objective of this thesis is the study and characterization of rhythm
patterns and microtiming in samba music, a precise and descriptive annotation of
note articulations was required. Onsets were annotated only for solo tracks using the
madmom Python package [72]. Then, note segments were clustered with respect to
the stroke type in a related work [73], where the number of classes was perceptually
determined for each file and instrument class. Then, using these clusters as starting
points, we manually produced and refined stroke classifications.

All annotations were stored as plain text in .txt files. Each line in a file includes
a timestamp and a label, which relates to an event in the corresponding recording.
In the case of beat/downbeat annotations, the label is either “1” or “2”, respectively
if the beat is a downbeat or the second beat in a measure. In the case of articula-
tion types, each label indicates a stroke class (e.g., labels “THUMB”, “FINGERS”,
“SHELL” refer to three different repique strokes).

3.2 Samba-Enredo Dataset

A dataset of commercial samba recordings was also put together for this thesis.
This dataset allows us to deal with the intricacies of music performances that more
closely correlate to the actual musical phenomenon of samba, and provides a more
representative portrayal of its particular rhythmic characteristics in a large collection
of music data.

As stated in Chapter 2, samba has been developed in various forms throughout
Brazil. Each one of the subgenres has its singularities in either rhythm, tempo, in-
strumentation, structure, improvisational aspects, etc. Even though they all share
a common root, the amount of “swing” enforced by the musicians in each case can
also differ greatly. Therefore, we deemed sensible to select several samples coming
mostly of a single subgenre to form a cohesive dataset; this subgenre should prefer-
ably be one where the “swing” variance of its rhythmic properties was not so wide
as to make the investigation impossible. Additionally, since this work was matured
alongside the STAREL project, where a large dataset of candombe recordings was
available, and candombe is performed in group processions (comparsas) during the
Uruguayan Carnival, it would be interesting to also analyze a parading rhythm.

Samba-enredo satisfies all the above constraints, notably: it is tailored for and
usually performed in desfiles; and it does not present too great a variation of play-
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ing speed in short time periods. Also, sambas-enredo are featured on a large num-
ber of commercial recordings in CD quality. In the next section we describe the
Samba-Enredo Dataset (SAMBASET), currently comprised of recordings and meta-
data from 39 CDs of (mostly) sambas-enredo, which were acquired for the STAREL
project. We also discuss in brief the process of annotation of beat/downbeat data.

3.2.1 Dataset Overview

As mentioned above, sambas-enredo are well documented in the phonographic in-
dustry. Apart from historical collections, since 1968 the yearly sambas-enredo that
competing escolas will perform at the Desfile have been professionally recorded and
marketed to the general public. Initially available as LP records, these official com-
pilations began to appear regularly as CDs in 1990. Since then, the number of
musicians (instrumentalists/choir) participating in each track has only increased.

SAMBASET covers different eras, from later renditions of old classics to the most
recent sambas-enredo just out of the Sambadrome. Figure 3.1 indicates the distri-
bution of sambas w.r.t. the year they were first performed (typically, the parading
year). Three major collections make up the dataset; in chronological order:

• “História das Escolas de Samba” (HES): a collection of historical sambas, com-
posed between 1928 and 1974, from four major escolas de samba,4 arranged
and interpreted by the instrumentalists of each escola. Recorded in 1974, pub-
lished in four LPs by Discos Marcus Pereira (redistributed as CDs in 2011),
the 48 tracks include a few sambas-de-quadra/-de-terreiro and partidos-altos.

• “Escolas de Samba – Enredos” (ESE): a collection of historical sambas, com-
posed between 1949 and 1993, from ten traditional escolas de samba5 in the
voices of many idols from samba’s history, accompanied by a selected ensem-
ble of instrumentalists and choir. There is a total of 100 tracks recorded and
released as 10 CDs in 1993 by Sony Music, arranged by producer Rildo Hora.
This collection includes a couple of tracks from different subgenres (samba-de-
terreiro and samba-exaltação).

• “Sambas de Enredo” (SDE): official compilations of sambas-enredo recorded
by members of the top escolas6 from Rio de Janeiro, for each carnival parade
between 1994 and 2018. The 25 CDs gather 338 tracks, published by RCA/B-
MG/Sony BMG (1994–2006) and by Universal Music (after 2007), with one

4Império Serrano, Mangueira, Portela, and Salgueiro.
5Beija-Flor, Estácio de Sá, Imperatriz, Império Serrano, Mangueira, Mocidade, Portela,

Salgueiro, União da Ilha, and Vila Isabel.
6Escolas from the Grupo Especial. In 2018, these were 13 escolas, in order of their final score in

the competition: Beija-Flor, Paraíso do Tuiuti, Salgueiro, Portela, Mangueira, Mocidade, Unidos
da Tijuca, Imperatriz, Vila Isabel, União da Ilha, São Clemente, Grande Rio, and Império Serrano.
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Figure 3.1: Samba recordings in SAMBASET per decade of first performance. Colors
indicate the three different subcorpora in the dataset.

samba-enredo per track. In a few tracks, the first few seconds may include a
short excerpt of a samba-exaltação or “battle cries” (calling the members of
an escola to the desfile).

Table 3.6 shows the number of tracks for each escola de samba featured in the
dataset, by genre. In total, there are 493 recorded sambas in 486 audio tracks,7

resulting in over 40 h 30 min of content. All files are stereo with a sampling rate
of 44.1 kHz and 16-bit resolution. Not only the three different collections allow for
the coverage of different time periods, but they also have distinct sonorous charac-
teristics. In HES, tracks feature only a few musicians playing very naturally and
with great expression, as if they were in a roda. For several tracks in the official
compilation (SDE), on the other hand, more than fifty instrumentalists play simul-
taneously while a choir of around the same size accompanies the main singer. For
this reason, many tracks in SDE were recorded with the help of metronome tracks,
although this information is not officially disclosed. Finally, ESE presents smaller
ensembles and less expressiveness.

3.2.2 Metadata and Annotations

Metadata for albums and tracks were carefully curated and organized in an
XML file. The information therein described was primarily obtained from CD
booklets and later cross-checked with both the União Brasileira de Composi-

7Some tracks in the ESE collection contain more than one samba.
8An imbalance can be observed in both the distributions of genres and escolas. ST/SQ and

OT tracks were only kept for the completeness of the dataset in regard to the CD collections.
Moreover, the escolas’ playing styles are not so heterogeneous as to make this imbalance critical.
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Table 3.6: Number of recordings in SAMBASET per escola and genre: samba-enredo
(SE), samba-de-terreiro/samba-de-quadra (ST/SQ), and others (OT).8Other escolas
were less featured in Grupo Especial from 1994 to 2018, presenting thus a smaller
contribution to the SDE collection; these include: Império da Tijuca (2), Inocentes
de Belford Roxo (1), Paraíso do Tuiuti (3), Renascer De Jacarepaguá (1), Rocinha
(2), Santa Cruz (2), Unidos Da Ponte (3).

Genres

Escola SE ST/SQ OT Total

Mangueira 45 3 1 49
Portela 41 5 2 48
Salgueiro 42 5 - 47
Império Serrano 31 5 - 36
Mocidade 35 - 1 36
Beija-Flor 34 1 - 35
Imperatriz 35 - - 35
Vila Isabel 33 - - 33
União da Ilha 27 - - 27
Grande Rio 25 - - 25
Unidos da Tijuca 24 - - 24
Viradouro 18 - - 18
Estácio 16 - - 16
Porto Da Pedra 15 - - 15
Caprichosos 12 - - 12
São Clemente 12 - - 12
Tradição 11 - - 11
Other escolas (7) 14 - - 14

Total 470 19 4 493

tores9(lit. Brazilian Union of Composers, UBC) and the Instituto Memória Musical
Brasileira10(Brazilian Musical Memory Institute, IMMuB). Whenever corresponding
information was available, data were also checked against online database services
such as FreeDB,11 MusicBrainz12 or Discogs.13 Finally, we consulted samba-oriented
forums and websites for additional, conflicting or missing information.

All XML tags can be seen in Figure 3.2, which shows an excerpt of the metadata
file. While most of these labels are straightforward (e.g., title, composer, genre,
samplerate), some require further clarification. First, the album_code refers to a
unique code given to each album in the dataset. Albums from the HES and ESE
collections were sequentially numbered, i.e., they are referred to by the codes HES1
to HES4 and ESE1 to ESE10, respectively. For SDE, albums were specified via the

9http://www.ubc.org.br/
10https://immub.org/
11https://gnudb.org
12https://musicbrainz.org
13https://www.discogs.com
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<metadata dataset="SAMBASET"
curator="Lucas S. Maia"
version="0.0.1">

...
<album title="História das Escolas de Samba − Mangueira"

arranger="Cartola"
producer="J. C. Botezelli"
instrumentalists="Various Artists"
record_label="Discos Marcus Pereira"
year_published="2011"
length="00:29:48"
total_tracks="12"
album_code="HES1"
barcode="7892141643634">

...
<track track_number="6"

title="Vale Do São Francisco"
artist="Cartola"
composer="Cartola and Carlos Cachaça"
year_recorded="1974"
year_first_performed="1948"
genre="samba de enredo"
length="02:49.226"
samplerate="44100"
bpm="78.4"
start_time="00:07.895"
end_time="02:49.226"
checksum="d16974f135f0c374677c0e0db101cfea"/>

...
</album>

...
</metadata>

Figure 3.2: Metadata file excerpt.

publishing year, which is also present in the album’s title (i.e., SDE1994–SDE2018).
The track_number is used with the album_code to name all audio files (e.g. the
metadata in Figure 3.2 corresponds to file HES1.06). Track’s start_time and end_-
time indicate the time each samba starts and ends, respectively. This is invaluable
since many samba-enredo recordings are preceded by a short introductory speech or
song motivating the performance, or succeeded by a “farewell” shout after the music
has already stopped. The checksum attributes were filled with the MD5 hash of the
track’s WAV file, to allow the verification of audio data integrity. Finally, mean bpm
values were estimated from the beat annotations described in the following.

SAMBASET has beat and downbeat annotations that were produced according
to a semiautomatic procedure, after the results of a few experiments with state-of-
the-art beat tracking systems (see Chapter 10). The DBNBeatTracker, available in
the madmom package, was deemed a good candidate for providing reliable beat esti-
mations [20]. Thus, first, automatically-generated beat annotations were obtained
for all audio files using this system. In a second step, the estimates were checked
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and manually corrected, addressing eventual phase errors, and missing/extra beats.
Since samba-enredo is always in duple meter, downbeats could be manually selected
during this second phase. This two-step procedure greatly reduced the amount of
manual work necessary to annotate beats and downbeats for this entire dataset.

A simple interface was built in Python 2 with Tkinter for a visualization of the
dataset’s albums and associated information. This interface allows the user to select
and play any track and also search the dataset. A screenshot of the interface can
be seen in Figure 3.3. A similar visualization, devoid of audio files for copyright
purposes, is available at http://www.smt.ufrj.br/~starel/sambaset and shown
in Figure 3.4.

3.3 Other Datasets

Throughout our experiments in Part III, we have used other datasets that, although
not prepared by us, provide interesting comparison points for the methodologies we
have developed.

First, there is the Candombe dataset [63, 74]. Candombe refers to one of the most
essential parts of Uruguayan popular culture. It is a style of dance and drumming
music that can be traced back to the cultural practices brought to the Americas by
enslaved African populations. Three types of drums are featured in candombe, each
corresponding to a different frequency range and specific rhythmic patterns. Chico
is the smallest (and highest-pitched) drum and functions as a timekeeper, describing
the smallest metrical pulse. The repique is responsible for improvisational parts in
the mid register. Finally, the piano, a large bass drum, plays the accompaniment. A
timeline pattern, clave or madera, is shared by the three drums and is produced by
hitting the drum shell with a stick. This pattern is commonly played by all drums
at the start of a performance and helps establish the four-beat cycle, which is irreg-
ularly divided [38]. As with many musics of African tradition, candombe contains
strong phenomenological accents that are displaced with respect to the metric struc-
ture [38]. The Candombe dataset contains 35 recordings of candombe drumming (2.5
h in duration) featuring three to five drummers performing different configurations
of the three differently-sized drums. We note that tempo varies greatly and often
increases along the performances in this dataset.

Furthermore, we have also explored the Ballroom dataset [75, 76], which is rec-
ognized as a standard of MIR literature. It consists of many distinct genres and was
selected to serve as a counterpoint in our investigation in Chapter 11. It includes 698
tracks of eight ballroom dance genres (cha-cha-cha, jive, quickstep, rumba, samba,
tango, Viennese waltz, waltz) of 31 s on average.

To allow a direct comparison of results across all datasets, candombe recordings
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Figure 3.3: Interface for querying the Samba-Enredo Dataset (SAMBASET).

Figure 3.4: Web version of SAMBASET interface.

60



have been segmented into 276 non-overlapping 30-second excerpts. The reasons for
this are elucidated in Chapter 11.
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Chapter 4

Signal Transforms

In this chapter, we briefly present the main signal transforms that are used through-
out this thesis, while at the same time introducing our mathematical notation. Audio
signals can be represented in many domains, each one being more useful to repre-
sent and analyze a certain kind of information. Signal transforms that translate
among these different domains are of paramount importance in signal processing,
particularly in audio processing.

4.1 Fourier Transform

Sounds are produced by the vibration of an object (e.g., a string, a membrane) and
propagated by perturbations of a medium. In the case of a medium such as air,
these perturbations are a series of local rarefactions and compressions that radiate
from the sound source. At a given point in space, this sound wave is defined by
changes in the local pressure, and can be represented by its waveform, x(t), which
is a function of time t (usually in seconds).

The Fourier transform (FT) is a mathematical tool that allows us to analyze the
frequency content of x(t), by comparing it to an infinite number of pure sinusoids
of different frequencies. The Fourier transform of x(t) is defined as [77]

X(jω) =

∫ ∞

−∞
x(t)e−jωt dt, (4.1)

where j is the imaginary unit and ω, a continuous variable in radians per second
(rad/s), is the angular frequency of each sinusoid

ejωt = cosωt+ j sinωt. (4.2)

We can interpret X(jω) in Equation (4.1) as a complex number that describes
the magnitude and phase of its respective complex sinusoid in the superposition that
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represents x(t), such that an inverse transform can be obtained by [77]

x(t) =
1

2π

∫ ∞

−∞
X(jω)ejωt dω. (4.3)

One of the many properties of the Fourier transform is the convolution theorem,
which states that the transform of the linear convolution of two signals in the time
domain corresponds to multiplication in the frequency domain, and vice versa:

(x ∗ y)(t) FT←→ X(jω) · Y (jω) (4.4)

x(t) · y(t) FT←→ (X ∗ Y )(jω). (4.5)

When an analog signal like x(t) is brought to the digital world (e.g., digital
recordings) it undergoes discretization and quantization, which allow it to be stored
in binary form. The discrete-time version x[n] is obtained from x(t) through the
sampling process, which consists of retaining one sample of the signal at every Ts

seconds, where Ts > 0 is called the sampling interval. In other words,

x[n] = x(nTs), for n ∈ Z. (4.6)

Similarly to its continuous-time counterpart, the discrete-time signal x[n] may
also admit a Fourier representation. First, let us define a continuous-time signal
xTs(t) that is equivalent to x[n] as

xTs(t) =
∞∑

n=−∞

x(t)δ(t− nTs), (4.7)

with n ∈ Z and where δ(t) is the unit impulse at t = 0. We can observe that xTs(t)

is defined by the product of x(t) by an impulse train of period Ts, i.e., each unit
impulse is shifted to t = nTs and weighted by the value of x(t) at the same instant.
By applying the convolution theorem, we can readily see that the Fourier transform
XTs(jω) of our equivalent signal is the result of the convolution between X(jω) and
the Fourier transform of the impulse train, which is itself an impulse train of period
ωs = 2π/Ts. This means that XTs(jω) is a periodically repeated version of X(jω).
The Fourier representation of x[n] is the counterpart to this XTs(jω). We define this
discrete-time Fourier transform (DTFT) as [77]

X(ejΩ) =
∞∑

n=−∞

x[n]e−jΩn, (4.8)

where Ω = ωTs is the normalized angular frequency in radians per sample, so that
X(ejΩ) is periodic in Ω with period 2π rad/sample.
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The choice of Ts in the sampling process is not arbitrary. In fact, the Nyquist–
Shannon theorem states that fs, the reciprocal of the sampling period, must be
greater than twice the maximum frequency present in the original signal, x(t), if x(t)
is a real-valued baseband signal. If x(t) is not bandlimited, it should first be made so
by a low-pass analog filter; this guarantees that x(t) can be recovered perfectly from
x[n]. We can again use the equivalent signal xTs(t) to see why that is the case. First
note that if fs is much greater than the signal bandwidth, one can recover X(jω) by
low-pass filtering XTs(jω) with an adequate cutoff frequency. However, if Ts is too
large and fs is small when compared to the signal bandwidth, an overlap can occur
between the shifted replicas of X(jω) in XTs(jω). This phenomenon, called aliasing,
potentially occurs when fs is not greater than twice the bandwidth of X(jω).

We have not yet imposed a limitation on the length of signal x[n], which cannot
be infinite for digital applications. Not only that, but the continuous-frequency
representation provided by the DTFT is also unfeasible in the same settings. If we
limit the length of x[n] to N samples, we can compute its discrete Fourier transform
(DFT), which can be shown to be equivalent to a uniformly sampled version of the
DTFT of the same signal at frequency values Ωk = Ω0k, where Ω0 = 2π/M [5].
The parameter M describes the frequency resolution of the DFT, and usually is
set M = N , such that the DFT may be regarded as a change of basis. This way,
the transform provides a representation X[k] of same size as the input x[n], i.e., N
samples, and is defined by [5]

X[k] =
N−1∑
n=0

x[n]e−jΩkn, (4.9)

with k = 0, 1, . . . , N − 1. Similarly to what happened in the sampling process of
time signals, the discretization of the DTFT in the frequency domain at every 2π/N

radians creates time replicas of x[n] with a repetition period of N . The convolution
theorem still holds for the DFT in the case of circular convolutions as signals are
periodic in both time and frequency domains:

(x⊛ y)[n]
DFT←→ X[k] · Y [k] (4.10)

x[n] · y[n] DFT←→ (X ⊛ Y )[k]. (4.11)

It should be noted that for finite-length signals x[n] and y[n] the circular convolution
and the linear convolution are identical if the signals are sufficiently zero-padded.

The family of Fourier representations translate a continuous- or discrete-time
signal to the frequency domain, displaying its frequency components. As a result,
we have no information on when these frequency components appear in the original
signal, which could be desirable especially in the case of quasi-stationary or even
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nonstationary signals. A short-time analysis of the Fourier transform has been de-
vised with this problem in mind. In this representation, known as short-time Fourier
transform (STFT), a finite time window is used to select a portion of the signal; the
Fourier analysis of the signal portion is computed and the window advances to the
next time position. For a discrete-time signal x[n], this procedure is mathematically
described by [5]

X(ejΩ,m) =
∞∑

n=−∞

x[n]w[n−m]e−jΩn, (4.12)

where w[n] is a window function which is usually centered around n = 0. At each
step, the window selects a portion of the signal around n = m for analysis. We
can, of course, compute a discretized version of the STFT by means of the DFT. It
is also possible to advance the window by larger steps, with the inclusion of a hop
parameter. The discrete-frequency version of the STFT of signal x[n] is [5]

X[k,m] =
N−1∑
n=0

x[n]w[n−mh]e−jΩkn, (4.13)

where w[n] has length N and h ∈ N∗ is the hop size. Thus, for a given m, X[k,m]

can be interpreted as the discrete Fourier transform of the modified signal defined
by x[n]w[n−mh]. In general, the STFT is visually represented in two-dimensional
form by its magnitude or power spectrograms,

Ymag[k,m] = |X[k,m]| or Ypow[k,m] = |X[k,m]|2. (4.14)

The STFT admits another interpretation [78]: for a fixed frequency Ωk, X[k,m]

is the linear convolution between the window w[n] with a modulated version of x[n],
i.e., x[n]e−jΩkn; the result of which is then decimated by h. The modulation shifts
to the baseband all the frequency content of x[n] around Ω = Ωk, while the window
w[n], which normally has the form of a low-pass filter, selects only a small portion
of the spectrum of x[n] around Ω = 0. From this filtered time signal, we then take
one sample at every h samples. This filter-bank interpretation of the STFT will be
quite useful in the following sections.

4.2 Constant-Q Transform

As seen before, the resolution provided by the DFT is uniform in frequency and
the bins in this domain are linearly spaced with ∆Ωk = 2π/N rad/sample, where
N is the length of the signal. Particularly, in the case of the STFT, where N is
the length of the analysis window, a tradeoff arises between time and frequency
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resolutions. If we increase N , although the frequency resolution will be improved,
we lose the ability to precisely detect events in time. Instead, if we decrease the
number of analysis points, time localization is improved whereas frequency content
loses resolution. This is known as the uncertainty principle, and it is well described
and understood in the literature [5, 77].

The fixed time-frequency resolution the STFT has over the entire time-frequency
plane is undesirable for certain applications. In the case of music signals and in
auditory models of human hearing, the geometric relations among harmonics are
such that the DFT has too fine a resolution in high frequencies, and low frequencies
are underrepresented. Different time-frequency representations were developed to
deal with this issue. For example, some representations circumvent this issue by
averaging the energy in adjacent STFT frequency bins, grouped in a non-uniform
fashion (e.g., mel spectrogram). Others, like the constant-Q transform (CQT) and
its short-time computation, can be obtained from the time signal by processing it
with a different family of filters than those used in the DFT.

The constant-Q transform [79] has geometric spacing and resolution in frequency
which is controlled by the quality factor Q. Unlike in the uniform sampling of the
DFT, we define a series of bin center frequencies

Ωk = Ω02
k
B , (4.15)

for k = 0, 1, . . . , K − 1, where B is the number of frequency bins per octave (e.g.,
B = 12 for semitone resolution) and K is the total number of frequency bins used
to compute the representation. The factor Q defines the constant selectivity of each
filter as

Q =
Ωk

∆Ωk

=
1

2
1
B − 1

, (4.16)

such that ∆Ωk, the bandwidth for each bin, is proportional to the center frequency
Ωk. Remember that in the DFT the digital bandwidth of each bin is given by 2π/N .
In the CQT, the desired constant selectivity can be achieved by changing the length
of the analysis window for each bin k, i.e.,

Nk =
2π

∆Ωk

=
2πQ

Ωk

. (4.17)

Note that window lengths are real-valued. In practical implementations, Nk is usu-
ally rounded towards zero [79] or the nearest odd integer [80].

With that, the k-th spectral component of this representation is computed as

XCQ[k] =
1

Nk

Nk−1∑
n=0

x[n]wk[n]e
−jΩkn, (4.18)
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where the window wk[n] is zero outside the range [0, Nk − 1] and the center fre-
quency is given by Ωk = 2πQ/Nk, which follows directly from Equation (4.17). The
normalization factor Nk is included in this equation since each spectral component
requires the summation of a different number of terms.

Finally, as in the case of the STFT, we can compute a short-time version of the
CQT as

XCQ[k,m] =
1

Nk

Nk−1∑
n=0

x[n]wk[n−mhk]e−jΩkn, (4.19)

where XCQ[k,m] is the bin corresponding to the k-th frequency and m-th frame of
x[n] and hk is the hop length (in samples) for a given channel k. In most applications,
this hop is set hk ≜ h, i.e., it is made independent of the channel.

As we can observe, the CQT exploits the time-frequency resolution tradeoff by
analyzing low-frequency components with longer observation windows wk[n] than in
the high-frequency ones, which results in an improved frequency resolution in the
low-frequency range and higher time resolution at the other end of the spectrum.

The CQT is more computationally expensive than the DFT, for which the fast
Fourier transform (FFT) algorithm provides an efficient and elegant solution. How-
ever, efficient implementations of the CQT have been proposed in [80, 81].

4.3 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is another interesting representation, which
performs a multiresolution analysis via the projection of a time signal on a family of
basis functions called wavelets [82]. These functions are defined by two parameters,
k and m, that control, respectively, the time-scale dilation (scale) and the translation
of a prototypical “mother” function, the analysis wavelet ψ(t). The projection of
x(t) on the wavelets allows for an analysis of its contents with a variable degree of
detail and is suitable for describing transient and nonstationary signals.

Let us first defineXΨ[k,m] that represents x(t) at the k-th scale and displacement
m as [82]

XΨ[k,m] =

∫ ∞

−∞
x(t)ψ∗

k,m(t) dt, (4.20)

with k,m ∈ Z and where ∗ denotes the complex conjugate. The “daughter” wavelets,
ψk,m(t), are usually obtained from the analysis wavelet through a dyadic derivation1

such that
ψk,m(t) = 2

k
2ψ(2kt−m), (4.21)

1The dyadic derivation of the “daughter” functions in the wavelet transforms is sometimes
expressed with negative powers, i.e., 2−k/2 and 2−k (cf. [83]). In this case, the interpretation of
the scale parameter and its effects are the opposite of what is discussed in this section, e.g., basis
functions are stretched when the scale is increased, etc.
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where 2k/2 is an amplitude scale factor that guarantees normalization along different
scales. Many families of compactly supported bandpass functions have been pro-
posed in the literature, e.g., the Haar, the Daubechies, and the Morlet wavelets [82].

From Equation (4.21), we can readily verify that, as the time-scale dilation pa-
rameter k grows, the basis function is compressed in time; correspondingly, it is
stretched in the frequency domain and its center frequency shifts upwards. Con-
versely, the larger the scale, the more dilated in time the wavelet becomes, present-
ing a thinner support in the frequency domain. The geometric time scaling enforced
by the dyadic derivation ensures that, as the scale increases (as do the central fre-
quency and bandwidth of the basis function), fewer filters are arranged to cover the
corresponding frequency region. Also note that the step for the translation of each
“daughter” wavelet is dependent on the scale.

The original signal x(t) can be resynthesized through [82]

x(t) =
∞∑

m=−∞

∞∑
k=−∞

XΨ[k,m]ψk,m(t), (4.22)

where ψk,m(t) are dilations and translations of a synthesis “mother” wavelet, ψ(t),
that also obey the relation expressed in Equation (4.21). In practice, the signal
x(t) is limited in support, and we do not need to consider an infinite number of
translations m when computing the inverse of Equation (4.22).

It is possible to reduce the number of coefficients that are used to represent
x(t). For this purpose, we introduce another set of functions, the analysis and the
synthesis scaling functions φ(t) and φ(t), and their corresponding families (subject
to a derivation in the form of Equation (4.21)). With the analysis scaling function,
we can compute the coefficients [82]

XΦ[k,m] =

∫ ∞

−∞
x(t)φ∗

k,m(t) dt. (4.23)

The multiresolution principle states that a space that contains signals with high
degree of detail will also contain those of lower resolution [82]. In other words, if Φk

is the span (i.e., the set of signals that can be represented by a basis set) at scale
k, then Φk ⊂ Φk+1. The scaling functions and the wavelets are related in such way
that, for a given scale k, the subspace Ψk in which the wavelets reside is orthogonal
to Φk, and complements the latter to form Φk+1. We can then choose an initial scale
k0, that indicates the coarsest span generated by the φk0,m(t) functions. Lastly, by
taking into consideration that x(t) is limited in resolution, we may also impose an
upper bound on k, for example k ≤ K, up to which the wavelet family will provide
the necessary detail to the analysis at hand. Figure 4.1 depicts the nesting of the
subspaces generated by the scaling and wavelet functions.
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Figure 4.1: Vector spaces for scaling and wavelet functions starting at k0 = 0.

Thus, without loss of generality, we set the initial scale k0 = 0 and K as the
maximum scale. Then, defining φm(t) = φk0,m(t) and XΦ[m] = XΦ[k0,m], we can
alternatively reconstruct the time signal x(t) as (cf. Equation (4.22))

x(t) =
∞∑

m=−∞

XΦ[m]φm(t) +
∞∑

m=−∞

K∑
k=0

XΨ[k,m]ψk,m(t). (4.24)

Since lower resolution scaling functions must reside in the space defined by higher
resolution ones, we can express any scaling function in Φk with the functions that
define Φk+1 through the following relation [82]:

φ(2kt−m) =
∑
n

h0[−n]
√
2φ(2k+1t− 2m− n), (4.25)

with n ∈ Z. Similarly, because the wavelets at the k-th scale reside in Ψk, which
is the orthogonal complement of Φk in Φk+1, they can be expressed by functions in
this space as the weighted sum

ψ(2kt−m) =
∑
n

h1[−n]
√
2φ(2k+1t− 2m− n), (4.26)

with n ∈ Z. The synthesis scaling and wavelet functions share analogous relations,
with weights correspondingly given by g0[−n] and g1[−n] [82].

From the multiresolution formulations given by Equations (4.25) and (4.26), it
can be shown [82] that the coefficients XΨ[k,m] and XΦ[k,m] are expressible in
terms of XΦ[k + 1,m], the scaling coefficients at the (k + 1)-th scale. This allows a
quite efficient computation of the wavelet and scaling coefficients at coarser scales
via a critically decimated dyadic filter bank of analysis, the input of which are the
values XΦ[k + 1, n] which are filtered by two finite impulse response (FIR) filters,
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h1[n]
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h0[n]

h1[n]
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XΦ[K − 1, n]

XΨ[K − 1, n]

XΨ[K,n]

(a)

XΦ[K − 1, n] ↑2 g0[n]

+
XΦ[K,n]

g1[n]↑2XΨ[K − 1, n]

↑2 g0[n]

+

g1[n]↑2XΨ[K,n]

XΦ[K + 1, n]

(b)

Figure 4.2: Filter banks of (a) analysis and (b) synthesis for the efficient computation
of wavelet transform coefficients.

with impulse responses h0[n] and h1[n]. Similarly, we can travel from coarser scales
up to scales of more detail with a synthesis filter bank determined by g0[n] and g1[n].

Strictly speaking, the wavelet transform is only defined for continuous time sig-
nals, x(t). In practice, however, we refer to the wavelet transform of a discrete time
signal x[n] from scale 0 up to K as the coefficients obtained when filtering this signal
through the analysis filter bank described before [83]. Note that this is equivalent
to computing the wavelet decomposition of a continuous time signal x̂(t) that, at
the (K + 1)-th scale, is represented by coefficients XΦ[K + 1,m] = x[m].

Wavelet transform of a time signal can be visually represented by a scalogram,
a time-scale plot of its coefficients. For complex wavelets, moduli of the coefficients
or squared moduli are used, analogously to usual spectrogram representations.

4.4 Modulation Spectral Transform

The time-frequency representations we reviewed earlier manage the tradeoff between
two different domains. They are quite useful in the representation of nonstationary
signals, where they resort to an appropriate set of window lengths and hop sizes
such that signal properties remain approximately stationary within every analysis
frame. A different way to model and study this class of signals is by means of
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modulation analyses. In this framework, a real broadband signal x[n] is interpreted
as a superposition of different narrowband components, and each of these subbands
sk[n] (e.g., analytic subbands of a filter bank) is itself expressed in product form by
a modulating signal and a carrier, mk[n] and ck[n] respectively [84]:

x[n] =
K−1∑
k=0

sk[n] =
K−1∑
k=0

mk[n]ck[n]. (4.27)

Here, the modulating term represents the envelope of the subband signal (ampli-
tude modulation) while the carrier contains its temporal fine structure (frequency
modulation). There is no unique way to demodulate a single subband sk[n], i.e., de-
termine mk[n] and ck[n] for all n; in fact, for many nontrivial cases, s[n] = m[n]c[n]

defines an underdetermined system of equations. The mathematical possibilities for
demodulation, albeit legitimate, are not all useful and can be reduced in number
by the use of certain conventions or constrained by the physical meaning of the
signals under analysis [85, 86], e.g., boundedness of the amplitude modulator or the
bandwidth of the carrier’s instantaneous frequency. We describe in the following
two different approaches to demodulate the subband signals.

4.4.1 Incoherent Demodulation

In the incoherent demodulation, we assume modulators are real-valued and non-
negative, and separate the complex analytic subbands into magnitude and phase.
We then have

mk[n] = |sk[n]| and ck[n] = ej∠sk[n], (4.28)

respectively the Hilbert envelope and the complex carrier term of the k-th subband.
The incoherent demodulation gets its name from the fact that the modulator is

estimated directly from the subband signal, without previous estimation of the car-
rier. This particularly common demodulation method does not guarantee a bounded
modulator nor a band-limited carrier. Indeed, since all the phase information is rep-
resented by the carrier, its instantaneous frequency can exceed the frequency range
of the original signal or even contain infinite discontinuities [85].

4.4.2 Coherent Demodulation

In the coherent demodulation, we must first recover the carrier signal ck[n] = ejϕk[n],
which can then be used for estimating the modulator from the subband signal by

mk[n] = sk[n]c
∗
k[n]. (4.29)
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There are different ways to accomplish this carrier estimation. One example
is the spectral center-of-gravity (COG) method [85], in which the instantaneous
frequency (IF) of each analytic subband is framewise estimated via the spectral
centroid (see Section 5.2.2). In practice, the squared magnitude of the STFT of sk[n]
is used in the computation of the spectral density at each frame. By virtue of this
frame-by-frame process, this IF estimate is smooth, which results in a bandlimited
carrier.

The carrier phase ϕk[n] is computed through discrete integration of the instan-
taneous frequency Ωk

IF[n], such that

ϕk[n] =
n∑

p=0

Ωk
IF[p]. (4.30)

The carrier signal is now determined and the corresponding (now possibly complex)
modulator can be retrieved by Equation (4.29). It follows from this demodulation
scheme that, if the original signal is bounded (in frequency), the modulator will be
well-behaved [85].

In either the incoherent or coherent demodulation cases, the modulation spec-
trum can be obtained through a suitable time-frequency transformation (e.g., FT,
STFT) of the modulators mk[n], for all k subbands, resulting in a joint acoustic-
frequency–modulation-frequency representation [87].

4.5 Scale Transform

The scale transform (ST) is a particular case of the Mellin transform, and defined
as [88]:

Dx(c) =

∫ ∞

0

x(t)e(−jc−1/2) ln t dt, (4.31)

where c ∈ R is the scale variable. Its inverse is given by [89]

x(t) =
1

2π

∫ ∞

−∞
Dx(c)e

(jc−1/2) ln t dt. (4.32)

The main property of the scale transform we will exploit in this work is the scale
invariance [89], by means of which the transforms of signals x(t) and its scaled version
√
ax(at), with a ∈ R+, have the same magnitudes, differing only in phase. The

values a < 1 and a > 1 correspond to scale expansion and compression, respectively.
The scale transform of a signal x(t) can be computed from the Fourier transform

of an exponentially warped version of the same signal, weighted by an exponential
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window. The Fourier transform of a signal defined as

xscale(t) = x(et)et/2 (4.33)

is

Xscale(jc) =

∫ ∞

−∞
xscale(t)e

−jct dt

=

∫ ∞

−∞
x(et)et/2e−jct dt

=

∫ ∞

−∞
x(et)e(1/2−jc)t dt. (4.34)

After a change of variable t⋆ = et (t = ln t⋆),

Xscale(jc) =

∫ ∞

0

x(t⋆)e(1/2−jc) ln t⋆ d(ln t⋆)

=

∫ ∞

0

x(t⋆)e(1/2−jc) ln t⋆ 1

t⋆
dt⋆

=

∫ ∞

0

x(t⋆)e(1/2−jc) ln t⋆e− ln t⋆ dt⋆

=

∫ ∞

0

x(t⋆)e(−jc−1/2) ln t⋆ dt⋆

= Dx(c). (4.35)

Fast computation of the scale transform exploits this relation with the Fourier trans-
form [89].

Other approaches provide a discrete approximation to that integral of Equa-
tion (4.31), assuming a constant value over logarithmic intervals. In the direct scale
transform (DST) [90], the integral is approximated as

Dx(c) =
1

1/2− jc

∞∑
n=1

[x(nTs − Ts)− x(nTs)] (nTs)1/2−jc. (4.36)

This transform can be made efficient by precomputing the basis function matrix with
elements (nTs)

1/2−jc and has the added benefit of avoiding the non-linear interpola-
tion of signal x(t) that is required to obtain xscale(t) in conventional implementations.
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Part II

Drum Sound Classification
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Chapter 5

Features for Drum Sound
Classification

In this chapter, we present an overview of the preprocessing steps and feature de-
scriptors that are used for drum sound classification. These features are investigated
and selected to be used in conjunction with supervised classification techniques re-
ported in Chapter 7 for the task of drum stroke recognition.

Here, we bundled the features into two major groups. First, the literature de-
scriptors, which correspond to features commonly used for the purpose of instrument
recognition. These can be further divided into temporal-, spectral-, and cepstral-
related features, according to the domains from which they are extracted. A differ-
ent taxonomy of descriptors for music, speech and environmental sounds is available
in [91]. The second group is composed of proposed features and includes the scat-
tering transform, which, to the best of our knowledge, has not been applied in this
task, and a modulation descriptor using a cascade of CQTs first presented here.

Most of the following features are thoroughly described in [92]; for the remaining
features and whenever necessary we provide complementary references.

5.1 Signal Envelope

A signal envelope v[n] is a “smooth” function1 that traces the outline of a discrete-
time signal x[n], thus providing an approximation of its instantaneous amplitude.
For a narrowband signal such as the ones described in Section 4.4, the modulator
signal mk[n] acts as an envelope of the subband signal. However, envelopes can also
be extracted from broadband signals.

There are several ways of constructing v[n]. Strictly speaking, two such outlines
can be computed for any given signal — an upper and a lower boundaries. Con-

1Strictly speaking, an envelope of a signal can only be said “smooth” in the continuous domain.
In the discrete domain, “smooth” refers to a signal without abrupt changes.
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sidering as the real envelope only an upper boundary of the rectified signal |x[n]|,
we could, for instance, compute either the instantaneous peak amplitude or the in-
stantaneous root mean square (RMS) value of the input over a series of overlapping
short windows, which respectively correspond to

vpeak[n] = max
m0≤m≤n

|x[m]| (5.1)

vrms[n] =

√√√√ 1

M

n∑
m=m0

x2[m], (5.2)

where m0 = n−M + 1, and M , the window size, must be chosen to at least match
the largest period expected in the signal [93]. Alternatively, an envelope can be
derived from a non-symmetric low-pass filtering [94] that models the characteristics
of short attack and long decay times commonly observed in musical signals.

Yet another possibility is to compute an analytic envelope of x[n]. First, we
define the analytic signal

y[n] = x[n] + jH{x}[n], (5.3)

where H{·} is the Hilbert transform; and then construct an envelope by filtering its
magnitude by an adequate low-pass filter h[n] [95]:

v[n] = (h ∗ |y|)[n]. (5.4)

Finally, the true amplitude envelope (TAE) exploits a technique commonly em-
ployed for the computation of spectral envelopes in its dual domain [96]. Therefore,
a time signal is first processed (rectified, zero-padded to the nearest power of 2, and
concatenated with a time-reversed version of itself) to simulate the magnitude spec-
trum of a real signal. Then the true envelope technique is applied, which consists
in liftering in the cepstral domain (see Section 5.2.3) and iteratively updating the
estimated envelope. The optimal order for the liftering operation can be estimated
from the fundamental period of the signal. In Figure 5.1, we present as an example
the envelopes of a single drum stroke obtained from each of these five methods.

Observing the shapes of the envelopes in Figure 5.1, we can model an envelope
of a generic percussive sound as a curve composed of two phases: an attack (of rapid
energy increase) and an exponential decay phase [97]. This is called the attack–decay
model, which is depicted in Figure 5.2 for continuous time. From the envelope signal,
we can compute a small number of time-related descriptors that are discussed in the
following (e.g., the log attack time, decay time constant, etc.).

The envelope can also be used in the detection and segmentation of events.
However, unless signals are very percussive in nature, this feature does not usually
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Figure 5.1: Examples of the computation of envelopes of a single drum stroke using:
non-symmetric low-pass filter (top left), instantaneous RMS (top right), instanta-
neous window maximum (middle left), filtered analytical signal amplitude (middle
right), and true amplitude envelope (bottom). Since the lowest frequency in this
excerpt is about 200 Hz, we used a window length of 5 ms (with 0.5-ms hop length)
where required. For the non-symmetric low-pass filter, we selected attack and release
times of 0 and 5 ms, respectively. The true envelope was obtained with Hamming
liftering of order 110 in the cepstral domain.

produce reliable results with peak picking post-processing methods, with its time
derivative being better suited for this task [98]. For this reason, the literature on
onset detection focuses less on this kind of time-domain descriptor, instead exploring
onset detection algorithms that are based on other families of functions (e.g., from
spectral, phase, and complex domains). Since they are not the subject of this thesis,
these functions are briefly reviewed before our experiments in Chapter 7.

5.2 Descriptors from the Literature

In this section, the most commonly used descriptors in the classification of percussive
sounds are reviewed. We assume that the signal x[n], of length N , is the result of a
segmentation process, i.e., it describes the waveform of a single drum stroke. Tem-
poral descriptors are computed directly from the signal or from some envelope, v[n].
Spectral descriptors, as expected, are functions of the spectrum whereas cepstral
descriptors are functions of the cepstrum. In both cases, descriptors are computed
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Figure 5.2: Attack–decay envelope model for percussive signals. We indicate in
the figure two thresholds, θ1 and θ2, that help define the attack duration. These
parameters are empirically chosen from the type of signal.

for each time frame and summarized by their mean and standard deviation. For
simplicity, in this section we will denote the spectrum of a frame as X[k] in place
of X[k,m], and we will only consider the K positive frequencies (possibly including
DC), unless otherwise specified.

5.2.1 Temporal Descriptors

Log Attack Time

The log attack time is the logarithm of the total duration of the attack portion of a
given signal. There are many ways to estimate the start and end of an attack, and
in this work we use the fixed threshold method [92] considering the nature of the
signals we study. To compute this estimation, we first define the attack start and
stop thresholds at θ1 = 20% and θ2 = 90% of the envelope peak, respectively. We
then compute the log attack time,

∆logn = log(n2 − n1), (5.5)

where n1 and n2 are, respectively, the indices of the samples where the envelope
signal first exceeds the start and stop thresholds, respectively, during the attack
phase. We show the relation between time instants and thresholds in Figure 5.2 for
a continuous envelope.

Crest Factor

The crest factor is the ratio between the maximum absolute value and the RMS of
the signal [99], i.e.,

β =
max{|x[n]|}√
1
N

∑N−1
n=0 x

2[n]
. (5.6)

This measure indicates how pronounced is the height of the signal peak relative to
the RMS value. The minimum possible crest factor, β = 1, occurs when the signal
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has no peaks.

Temporal Decrease

The temporal decrease is a measure of the decay rate of the envelope signal. To
compute it, we first take the decay portion of the signal,

vdecay[n] = v[n+ nmax]u[n] (5.7)

where nmax = argmaxn{v[n]} is the sample at which the peak occurs and

u[n] =

0, n < 0,

1, n ≥ 0
(5.8)

is the unit step function. This decay can be modelled as an exponential function

vdecay[n] = Ae−
n
r u[n], (5.9)

with a given decay rate r (in samples), which can be directly estimated through
linear fit of the natural logarithm of vdecay[n] [92].

In this work, for the computation of r, we follow the procedure described in [93]
by observing that, for n > 0,

vdecay[n+ 1] = Ae−
n+1
r

= e−
1
r

(
Ae−

n
r

)
= αvdecay[n],

(5.10)

if we define α = e−1/r. This means that vdecay[n + 1] is directly proportional to its
predecessor. The proportionality constant α can then be computed via the first-
order autocorrelation as

Nd−2∑
n=0

vdecay[n]vdecay[n+ 1] =

Nd−2∑
n=0

vdecay[n](αvdecay[n]) = α

Nd−2∑
n=0

v2decay[n], (5.11)

where the envelope decay has length Nd. Thus,

α =

∑Nd−2
n=0 vdecay[n]vdecay[n+ 1]∑Nd−2

n=0 v2decay[n]
, (5.12)

from which the decay rate can be immediately retrieved as r = −1/ lnα in samples,
or as rTs, in seconds.
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Zero-Crossing Rate

The zero-crossing rate (ZCR) measures the number of sign changes in the signal,
i.e., from positive- to negative-valued samples and vice versa, with respect to the
length of the signal or region upon which it is being computed:

ζ =
1

2(N − 1)

N−2∑
n=0

| sgn(x[n])− sgn(x[n+ 1])|, (5.13)

where the sign function is defined here by counting zero as a positive value, i.e.,

sgn(a) =

 1, a ≥ 0,

−1, a < 0.
(5.14)

Noisy signals usually present a high ZCR, whereas lower ZCR values are a char-
acteristic of better behaved (e.g., pitched) signals. This measure has been used in
the literature as a discriminator of voiced/unvoiced sounds, as an estimate for the
local fundamental frequency of monophonic signals, and even as a feature in the
classification of percussive sounds produced by different instruments [97].

As we mentioned, the ZCR can be calculated for an entire signal or signal region,
yielding a scalar. However, it can also be computed for each time frame, in which
case it is generally presented accompanied by its mean and variance over the set of
frames [95].

Moments

The moments of a function are scalars that are related to the shape of its curve.
Since they provide information about the shape of a curve with a finite set of num-
bers [100], moments have been used in many applications including the classification
of percussive sounds, where they can be computed from both envelope signals and
spectra [92, 99, 101–103]. In this work, we can benefit from the interpretation given
to moments in the field of statistics by observing that, similarly to a probability
mass function (PMF), the functions (envelopes and magnitude spectra) over which
we will be computing moments are non-negative by definition. In this section, we
will present the definition for the moments of the envelope signal; the derivation for
a magnitude spectrum is formally identical and should follow naturally if we replace
the envelope with the magnitude spectrum and substitute frequency for time.

Before we can extract these values, we need to normalize the target function
v[n], of length N , by defining

ṽ[n] =
v[n]∑N−1

n=0 v[n]
, (5.15)
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that adds up to one, like a proper PMF. Then, the p-th moment is given by

mp =
N−1∑
n=0

npṽ[n]. (5.16)

Note that m0 = 1, and that the first moment about the vertical axis, m1, is the
mean or centroid of the distribution-like signal ṽ[n].

We can also compute a set of moments about the mean, called central moments,
which are defined as

µp =
N−1∑
n=0

(n−m1)
pṽ[n]. (5.17)

We can readily observe that low-order moments are not very informative, since
µ0 = 1 and µ1 = 0. Higher-order central moments, however, provide more detailed
information about the shape of a distribution.

First, the variance, which is a measure of the dispersion of the distribution around
the centroid, and is expressed by the second central moment

σ2 = µ2. (5.18)

The square root of the variance, σ, is called the standard deviation.
The skewness measures the asymmetry of the distribution about the mean, and

is calculated via the ratio
γ =

µ3

σ3
. (5.19)

Symmetric distributions have a skewness of zero, and negative/positive skewness
indicates whether the curve is skewed to the left/right of the centroid.

Lastly, the kurtosis is obtained from the fourth central moment by doing

κ =
µ4

σ4
, (5.20)

and allows the assessment of the tail of the distribution, i.e., if the function is light-
or heavy-tailed. It is common to present the kurtosis by its “excess”,

κ̄ =
µ4

σ4
− 3; (5.21)

this is in fact a comparison between the function and a normal distribution, for
which the fourth central moment is µ4 = 3σ4. Distributions with short tails have
negative excess kurtosis, whereas long-tailed ones (often sharper at the peak) show
positive values in this measure.

To allow the comparison of moments derived from signals of different lengths, we
can define length-normalized versions of the moments about the vertical axis and
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about the mean as 
m̃p =

mp

(N − 1)p
,

µ̃p =
µp

(N − 1)p
,

(5.22)

respectively.

Strong Decay

This feature is computed from the non-linear combination between the signal energy
and its temporal centroid such that [104]

ς =

√
E

m1

, (5.23)

where the signal energy is given by

E =
N−1∑
n=0

x2[n]. (5.24)

A signal has a high strong decay if it has high energy and centroid close to its
start, and a low strong decay otherwise.

5.2.2 Spectral Descriptors

Spectral Energy

We can compute the root mean square spectral energy of a frame, which, due to
Parseval’s identity, is equivalent to the time-domain RMS (up to a factor of 1/

√
N),

as

Erms =

√√√√ 1

K

K−1∑
k=0

|X[k]|2. (5.25)

Even more interesting is the characterization of the spectral energy in the dif-
ferent signal subbands, i.e., how energy is distributed along different portions of the
spectrum. These energies are commonly computed over non-overlapping rectangular
frequency bands. The energy in a subband b is

Eb =

k2,b∑
k=k1,b

|X[k]|2, (5.26)

for which the limits k1,b and k2,b are empirically determined.
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Moments

Moments can also be used to characterize the spectral shape. Similarly to what we
did for time signals, we define the p-th spectral moment of a frame as

m′
p =

K−1∑
k=0

kpX̃[k], (5.27)

where
X̃[k] =

|X[k]|∑K−1
k=0 |X[k]|

(5.28)

is the normalized magnitude spectrum.
Central moments for spectra follow the same definition of Equation (5.17), i.e.,

µ′
p =

K−1∑
k=0

(k −m′
1)

pX̃[k]. (5.29)

We point out that the spectral centroid,

m′
1 =

∑K−1
k=0 k|X[k]|∑K−1
k=0 |X[k]|

, (5.30)

was shown to correlate well to the perception of brightness of music tones [105], which
is an aspect of timbre related to the energy proportion of high- to low-frequency
regions of a sound spectrum.

Spectral Flatness

The spectral flatness, sometimes also called the tonality coefficient,2 is a measure
of how noise-like the magnitude spectrum is, reaching the maximum value of one
for a flat spectrum (e.g., white noise). If the energy is concentrated in few spectral
regions, the flatness measure is low, approaching zero for pure-tone-like sounds.3

It is computed as the ratio between the geometric and arithmetic means of the
magnitude spectrum of a time frame,4

𭟋 =

K

√∏K−1
k=0 |X[k]|

1
K

∑K−1
k=0 |X[k]|

. (5.31)

2Not to be confused with the concept of “tonality” in music, namely, the organization of tones
around a reference (tonic). Note also that, in the case of this descriptor, “flatness” and “tonality”
indicate opposite concepts: the “flatter” the spectrum, the less “tonal” it is, and vice versa.

3A full-range sinusoidal sweep within a frame would be regarded as “flat” by this descriptor,
despite containing many different tones.

4For numerical accuracy, the geometric mean is usually computed as the arithmetic mean of
the logarithm of the magnitude values, which is then converted back via exponentiation.
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Its value is often converted to a decibel scale with a range of (−∞, 0).

Spectral Crest

The spectral crest is a measure of the “peakiness” of a spectrum. It is defined as
the ratio between the peak and mean values of the magnitude spectrum. Mathe-
matically, for a given frame, we can write it as

C =
max |X[k]|

1
K

∑K−1
k=0 |X[k]|

. (5.32)

Observe that the value of the spectral crest is bounded between 1 and K, provided
that the spectrum is not zero for all k. The spectral crest is lower the flatter the
magnitude spectrum, and higher if most of the energy is contained in fewer bins.

Strong Peak

The strong peak feature measures how pronounced the spectral peak is with respect
to its bandwidth, B, defined at the −6 dB (half amplitude) points around the
maximum [104]

ξ =
max |X[k]|

B
. (5.33)

The sharper and higher the spectrum peak at a frame, the “stronger” it is qualified;
whereas for frames with flat spectra, the value of the strong peak is 0 by default.

The bandwidth B can be computed in a linear frequency scale, as the difference
between the extreme frequencies to the right and to the left of the peak that lie
above the half-amplitude threshold, or in log-scale, as the logarithm of their ratio.
This latter method allows a comparison between peaks in different ranges that is
better correlated with human perception [106].

Spectral Roll-off

The spectral roll-off is a measure of the signal bandwidth defined as the frequency
below which a certain percentage θ (e.g., 95%) of the spectral energy lies, i.e., the
index ρ such that,

ρ∑
k=0

|X[k]|2 = θ

K−1∑
k=0

|X[k]|2. (5.34)

Spectral Contrast

The spectral contrast is a measure of the relative distribution of magnitudes in
selected subbands of the spectrum. We can interpret it as a measure of the re-
lation between harmonic and non-harmonic frequency components in each of the
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subbands [107], where strong peaks usually correspond with the former and valleys
reflect the stochastic noise-like characteristics of the latter.5 It is computed as fol-
lows. First, the spectrum is divided into octave-scaled subbands, typically six. For
each band k, the algorithm sorts the bins according to their magnitudes and com-
putes the peak and valley averages, respectively Pk and Vk, of a percentage of the
topmost and bottommost values. The spectral contrast values are then computed
as

Ck = log
Pk

Vk
. (5.35)

Spectral contrast and valley values for all subbands are commonly concatenated in
a vector and used as a feature after decorrelation with a Karhunen-Loève transform
(KLT). It has shown good results in genre classification [107, 108] and in the detec-
tion and identification of drum sources extracted from polyphonic mixtures [109].

AKKERMANS et al. [107] propose a modification to the computation of spectral
contrast coefficients by using as the logarithm’s base the average subband magnitude
of the frame, Ak. Authors posit that this updated contrast measure better describes
the shape of the subband, since it is able to distinguish between spectra with similar
Pk and Vk, but of different profiles. They suggest a different perceptually inspired
subband division that guarantees that all subbands contain enough bins. The new
measure is called shape-based spectral contrast and is shown to improve discrim-
inability in classification while being more robust to compression [107].

5.2.3 Cepstral Descriptors

The cepstrum of a signal or frame is computed as the inverse Fourier transform of
the logarithm of a signal spectral magnitude. Its domain is that of the quefrency,
which is in a sense a measure of time and was coined by inverting the order of
syllables in the word “frequency”. Similarly the term “cepstrum” was derived from
“spectrum”, by reversing the first syllable. We can write the real cepstrum as

c[ν] =
1

M

M−1∑
k=0

(log |X[k]|)ejΩkν , (5.36)

where ν = 0, 1, . . . , L is the quefrency variable, L is the desired number of cepstral
coefficients, and Ωk = 2πk/M , and M is the number of DFT bins.

Due to the convolution theorem and to the application of the logarithm, the
cepstrum has the interesting property of turning into summands components that
have been convolved in the original time signal. This deconvolution is quite useful in
the analysis of signals that can be represented by a source–filter model, for example,

5Note that, unlike the spectral flatness, which assesses the general spectral shape, the spectral
contrast describes the dynamic range within the spectrum.
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such as human speech. If the cepstral components lie in different quefrency regions,
they can be filtered in this domain (a process called liftering, an anagram of “filter-
ing”) and the components can be retrieved in the time domain [110]. Music signals,
in most cases, do not admit this kind of modelling. However, cepstral analysis is
useful for the analysis of musical instruments, since it is able to characterize the
spectrum overall envelope (low quefrency) and its periodicities (higher quefrencies).

Different perceptually motivated filter banks have been used in the literature as a
replacement for the linearly distributed Fourier transform filter bank when comput-
ing the cepstrum. Three of these variants are presented in the following; we do not
include here the constant-Q cepstral coefficients proposed by Brown in [111], which
was used with modest results in instrument recognition and which, more recently,
has shown good results in speaker verification [112]. When used in classification
tasks, cepstra are frequently computed framewise and presented along with their
first and second discrete-time derivatives, δc and δ2c, usually summarized over time
with the mean and standard deviation.

Mel-Frequency Cepstral Coefficients

The mel scale was derived from psychophysical studies after observing that human
perception of the pitch of simple tones does not follow a linear scale. One possible
way to convert linear frequencies (in Hz) to the mel scale is [113]

m(f) = 2595 log

(
1 +

f

700

)
, (5.37)

in order that a 1 kHz tone, 40 dB above the hearing threshold, is equivalent to 1000

mels [114]. For frequencies above 1 kHz, the perceived pitch increases in logarithmic
fashion, whereas well below this reference point it behaves almost linearly. Other
transformations from hertz to mel can be seen in [115].

The spectrum of a frame can be represented in the mel scale by weighting the
magnitude of the DFT bins with a filter bank of K̂ uniformly-spaced filters in the
mel scale. Each k-th filter is a bandpass triangular-shaped curve with constant
bandwidth so that neighboring channels overlap by 50%. Filters are also commonly
normalized to unit area or energy. Figure 5.3a exemplifies this filter bank. Then, for
each k̂ = 0, 1, . . . , K̂−1, we integrate over k the product of the magnitude spectrum
and the corresponding triangular filter to obtain the modified spectrum, Y [k̂], in the
mel scale. Finally, the mel-frequency cepstral coefficients (MFCC) for that frame
are computed with the aid of a type-II discrete cosine transform (DCT) as

cmel[ν] =
K̂−1∑
k̂=0

log(Y [k̂]) cos

[
π

K̂

(
k̂ +

1

2

)
ν

]
. (5.38)
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(a) Mel filter bank
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(b) Gammatone filter bank
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(c) Bark filter bank

Figure 5.3: Filter banks for the computation of mel-, gammatone-, and Bark-
frequency cepstral coefficients. Plots (a) and (b) present example filter banks that
were designed with 40 channels up to the Nyquist rate (fs/2 = 22.05 kHz). Filters
are spaced in frequency according to the mel and gammatone scales, respectively,
with the first center frequency at 100 Hz. In (c) we show a 24-band filter bank for
obtaining the Bark spectrum. For the purpose of illustration, only a portion of the
spectrum is shown and filters are unnormalized.

Gammatone-Frequency Cepstral Coefficients

Another way to include a perceptual flavor in the cepstral representation is to first
process the signal through a set of gammatone filters. These filters model the tono-
topic organization of the basilar membrane by simulating the way different regions
of the cochlea are excited by specific frequency ranges, the critical bands, which get
increasingly broader with increasing frequency [113]. The impulse response of each
gammatone filter is defined in the time domain by a sinusoidal carrier whose ampli-
tude is modulated by a curve shaped like a gamma probability density function [116].
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In continuous time, the gammatone filters can be expressed by

g(t) = Atp−1e−λt cos(2πfct+ ϕ)u(t), (5.39)

where A is the amplitude, p is the order of the filter, λ is the decaying factor, fc
is the center frequency, and ϕ is the carrier initial phase. Filters are distributed
along frequency in proportion to their respective bandwidths, which are given by
the equivalent rectangular bandwidth (ERB) scale derived from notch-noise exper-
iments [117]

ERB(f) = 24.7

(
4.37

f

1000
+ 1

)
. (5.40)

The signal is analyzed by the gammatone filter bank (see Figure 5.3b) and the
output of each channel is commonly downsampled to an appropriate frame rate
(e.g., 100 Hz), fully rectified and compressed with a cubic root operation [118].
Then, the gammatone-frequency cepstral coefficients (GFCC) can be obtained from
each frame, Y [k̂], of the resulting “cochleagram” as

cgamma[ν] =

√
2

K̂

K̂−1∑
k̂=0

Y [k̂] cos

[
π

K̂

(
k̂ +

1

2

)
ν

]
. (5.41)

Observe that since the coefficients have been derived with a cubic root non-linearity,
they do not characterize a proper cepstrum. Logarithmic compression can be used
instead, which provides scale invariance but less robustness to noise in speaker iden-
tification [119].

Bark-Frequency Cepstral Coefficients

An estimation for the critical bandwidths along the basilar membrane is given by
the Bark scale, which was devised by Zwicker after loudness summation experi-
ments [120]. It can be regarded as defining a linear basilar distance measure whose
relation to frequency can be expressed by

z(f) = 13 arctan

(
0.76

f

1000

)
+ 3.5 arctan

[(
f

7500

)2
]
, (5.42)

for z in Bark and f in Hz. This equation is not used much in practice since it does
not admit an inverse. A simple (and invertible) approximation is given by

z(f) =

[
26.81f

1960 + f

]
− 0.53, (5.43)
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for which minor corrections are needed if the Bark values smaller are than 2.0 or
greater than 20.1. We refer the reader to [121] for more expressions of the critical-
band rate.

The procedure for computing Bark-frequency cepstral coefficients (BFCC) is
very similar to the one described for MFCCs if we replace the warping function
of Equation (5.37) by that of Equation (5.42). The triangular filters can also be
substituted by trapezoidal ones that have constant gain within each critical band
and linear decay slopes (in dB) at band transitions [122]. It is common to summarize
the spectral magnitude/energy in 24 to 26 Bark bands, since this is about the number
of adjacent critical bands found in the basilar membrane [123]. A Bark filter bank
is exemplified in Figure 5.3c.

The use of Bark bands has proven to be successful in the classification of percus-
sive sounds [124], and corresponding cepstra were shown to produce slightly more
acurate results than MFCCs in the same task [125, 126], which could be attributed
to the fact that the Bark weighting better preserves mid tones in detriment of higher
frequencies when compared to mel scaling [127].

5.3 Proposed Descriptors

In this section, we define a different class of features that has not been explored
much for the analysis of instrument timbre, and even less for the description of
drum signals. We present a novel formulation, based on the CQT, for deriving the
modulation spectrum of a signal. We also describe the wavelet scattering trans-
form [128], which allows the representation of a signal in different levels of detail
while also capturing the interferences between frequencies within this signal.

5.3.1 CQT-based Modulation Spectrum Coefficients

The modulation spectral transform, whose fundamentals were previously discussed
in Section 4.4, has been used in both speech and music processing for many differ-
ent tasks, e.g., speech and speaker recognition [129–133], speech detection in noisy
environments [134], vocal emotion recognition and conversion [135, 136], audio and
music genre classification [137–139], multiple-pitch and multiple-instrument recog-
nition [140], music emotion classification [141], and source separation [142, 143].

As we alluded before, the modulation spectrum of an audio signal can be derived
by the cascaded application of two filter bank analyses or time-frequency transforms
along the time dimension. This leads to a representation in a joint acoustic- and
modulation-frequency domain. There is no consensus regarding a best practice
in the extraction of this representation and different researchers suggest different
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methods, which might meet the principles of an underlying subjective model, for
example. A modulation spectrum can be obtained through the computation of
the DFT of each channel of a signal’s magnitude spectrogram [130, 131, 139, 142].
Spectrogram bins can also be grouped prior to the second transformation to pro-
vide an octave-scale acoustic frequency resolution [138]. A constant-Q resolution
can also be achieved for the modulation frequency by appropriately grouping STFT
bins or by using a continuous wavelet transform [144] — this takes into consid-
eration how modulation structures are actually perceived by the human auditory
system. Other efficient implementations use the time-domain aliasing cancellation
filter bank for both stages [145], or for the first stage only, which is followed by a
hierarchical lapped transform with octave-band structure [146]. Some works exploit
structures inspired in auditory models for both stages. A few authors achieve this
by computing the first analysis with a gammatone filter bank and then empirically
selecting frequency bands from each channel in the second stage (usually following
a log or quasi-log distribution) [132, 135, 137, 143]. Mel-scale aggregation and other
auditory-inspired (critical band) filter banks are also featured in some works at the
base decomposition [129, 131, 134, 136, 147, 148]. In approaches that use auditory
filter banks at the first stage, additional operations must be done to demodulate
the signal at each channel, i.e., derive a temporal envelope, before computing the
second analysis. Common choices are half-wave rectification followed by low-pass
filtering [129, 143, 147], or Hilbert envelope extraction [132, 136]. In either case, it is
customary to reduce the amount of data by decimating the resulting envelopes. We
note that coherent demodulation schemes have received far less attention [84, 149].

When dealing with classification tasks, authors might directly use the modula-
tion spectrum as feature representation. However, the regular computation using
a cascade of STFTs usually generates too large a dimension for classification to be
feasible. Therefore, some techniques have been presented to reduce the dimensional-
ity of the modulation spectrum by aggregating bins on either axes or by smoothing
the overall representation with a DCT [131]. Of course, logarithmically-scaled filter
banks at both stages also achieve a reduction in dimension at the expense of the final
resolution. LEE et al. [138] propose a derived feature, the octave-based modulation
spectral contrast, and perform a genre classification over feature vectors containing
mean and standard deviation of the spectral contrast and valleys (see Section 5.2.2)
extracted from all modulation subbands. In other related works, alternative modula-
tion features are obtained from short-time cesptral representations [150, 151] or from
spectro-temporal modulations jointly computed over both axes of a time-frequency
representation [152]. These features reflect different aspects of timbre.

Here, we compute the modulation spectrum using a different approach that pro-
vides logarithmic resolution on both stages of the transform by using constant-Q fil-
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ters. First, we perform a short-time CQT analysis of the time signal x[n]. This base
transform has geometric spacing and resolution in frequency that are determined
by Q1, the quality factor, and we select an initial center frequency Ω0 according to
the minimum frequency present in the signal. The number of filters in this analy-
sis is limited by the Nyquist frequency, fs/2. We can express this time-frequency
representation as (cf. Equation (4.19))

XCQ[k1,m1] =
1

Nk1

Nk1
−1∑

n=0

x[n]wk1 [n−m1h1]e
−jΩk1

n, (5.44)

where k1 and m1 are respectively the acoustic frequency bin and the frame indices,
Ωk1 is the center frequency of the k1-th bin, and wk1 [n] is a window function of
length Nk1 (which depends on the bin number, as seen in Equation (4.17)). The hop
parameter, h1, is made equal for all channels and it plays a very important part in
determining the maximum modulation frequency that is to be represented on the
second stage. Indeed, it defines the frame rate of XCQ[k1,m1], fm = fs/h1, thus
limiting the modulation analysis range to fm/2.

We then transform the magnitude ofXCQ[k1,m1], which represents the amplitude
fluctuations of the k1-th frequency component as a function of time (frame counter
m1), with a second short-time CQT. This yields a two-dimensional representation
of modulation frequency versus time (frames) for this channel. The second CQT
possibly has different quality factor, Q2, and initial frequency, Ω′

0. This operation
is repeated for all acoustic frequency components, and we obtain

Y [k1, k2,m2] =
1

Nk2

Nk2
−1∑

m1=0

|XCQ[k1,m1]|w′
k2
[m1 −m2h2]e

−jΩk2
m1 , (5.45)

for which k2 and m2 correspond to the modulation frequency and the frame indices,
respectively, w′

k2
[n] is a window function of length Nk2 , and Ωk2 is the modulation

center frequency of the k2-th bin. Finally, reminiscing of the periodogram, we can
average the magnitude (or the squared magnitude) |Y [k1, k2,m2]| over the time
variable, m2:

Ȳ [k1, k2] =
1

M2

M2−1∑
m2=0

|Y [k1, k2,m2]|, (5.46)

where M2 is the total number of frames after the second stage. This average results
into an estimate of the acoustic versus modulation frequency characteristics of the
original signal, which we call the modulation spectrogram. Figure 5.4 illustrates the
process for the computation of Ȳ [k1, k2].

Observe that not all combinations of k1 and k2 lead to valid coefficients in the
modulation spectrogram. We can discard the values of Ȳ [k1, k2] for pairs (k1, k2)
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Figure 5.4: Stages in the proposed computation of the modulation spectrogram.

that correspond to a modulation filter with a center frequency higher than that of
the acoustic filter, which have no physical meaning. We could alternatively take into
account the bandwidths of each filter in the first stage since they are responsible
for limiting the frequencies of the corresponding estimated modulators. A similar
approach is used in the computation of the scattering coefficients (see Section 5.3.2).

The efficient implementations of the short-time CQT algorithm we mentioned
before can be used to make the computation of the modulation spectrogram less ex-
pensive. We observe that the recursive subsampling algorithm of SCHÖRKHUBER
and KLAPURI [80] includes some limitations in the hop length that could result in
an insufficient number of frames at the input of the second stage. This could possibly
be remedied by lowering the resolution (i.e., the number of bins per octave) of the
first transform, all other conditions remaining constant. Alternatively, the variable-
Q transform (VQT) could be used as input representation instead of the CQT, since
it allows the user to reduce the length of the analysis windows (at the expense of
the frequency resolution), and would therefore soften the hop constraints [153].

5.3.2 Scattering Coefficients

The wavelet scattering transform [128] (WST) has gained growing attention in the
last few years for its ability to provide robust features for audio and image classifi-
cation tasks. It yields a sparse signal representation (i.e., concentrates energy at a
few coefficients), which is locally invariant to time shifts and stable to small-scale
deformations caused by warping (e.g., time warping).

This representation is computed by a process not unlike that of a convolutional
neural network (CNN), which consists of three main steps: filtering, non-linearity
transformation, and pooling. In the wavelet scattering transform, however, the
signal is convolved with functions from a fixed (i.e., non-trainable) K-band complex
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wavelet filter bank. This filter bank is constructed by dilating a mother wavelet
ψ(t), whose Fourier transform Ψ(ω) has bandpass magnitude response and center
frequency normalized to unit. For audio applications, the daughter wavelets are
obtained by the scaling equation

ψk(t) = 2
k
Qψ(2

k
Q t), (5.47)

with k,Q ∈ Z. Observe that the Fourier transform of the dilated wavelet ψk(t) is
expressed by

Ψk(ω) = Ψ(2−
k
Qω), (5.48)

and, therefore, has center frequency 2
k
Q . The Q parameter indicates the number of

filters per octave, in such a manner that the bandwidth of each wavelet in the fre-
quency domain is of the order of Q−1. Following the filter bank analysis, we discard
the complex phase of each channel’s output and retain only the absolute value with
a modulus non-linearity. This is equivalent to the Hilbert envelope demodulation
seen in Sections 4.4.1 and 5.1. Finally, at the last step, the scattering coefficients are
obtained by time-averaging the moduli with a low-pass filter with impulse response
φ(t) of duration T . This parameter determines the local invariance scale. This
time-averaging removes the high-frequencies present in the scalogram coefficients.
However, this information is not lost by the scattering transform, but recovered in a
subsequent layer of wavelet convolutions and modulus operators. The output of this
layer is also low-pass filtered by φ(t), which again ensures local time-shift invariance.
The process can be repeated again to recover smaller details in as many layers as
desired. The wavelet scattering transform is therefore determined by a cascading of
operations, as pictured in Figure 5.5.

We now go into more detail of what the WST computes at each layer. By default,
for the zeroth layer, we have as output

S0{x}(t) = (x ∗ φ)(t). (5.49)

At the first layer, x(t) is analyzed by a filter bank of wavelets ψk1(t) and, after the
non-linearity, we obtain

U1{x}(t, k1) = |x ∗ ψk1|(t). (5.50)

The Fourier transform of the low-pass filter, which we indicate by Φ(ω), and that
of the wavelets Ψk(ω) are designed to cover the entire signal spectrum, with the
center frequencies and bandwidths of the wavelets approximately following the mel-
frequency scale. The frequency resolution in this layer is determined by Q1, which is
usually set to eight wavelets per octave in the high-frequency range, whereas Q1− 1

linearly spaced filters are placed in the lower frequency region [128]. The output
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U0{x} = x

S0{x} = x ∗ φ

S1{x} = |x ∗ ψ| ∗ φ

S2{x} = ||x ∗ ψ| ∗ ψ′| ∗ φ

. . .

. . .

. . .. . . . . . . . .

U1{x} = |x ∗ ψ|

U2{x} = ||x ∗ ψ| ∗ ψ′|

Figure 5.5: Wavelet scattering network. The graph is presented in a simplified notation and explicitly shown up to order l = 2. We
removed the time and frequency variables, and notated the first- and second-order wavelet filter banks as ψ and ψ′, respectively. The
main (clear) nodes at each level represent the wavelet modulus computation for wavelets of different center frequency and bandwidth,
except for the zeroth level (top). Colored nodes, in their turn, indicate the network outputs, i.e., the scattering coefficients. Each output
node correspond to a unique path defined by the frequency variables (k1, k2, . . . , kl) up to the desired level l.
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from this layer is the first-order scattering coefficients,

S1{x}(t, k1) = (|x ∗ ψk1| ∗ φ)(t), (5.51)

which can be shown to approximate a mel spectrogram [128]. We then represent
the detail lost at this step using another filter bank, {ψk2(t)}, in which the wavelets
are distributed with a possibly different resolution to allow a sparse representation
(e.g., Q2 = 1, one wavelet per octave). This detail,

U2{x}(t, k1, k2) = ||x ∗ ψk1 | ∗ ψk2|(t), (5.52)

is again low-pass filtered to make up the second-order coefficients

S2{x}(t, k1, k2) = (||x ∗ ψk1| ∗ ψk2| ∗ φ)(t), (5.53)

which carry significant information about interferences and amplitude modula-
tions [128]. For the l-th layer, we thus have Ul{x}(t, k1, k2, . . . , kl) = || · · · ||x ∗ ψk1| ∗ ψk2| ∗ · · · | ∗ ψkl |(t)

Sl{x}(t, k1, k2, . . . , kl) = (|| · · · ||x ∗ ψk1| ∗ ψk2| ∗ · · · | ∗ ψkl | ∗ φ)(t)
(5.54)

as the detail recovered from the (l− 1)-th layer and the l-th-order scattering coeffi-
cients, respectively. Typically, the scattering transform is computed with maximal
order l = 2, since most of the energy lies in the first- and second-order coefficients,
and is quickly dissipated in lower levels [128]. In this respect, the final representation
can be written as

S{x} = (S0{x}, S1{x}, S2{x}) , (5.55)

where we have removed the time and frequency variables for simplicity.
Note that, similarly to what we mentioned before in the case of the modulation

spectrum, not all paths (k1, k2, . . . , kl) yield significant coefficients. As ANDÉN and
MALLAT [128] point out, since |x ∗ ψk1|(t) has a limited bandwidth equivalent to
that of the magnitude response of ψk1(t), in the analysis of the second filter bank
one should only consider values of k2 such that the supports of the filter and of the
demodulated signal intercept in the frequency domain. In efficient implementations
of the wavelet scattering transform, signals are subsampled by a factor that depends
on their bandwidths or on the scale of the low-pass filter, and convolutions are
calculated with the help of the FFT algorithm.

The scattering representation can be normalized so that coefficients at different
orders are decorrelated, which can improve accuracy in classification tasks [128].

95



This requires that, at any order l, coefficients be renormalized by the components
of the previous order [128], i.e.,

S̃l{x}(t, k1, . . . , kl−1, kl) =
Sl{x}(t, k1, . . . , kl−1, kl)

Sl−1{x}(t, k1, . . . , kl−1) + ϵ
, (5.56)

where ϵ is a silence detection threshold. It is also habitual to aggregate the scattering
coefficients by averaging them along the time variable.

Finally, we point out that scattering can also be carried through in the frequency
dimension. Two time-frequency scattering techniques are possible to achieve rep-
resentations that are locally invariant to time and frequency transpositions as well
as robust to small deformations in both domains. First, in the separable scatter-
ing, a frequency scattering can be computed by analyzing the first- or second-order
time-scattering scalogram with a wavelet filter bank defined along the log-frequency
axis [154]. In the joint scattering, however, the final representation is obtained by
decomposing a scalogram with a two-dimensional wavelet transform, followed by
modulus and time averaging. In this case, the two-dimensional kernels are usually
defined as the product of two independent time and frequency wavelets. ANDÉN
et al. [155] show that a joint time-frequency scattering transform achieves state-of-
the-art results in the classification of musical instruments and of acoustic scenes. The
Scattering transform has also been used in other works for the recognition of instru-
ments [156], instrument shapes [157], and instrumental playing techniques [158, 159].
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Chapter 6

Physics of Sound Production and
Literature Review

In the “Western” music tradition, the primary role of percussion is to support and
demarcate the rhythm. Given the impulse-like characteristics of percussive sounds,
signals from these kinds of sources are commonly modeled by automatic drum tran-
scription (ADT) systems as composed of a short attack region which is followed by
an exponential decay profile (see Section 5.1). The typical ADT pipeline starts from
a sound recording of one or multiple percussion instruments (with or without the
presence of other non-percussive parts and singing voices) and includes either the
detection and classification of note-segments (i.e., portions of the recording corre-
sponding to each single note) or the retrieval of onset times from separated single-
instrument streams. In both cases, most works reported in the literature assume this
rhythm-keeping view of percussion, and it becomes sufficient in the process of tran-
scription to determine which percussion instruments have been played and when.
This approximates drum transcription to the task of instrument recognition [160].

During the Romantic era, Western compositions began to undergo a series of
changes that have had a lasting impact on musical performance. In particular,
many composers started to exploit not only the rhythmic properties of percussion
instruments, but also their “tone coloring” capabilities [2]. A great exponent of this
movement was Hector Berlioz, who is known for expanding the use of percussion
in the orchestra, in particular, of the kettledrums (timpani), which were featured
in some pieces with up to 16 simultaneous instruments executed by eight instru-
mentalists. Moreover, Berlioz notated with considerable clarity how he expected
percussion (kettledrums, cymbals, tenor and bass drums, etc.) to be played, provid-
ing instructions for the use of hard- or soft-ended drumsticks and for the muffling
of the instruments [2], for example. In the late nineteenth and early twentieth cen-
tury, composers like Rimsky-Korsakov, Debussy, Stravinsky, and Bartók furthered
the developments in this matter [2]. We highlight here the indications given in later
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pieces by Bartók (e.g., Cantata Profana, Sz. 94), which specified the striking loca-
tions at the center or the edge of the snare drum, as well as the coupling/decoupling
of the snares, to provide greater timbral variety [2]. The interested reader can fur-
ther delve into this subject by referring to the book by BLADES [2], “Percussion
Instruments and their History”, where the author (also a percussionist) thoroughly
describes the innovative use of percussion in orchestral music and how it evolved
during the Romantic and post-Romantic periods.

The importance of percussive timbre and its subtle variations becomes apparent
earlier in the music of other (non-Western) sources. For example, the control of pitch
and quality in the sound produced by African drummers was narrated with awe
by European travellers of the eighteenth and nineteenth centuries. They note, for
example, how different methods — hand, hand and stick, or double-stick drumming
— are employed depending on the type of instrument and function [2]. Timbral
variation was also obtained by changing the striking positions, the weight and release
of each attack, or by muting the drumhead, not to mention the use of a diversity of
hand shapes and parts (in “hand” or “hand and stick” techniques) [2]. As SCHLOSS
[93, p. 49] points out:

One important difference between African and Western percussion is the
notion of a “stroke-space,” which can be defined as the universe of pos-
sibilities of ways of striking the drum; it is the vocabulary of strokes.
Although in Western percussion the emphasis is usually on the unifor-
mity of tone, in African percussion, how the drum is struck is almost as
important as when.

In “Studies in African Music”, JONES [4] describes the difficulties found in manually
transcribing the music of the Ewe tribe in West Africa. The British musicologist
alludes to the notion of a drumming grammar, which uses this vocabulary of strokes,
and in which any alteration of note quality in a particular drum pattern reflects the
intention of the drummer and transforms the pattern into a different one. He then
suggests that a good transcription of Ewe music should record three facts about
every drumbeat [4]: striking hand, position on the drumhead, and whether the
remaining hand was also employed for sound production. Similar techniques and
interpretations were reported by researchers on the playing of Asian drums. The
Indian drums, mridangam and tabla, for instance, can produce a variety of notes
depending on hand position and attack point, as meticulously investigated by RA-
MAN [161]. The variation in the number of striking fingers and the adjustment of
membrane tension during the performance are a part of a musician’s technique for
some of the Japanese taiko drums, which allow the production of many different
tones [162].
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Evidently, the different “stroke types” must be taken into consideration when
producing an automatic transcription for African or Asian drumming or, in fact,
for every music tradition or piece in which this “stroke-space” is used to convey
meaning. For example, a precise transcription of a faithful rendition of the snare
drum in Bartòk’s Cantata Profana should display the same indications, by means
of whichever accorded symbology, as those provided by the composer. This ratio-
nale for the transcription of timbral variations is also applicable to other playing
techniques, e.g., rudiments (roll, flam, etc.), and to the notation of dynamics [163].

In this chapter we investigate the classification of percussive timbre, with par-
ticular interest in the timbral variations produced on the same instrument. First we
describe the physics behind sound production in drums and provide more detail on
what contributes to differences in timbre. We then briefly review the ADT literature
pointing to a few works that study this subject.

6.1 Sound Production in Percussion Instruments

As we mentioned before, the objective of ADT methods is the identification and
transcription of percussion instruments in recorded audio. More specifically, most
of the literature has as object of analysis a subset of the classes of membranophones
and idiophones where sound production is achieved by striking (e.g., with the hands
or a drumstick/mallet) the tightly stretched membrane or the instrument body
itself. To help us classify and interpret the sounds produced by various kinds of
drums as well as the diversity of strokes of a single instrument, we briefly describe
in this section how these complex vibrating systems operate and what aspects of
their construction and playing may alter the yielded sound quality.

Two properties are required for the generation of mechanical vibrations in a
body [162]: stiffness and inertia. These properties guarantee that, when subject to
mechanical deformation, the body will: (1) resist it by trying to stay in equilibrium
and (2) overshoot its equilibrium position when fighting against this displacement.
Thus, the vibration motion is set in place through the work of a restoring force
that alternates the system’s stored energy between its potential (elastic) and kinetic
forms. This exchange is not perpetual and, in real systems, oscillation amplitudes
are damped and decay to zero as energy is lost in the form of heat and sound.

The shape of the oscillations can be calculated by solving the system’s wave
equation and satisfying a certain number of boundary conditions. These solutions
can be composed of a superposition of several normal vibration modes, each of which
is also a solution to the original wave equation. In distributed mass systems (e.g.,
strings, membranes) it is customary to graphically represent these oscillations as
standing waves, as exemplified in Figure 6.2.
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To illustrate this phenomenon, let us first consider as the vibrating body a uni-
form circular membrane — a model of what is commonly found in many membra-
nophones. An ideal membrane has no stiffness, but can be made elastic by clamping
its boundary and maintaining throughout a constant surface tension T , measured in
N/m. The wave equation for this membrane is better expressed in polar coordinates
in terms of three independent variables — the radius (distance from the center of
the membrane), the azimuthal angle, and time; its general solution can then be
separated as a product of three functions, one on each of these variables. On the
radial direction, the solution has the form of a Bessel function, and on the azimuthal
direction, it is cosine-shaped. A full derivation of the solution for the wave equation
in a circular membrane can be seen in [162].

If the membrane has a radius of R meters and an area density σ, in kg/m2,
then the fundamental vibration mode (0, 1), in which the entire membrane moves
in phase (with maximum displacement at the center and a node at the perimeter),
has frequency given by [162]

f0,1 =
2.405

2πR

√
T

σ
. (6.1)

General vibration modes are indicated by tuples (m,n), where m and n are respec-
tively related to the number of nodal diameters and of nodal circles (including one
at the boundary). In fact, m governs the order of the Bessel function, Jm(·), and
the cosine frequency of the azimuthal component, while n indicates the n-th strictly
positive root of the Bessel function that lies on the boundary condition, such that
there is no displacement at r = R. The oscillation frequencies for all the (m,n)

modes can thus be obtained through different iterations of the Bessel function and
its roots. Figure 6.1 presents a few of these modes by highlighting nodal lines and
showing the alternating displacement patterns that are produced on the membrane’s
surface. Figure 6.2 shows the (1, 2) mode in a three-dimensional representation, to
provide greater detail.

While in one-dimensional systems (e.g., strings, bars) overtone frequencies are
ideally harmonically related to the fundamental, i.e., the ratios f0,1/fm,n follow the
harmonic series, this is not the case of the ideal circular membrane, as displayed in
Figure 6.1. However, multiple factors can affect the oscillation frequency and ratios
of normal modes in real drum membranes, including, but not limited to [162]: air
loading,1 bending stiffness, stiffness to shear, and coupling effects with other vibra-
tors (e.g., secondary membrane, drum shell, snares). In some instruments, these
effects can cooperate to convey a strong sense of pitch in the produced sound. For
example, in kettledrums, where air is trapped between the stretched membrane and

1Air loading refers to the coupling between air and the membrane. Its effect can be different
whether air is trapped inside the instrument or if the membrane is open to air on both sides.
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Figure 6.1: Vibration modes for an ideal and uniform circular membrane. Each mode
(m,n) is associated to a frequency fm,n, where m is the number of nodal diameters
and n is the number of nodal circles, including the boundary [162]. Here we give
the first nine modes (in ascending order, from left to right and top to bottom) and
their relative frequencies as a (non-integer) multiple of the fundamental f0,1, which
depends on membrane parameters (applied tension, radius, area density). Positive
and negative signals indicate the alternating displacement characteristic of regions
between nodal delimiters.

Figure 6.2: Three-dimensional model of vibration mode (1, 2).
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a large hemispherical bowl, the effect of air loading is responsible for lowering the
frequencies of the first (low-frequency) modes [162]. When kettledrums are properly
tuned, their most prominent overtones are then disposed in a quasi-harmonic series
starting at the (1, 1) mode, i.e., the frequencies of strong sounding overtones present
an almost integer relation to this principal mode, an organization which produces a
defined pitch associated to f1,1. The harmonicity between partials is also a distin-
guishing feature of the sound of Indian drums (mridangam, tabla) — here, however,
this effect is obtained through the application of a tuning paste on the drumhead.
This mix of iron oxide, starch, and gum is loaded on the drumhead in many thin lay-
ers and smoothed down in such way that the thickness of the membrane is greater
at its center. The net effect of this composition, once dried, is that of changing
the shape of the standing waves and allowing the production of five overtones in
harmonic sequence, starting at the fundamental [161].

Overtone frequencies play a huge part on the perceived sound, but the dura-
tion and relative energy of each partial are just as important in determining the
instrument’s timbre. In bass drums, for instance, although the frequencies of the
(0, 1) mode and of the first few nonsymmetric modes may approximate a harmonic
relation, the presence of loudly sounding inharmonic partials of higher frequency
(above 200 Hz) provides the instrument with a characteristic indefinite pitch [162].
In most instruments, these properties of duration and amplitude can be altered by
choices made in the construction phase or during the tuning process, as well as due
to the playing action (e.g., location and intensity of the striking force). Damping
times depend on factors like the materials used in the drumhead and in the shell,
and the tension of the drum membranes. If the drumhead is not muffled by the
musician’s hand or mallet (and all vibrations on the membrane are suddenly inter-
rupted), we can verify that, in a free-sounding drum, different overtones decay at
different rates. In general, low-order modes are more pronounced and decay more
rapidly. Higher modes, on the other hand, present a smaller decay rate, which is
mostly attributed to the alternating phase patterns that form on the membrane
(see Figure 6.1) and reduce the overall energy radiation efficiency [164]. Moreover,
a strike at the center of the membrane can initially transfer a lot of energy to in-
harmonic axisymmetric modes (e.g., (0, 1), (0, 2), etc.), whereas off-centered attacks
excite other modes. For example, an excitation of the kettledrum at the normal
off-center position2 favors the harmonic modes, (1, 1), (2, 1), (3, 1), etc. Studies
have shown that nonlinear coupling processes that transfer energy between different
sounding modes can occur [162]. For all these reasons, the amplitude and energy
relations of the fundamental and the overtones is particularly complex to model.

Similar considerations can be applied to certain idiophones, particularly those
2About one-fourth of the distance from the rim to the center of the membrane [162].
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made out of circular plates (e.g., cymbals, gongs). Due to the variety of shapes of
the main vibrator (i.e., the plate), we will not further describe sound production in
these instruments. The interested reader is referred again to [162] and references
cited therein for a more detailed description of idiophones.

In summary, we observe that the diversity of percussive excitations in both mem-
branophones and idiophones can be generally characterized by three components,
according to Bell’s comprehensive drum timbre lexicon [165]:

1. Mode, which refers to “simple” (e.g., single strike, shaking, scraping, rubbing,
plucking) or “complex” (e.g., flam and roll rudiments, sforzando dynamics)
articulations;

2. Implements, i.e., the type of beater that is used to excite the instrument (e.g.,
drumstick, brush, mallets, hands);

3. Region, i.e., the placement of the excitation (e.g., edge, center).

These components and their complex interactions with the form and materials of the
different instruments produce the entire gamut of sounds in the percussion family.

6.2 Approaches to Drum Sound Classification

In this section, we review a few approaches to drum sound classification that are
found in the ADT literature. While the majority of works in this subject deal with
drum instrument classification, i.e., which drum is being played, we here provide a
more in-depth look at theses and papers that focus on the analysis of timbral varieties
and playing techniques, i.e., how a certain drum is being played. Nevertheless, we
also consider works of the first type, which can contribute with great insight into
the choice of features, for example. Similar reviews can be seen in [166–170].

Since this research subject has seen little exploration, studies differ in many
respects such as the instruments and timbres under analysis (e.g., drum kit, instru-
ments pertaining to certain music traditions), the feature extraction process (i.e.,
how to represent the signal), the classification technique (unsupervised or super-
vised) and algorithm (e.g., k-means, KNN, SVM, neural networks), among others.
Some works evaluate their systems on datasets of individual drum sound events,
whereas in others the audio from a real drum sequence recording has to first be
segmented (e.g., by means of an onset detection scheme) for then the segments can
be classified. In this latter case, musicological knowledge (i.e., language models)
can be embedded in the system to improve the classification accuracy by exploiting
context clues such as neighboring notes or periodic measure-length patterns. Other
difficulties arise from the ensemble characteristics of recorded samples, that is, if

103



they contain “monophonic” or “polyphonic” percussion, and if other non-percussive
instruments are present.

Schloss, Bilmes, and Conga Strokes

In a seminal work presented by SCHLOSS [93], a system for the transcription of per-
cussive music was showcased with recordings of conga drum performances. Schloss
discusses several of the major transcription tasks, from track segmentation and
stroke recognition to tempo tracking and high-level rhythm analysis. The recordings
in his dataset contained a sequence of non-simultaneously occurring strokes on a pair
of (high/low) conga drums that he manually classified into four basic categories [93]:

• OPEN — “Hand snaps away from drumhead, allowing maximum ringing of
drumhead in normal mode”;

• MUFF — “Hand ‘sticks’ to drumhead, damping and also raising pitch of tone
by about a minor third”;

• BASS — “Palm of hand hits center of drumhead, causing lowest perceived
pitch”;

• SLAP — “Hand hits center of drumhead while damping edge, causing sharp
attack and higher perceived pitch”;

These gave rise to eight total classes considering both drums. His “low-level anal-
ysis” included the steps of detection/segmentation and classification, and can be
summarized as follows. First, an envelope was obtained from the waveform through
a min-max sliding window of length T0 = 1/f0 seconds, where f0 represents the
lowest frequency expected in the data. The system computed a series of slopes,
{Sn}, from this envelope via linear regression of every set of n successive points.
Then, note attacks were inferred from large abrupt variations in the slope series, at
which point the system was also informed by the local energy maxima of a high-
pass filtered version of the signal. To help reducing the detection of false positives,
Schloss assumed a “forbidden attack region” after each detected attack, meaning
that no other attacks are to be found at the immediately following instants. The
segmentation step ensued where each segment corresponded to the time interval
between two successive attacks. Rests were also inferred during this process as the
regions where local amplitudes did not surpass the power of the signal filtered with
a moving average filter. For each segment containing a note, the system determined
whether the stroke was damped or undamped by modeling the exponential decay
with a one-pole fit and applying a heuristic decision threshold to the estimated de-
cay constant. Schloss also used this information to select from which portion of the
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signal to extract spectral features for classification. If the note was undamped (i.e.,
decay rate is large), he considered a “steady state” portion of the waveform around
the middle part of the segment (100 to 200 ms). Instead, if the note was damped
(i.e., exhibited a small decay rate), he analyzed the entire segment. Spectra from
the selected portions of each segment were non-uniformly partitioned into three em-
pirically determined bins (0 to 1 kHz; 1 to 7 kHz; 7 kHz to the Nyquist rate) and
the energy distributions over these bins were used as the main classification feature.
The peak spectral frequency, assumed to be the fundamental in undamped strokes,
was also recorded. Next, each stroke was matched to the nearest centroid of a set of
pre-recorded templates in the feature space, and distances were normalized by the
standard deviation of each template class. The system output a “notelist”, which
contained onset time, duration, amplitude, and stroke type of every detected event,
along with a confidence measure for each stroke, which was used as input for subse-
quent higher-level analyses. Schloss reports good accuracy rates and few undetected
notes (false negatives).

BILMES [171] also examined conga recordings in his investigation of expressive
timing in percussive rhythm. Instead of a single musician playing a pair of drums,
he recorded an ensemble (Los Muñequitos de Matanzas) composed of three drums
of different sizes (tumba, conga, and quinto), guagua (a bamboo slit drum), claves
(a pair of wooden cylinders played by concussion), and singers. Microphones and
musicians were carefully positioned during the recording process to minimize bleed-
ing between stems. To investigate the conga strokes, Bilmes segmented individual
tracks, then classified the set of segments using an unsupervised approach. At the
segmentation step, a pair of linear phase FIR low- and high-pass filters were used
to analyze the audio input, and short-time energies of both filtered signals were
computed with a small window. Linear regression was used to calculate slopes from
each energy envelope, providing candidate attack times, similar to Schloss. Attack
points were defined by combining information from both slope series. Then, each
stroke segment was determined from its attack time to the point where local en-
ergy got below a fraction of the corresponding maximum. If, for any segment, this
fraction was never reached, its endpoint was set to a few seconds before the attack
time of the next stroke. For clusterization, the system computed the following set of
features from each segment: an approximation of the CQT of the segment obtained
by averaging DFT bins into one-third octave bands; the length-normalized energy of
the stroke segment; and an exponential fit of the envelope decay (as in [93]). These
formed a feature vector of length 28 representing the stroke space. Features were
normalized to zero mean and unit variance across all vectors, and the Karhunen-
Loève transform was used to reduce dimensionality through the selection of the most
significant eigenvectors. The processed feature vectors were finally clustered with
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the k-means algorithm, where the number of clusters k was subjectively adjusted.
Despite being able to recognize by ear from six to ten different strokes (depending
on the drum), Bilmes found that k = 4 or k = 5 provided the best accuracy due to
large class imbalance between different stroke types. He also points out that often-
times it is difficult for a listener to identify a stroke being played in isolation; the
task becomes easier and rather immediate once proper context is given (e.g., tatum
number, position in phrase).

Studies on Features and Classifiers for Drum Instrument Classification

HERRERA et al. [101] conducted a large-scale evaluation of drum sound classifica-
tion techniques involving several instruments. The investigated dataset was com-
posed of 634 individual sound samples of drum kit instruments: bass drums, snare
drums, tom-tom drums, hi-hats, and cymbals. During the process of assembling the
dataset, the researchers made a conscious effort to ensure that the samples varied in
dynamics and that, for each class, recordings of different instruments were available.
However, they intentionally excluded playing techniques that resulted in significant
timbral deviations from the expected “standard sounds”. Examples of these include
strokes using brushes or rim shots. For each sample, the attack–decay boundary
was determined from the signal amplitude. Then, to describe each drum sample,
they selected 48 different features, grouped into four categories:

• attack-related features — attack energy, temporal centroid (of the entire sig-
nal), logarithm of attack duration, attack zero-crossing rate, and temporal
centroid to attack duration ratio;

• decay-related features — spectral flatness, spectral centroid (and variance),
strong peak,3 spectral kurtosis, spectral skewness, zero-crossing rate (and vari-
ance), and strong decay4 — all of which were computed at the decay portion
of the signal;

• relative energy features — distribution of energy over eight empirically chosen
bands (40 to 70 Hz, 70 to 110 Hz, 130 to 145 Hz, 160 to 190 Hz, 300 to 400

Hz, 5 to 7 kHz, 7 to 10 kHz, and 10 to 15 kHz);

• time average of thirteen mel-frequency cepstral coefficients (MFCC) and re-
spective variances.

3The “strong peak” feature describes how pronounced is the peak of the spectrum, achieving
high values the greater and thinner the main peak is.

4The “strong decay” feature describes the position of the temporal centroid with respect to the
decay portion of the signal, and is high if the temporal centroid is close to its beginning.
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The classification was divided into three levels, with increasing degrees of class de-
tailing. In “super-category”, instrument sounds were coarsely classified into “mem-
branes” or “plates”. At the “basic-level”, we find the proper instruments classes
(as described before). Finally, in “sub-category”, certain instrument classes were
finely subdivided: low/medium/high toms; open/closed hi-hats; ride/crash cym-
bals. Techniques for classification were chosen from tree families: instance-based
algorithms (k-nearest neighbors — KNN, K*), statistical modelling (canonical dis-
criminant analysis), and decision trees (C4.5, PART); which were combined with
two feature selection schemes (correlation-based feature selection and ReliefF). Ref-
erences for all classification and feature selection techniques can be found in the
original paper [101]. The authors performed preliminary tests to select sets with
fewer but more relevant features, such as: zero-crossing rates, spectral skewness and
kurtosis, temporal centroid, low-order MFCCs, relative energy in few bands. They
report high accuracies in the three classification levels with performance degrading
a bit the more specific the class (respectively 99%, 97%, 90%). It was also shown
that the subset of relevant features provided best classification overall.

In a follow-up paper, HERRERA et al. [124] expanded the number of instru-
ment classes (bongo, clap, clave, conga, cowbell, side-stick,5 tabla, tambourine, tim-
bale, triangle) adding up to 1976 samples of acoustic and synthetic individual drum
sounds. They included new Bark-based descriptors and used a couple of other clas-
sification algorithms (e.g., kernel density estimation) to evaluate the “basic-level”
classification task over 200 different feature subsets, obtaining at most 85.7% accu-
racy with a set of 40 features. In another interesting experiment, authors presented
a classifier that was able to correctly identify manufacturers using a distinct subset
of features for each of four instrument classes (bass drums, snare drums, tom-tom
drums, and hi-hats); results ranged from 86.3% to 99% accuracy. In both stud-
ies [101, 124], experiments were conducted with ten-fold cross-validation.

Another large-scale study by VAN STEELANT et al. [99] identified bass drum
and snare drum sounds in loops using Support Vector Machines (SVM) with linear
and Gaussian kernels. Tracks were programmatically generated by combining 2028

samples of acoustic and electronic percussion instruments from five different classes
(bass drums, snare drums, hi-hats, cymbals, and tom-tom drums). Each track
consisted of a loop of drum sounds in quantized positions, and the superposition of
different instruments was allowed. Bass drum and snare drum samples were never
simultaneously present in any mix. Since the timing information of each drum loop
was known a priori, authors bypassed the problem of onset detection and instead

5Side-stick (or cross-stick) is a drumming technique usually executed on the snare drum where
the drummer rests the end of the drum stick over the membrane and hits the rim with the tip of
the stick.
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extracted features from a 70-ms region at the beginning of each attack. Each stroke
was then represented by an 89-dimensional feature vector, which included:

• energy-related features — root mean square (RMS) of the entire segment and
in three frequency bands, in absolute and relative values;

• temporal features — ZCR, crest factor (peak amplitude to RMS ratio), and
temporal centroid;

• spectral features — spectral centroid, skewness, kurtosis, and roll-off;6

• MFCC — mean and variance of twelve coefficients, and of their first and second
derivatives;

and features were normalized to the range [−1, 1]. They conducted different ex-
periments with a reduced set of 14 features and with the complete set; data were
split between train and test sets (87.5%/12.5%) and seven-fold cross-validation was
employed to select models. Good accuracy, precision, and recall values show that
the SVM classifiers were able to generalize and correctly indicate the presence of
bass/snare drum even when “noise” (non-percussive MIDI accompaniment) was
added to the mixtures.

Playing Techniques on Drums of Indefinite Pitch

TINDALE et al. [172] extracted a set of temporal and spectral features to investigate
subtle timbral variations on snare drum recordings. A dataset was prepared with
recordings of three expert players on different drums. Players were instructed to
excite the drum using different implements and placements, in order to generate
seven different timbres: rim shot, brush stroke, and regular strikes at center, near-
center, halfway, near-edge, and edge positions. In total, 1260 strokes were recorded
at CD quality (16-bit, 44.1 kHz). The set of features was computed on four different
windows lengths: attack (from onset to peak), and 512, 1024, and 2048 samples
from the onset. Playing technique classification was conducted with feed-forward
neural networks, KNN, and SVM, using ten-fold cross-validation and evaluated on
four different scopes: all strokes; five placements on the membrane; rim shot, brush,
and edge; center, halfway, and edge. The KNN classifier was reported as the most
consistent, with accuracies ranging from 89.6% to 99.3% on all tasks and windows.

An expansion of Tindale’s work was presented by PROCKUP et al. [18]. Au-
thors investigated timbres not only in snare drum samples, but also from strokes
on two different tom-tom drums. They considered different stick heights (from 8 to

6The spectral roll-off is usually computed as the frequency point bellow which a certain prede-
fined percentage (e.g., 85%) of the energy of the spectrum is contained. Steelant et al. [99] defined
it with the magnitude of the spectrum instead.
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32 cm) and dynamics (light, medium, heavy), as well as three strike positions (cen-
ter, halfway, edge) and types (regular strike, rim shot, buzz roll, cross-stick). With
at least four examples of each parameter combination, the entire dataset consisted
of 1804 individual strokes, which were used for training and testing the articula-
tion recognition model. They used a set of “compact” features to represent signals
in the timbre space. For that, first they extracted the evolution of single dimen-
sional features over time; these included RMS energy, roughness,7 brightness, and
energy ratios between four spectral bands (0 to 1000 Hz, 0 to 534 Hz, 534 to 1805

Hz, and 1805 Hz to the Nyquist rate) and the entire spectrum. Then, they fitted
third- and sixth-degree polynomials to these temporal sequences, and used the fit-
ting coefficients as their final representation. They conducted two experiments on
the features extracted from the dataset using SVMs with RBF kernels and five-fold
cross-validation. In the first experiment, the authors evaluated the classification
accuracy of each feature and of combinations of (normalized) features on the sub-
sets of each individual drum. Authors also classified samples using MFCCs and
their first and second derivatives. MFCCs topped the accuracy rates for individual
features and drums (except the floor tom), but were outperformed by all the inves-
tigated combination of features, especially that of MFCCs and brightness evolution
(sixth-degree fit coefficients). Next, in order to test the generalization potential
of the selected features, they examined the classification task on the entire set of
audio samples. Results on the second experiment were analogous to those of the
first one, with the highest accuracy rate of 97.2% for the combination of brightness
and MFCCs, showing that the system was able to generalize the stroke type for the
distinct drums.

SOUZA et al. [173] presented a study of sounds produced by five different cym-
bals (china, crash, hi-hat, ride, and splash) of various materials, builds, and sizes.
In their dataset of just over a thousand samples, the main cymbal types were di-
vided into subclasses based on the playing techniques used to produce them. These
included “open”, “closed”, and “chick” (for hi-hats); “edge”, “body”, and “bell”
(strike placement); “roll”; and “choke” (for when the cymbal was muffled after be-
ing struck). Five sets of features were extracted from the data — temporal, spectral,
line spectral frequencies (LSF), linear-frequency cepstrum, MFCCs — and classifica-
tion was performed using naive Bayes, random forest, C4.5, KNN, and SVM models
estimated with ten-fold cross-validation. They conducted one experiment for the
classification of cymbal types and another one for playing techniques. In both cases,
the combination of SVM and LSF features yielded the best results, with accuracies
of 96.6% at the cymbal type recognition task and 86.5% for technique classification.

7Roughness is a measure of the sensory dissonance elicited by a sound, and is usually computed
considering fast modulations that occur between peaks that lie close together in the spectrum [120].
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Performance on the latter was shown to improve by 5% when the LSF descriptor
was combined with features from the temporal domain.

WU and LERCH [102] reported a different approach for investigating snare drum
playing techniques (strike, buzz roll, flam, and drag8) in polyphonic recordings.
Their method performed classification on features computed over the activations at
the output of a non-negative matrix factorization algorithm (NMF). The objective
of the NMF algorithm is to decompose a non-negative matrix VN×M (e.g., a spectro-
gram) into a product of two matrices WN×R and HR×M , which are also constrained
to be non-negative, such that an approximation V̂ = WH can be obtained numeri-
cally. Matrices W and H are respectively called basis (or template) and activation
matrices, and R determines the number of distinct template–activation pairs into
which V is to be decomposed. Wu and Lerch used a partially-fixed NMF (PFNMF),
in which the basis matrix W was split into two parts. One part contained a fixed
dictionary of previously learned drum templates (for hi-hats, snare and bass drums)
and the other was a randomly initialized template that was used to learn harmonic
components from the mixture. In their system, authors first computed a set of tem-
plate activations from examples of the different articulations using a regular NMF
and solo recordings, and then analyzed the polyphonic recordings with the PFNMF.
Once activations for the snare drum were extracted from the mixed samples, normal-
ized and smoothed with median filtering, they segmented a 400-ms window around
each annotated onset. Segments were shifted to guarantee that peak values were
always centered and, for each segment, the following features were computed:

• distribution features — spread, skewness, crest, centroid, and flatness;

• inter-onset interval (IOI) features;

• peak features — indices and ratios between side peaks (in descending order)
and the main peak;

• dynamic time warping (DTW) features — the cumulative cost of the DTW
distance between the segment and the four template activations.

These features were put together into a 19-dimensional feature vector. A feature
vector of traditional timbre features (spectral centroid, ZCR, MFCC, etc.) was also
computed for comparison. A multi-class SVM classifier was trained on a solo train-
ing dataset assembled by the authors, which contained strike and buzz roll excerpts
from the dataset presented in [18], and synthetically-generated flam and drag ex-
cerpts. This classifier was then used in two experiments with real-world recordings
from the ENST-Drums dataset [66]: one with informed onsets and the other without

8Flam and drag are snare drum playing techniques commonly used in military bands where the
primary stroke is preceded by one (flam) or two (drag) grace notes.
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annotations. The classifier with the common timbre features achieved the highest
accuracy on the cross-validation for the training set, but performed poorly on the
remaining data. The classifier with features derived from activations performed well
on the training set (above 90% accuracy) and moderately on the real-world record-
ings with and without annotations (76.0% and 64.6% on average, respectively) when
no background music was present. When music was added, performance dropped
to 40.4% accuracy, which was likely due to the noisy activation function that was
extracted from the polyphonic mixture in this case.

CHESHIRE et al. [174] carried out not a classification task, but an A/B lis-
tening test to verify if participants could distinguish between different dynamics
on the snare drum when the loudness of all sound samples was normalized. With
that objective, they recorded samples from a single snare drum in a professional
setting using four (two condenser and two dynamic) microphones in close placement
to minimise room reverberation effects. Sound pressure level (SPL) measurements
were performed during the recordings and helped set a target of high and low veloc-
ity strikes for the drummer. Then, for each microphone, one example track of each
velocity was created containing a two-bar drum pattern. During the test, partici-
pants were subjected to these phrases ten times for each microphone in a random
order, and were asked, half of the time, in which phrase strikes had a perceived
lower velocity, and, in the other half, in which phrase strikes had higher velocity.
The 15 listeners had between 21 and 50 years, and 3 to 30 years of experience in the
audio field. Tests showed that the participants were able to successfully distinguish
between the two dynamics. Authors also conducted an objective test with a second
set of recordings and several of the already discussed temporal and spectral features.
Statistical testing revealed a significant difference between the two types of strokes.

Playing Techniques on Brazilian Instruments

Although most of the works in the ADT literature focus on timbral variations pro-
duced in drums commonly found in a drum kit, instruments from other traditions,
such as some Brazilian percussion instruments, have received moderate attention
as well. For instance, ROY et al. [175] explored the subtleties in the strokes pro-
duced by a pandeiro virtuoso using the “Extractor Discovery System”. Using genetic
programming, this system automatically selected and combined elementary opera-
tors into “analytical features”, which were evaluated according to a fitness metric
— a supervised classification with SVM, in this case. Examples of operators in-
cluded, but were not limited to: FFT, log-compression, Hann window, temporal
and spectral centroids, MFCCs, etc. The combination of operators was controlled
by the type of inputs and outputs they require, and genetic transformations were
applied at each generation of the genetic algorithm to guarantee variability and a
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non-decreasing fitness. The authors constructed a dataset of 2448 pandeiro sounds
to test the system. This dataset contained a balanced number of examples from six
categories [175]:

• Tung — a bass sound;

• Ting — a higher pitched bass sound;

• PA — a slap sound (similar to the conga slap);

• pa — a softer slap, hitting the drumhead on the center;

• Tchi — the sound of the jingles;

• Tr — a tremolo of the jingles;

Each signal was windowed into non-overlapping frames of 1.4 ms and tests were
conducted on features extracted from three regions: pre-attack (the frame corre-
sponding to the detected onset and its predecessor), post-attack (the onset frame
and its successor) and full sound. The results were shown to outperform those of a
reference feature set.

In his thesis, DA COSTA [73] proposed method for an unsupervised classification
of strokes on solo tracks from the BRID dataset described in Section 3.1.3. He
first listened to examples of files from the ten instrument classes, determining the
expected number of stroke types for each instrument. He downsampled all signals
to a sampling rate of 11 025 Hz and computed spectrograms with N = 256 samples
(50% overlap). This rather coarse frequency resolution was deliberately chosen to
reduce the variability of examples from the same stroke type. Then, informed by the
onset annotations, he segmented the spectrograms starting 5 ms before each onset
and ending up to 200 ms after it, depending on the instrument. Segments were
weighted with a half Hamming window, giving more weight to earlier samples closer
to the attack. Finally, the weighted spectrogram segments were used as features and
clustered with k-means. Classes in different files from the same instrument were not
directly comparable, but Da Costa estimated an overall accuracy of 75% to 80%.

Playing Techniques on Indian Drums

Playing techniques were also investigated in the case of the Indian drums. As we
mentioned in Section 6.1, these drums, namely the mridangam and the tabla, present
strong harmonicity between partials and elicit a clear sense of pitch. GILLET and
RICHARD [176] describe a transcription system of isolated9 tabla strokes using

9Tabla strokes are usually treated as monophonic even though, in many situations, both drums
(dayan and bayan) are played simultaneously and articulate different bols or, in other cases, their
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language models for improved performance. Authors noticed that, in tabla perfor-
mances, the same stroke can sometimes be identified by different bols (i.e., symbol),
depending on the context,10 hence the importance of informing the classification
with local clues. In their system, audio signals from three solo recordings were first
segmented using the time derivative of a normalized version of the amplitude enve-
lope, to compensate for local energy fluctuations. These recordings differed in many
aspects, including the quality of the instruments and their tuning (in C\3 and D3).
In total, they obtained 64 drum phrases which were segmented into 5715 strokes.
Authors represented the power spectrum of each stroke as a mixture of N = 4 Gaus-
sian distributions and used a set of twelve elements (mean, variance, and relative
weight of each distribution) as the feature vector. Classification was performed with
a hidden Markov model (HMM) that, by modelling transition and emission probabil-
ities, took advantage of the local dependencies in tabla drum sequences, and yielded
high accuracy (6.5% error rate) over the entire test set. Another experiment was
conducted in which training and test sets corresponded to different instruments and
recording conditions. In this situation, performance degraded, but remained around
90%. Results were compared to simpler classifiers — KNN, naive Bayes estimator,
kernel Density estimator —, which were outperformed.

This work on the recognition of tabla strokes was later greatly expanded
by CHORDIA [103]. In this paper, the author experimented with the dataset and
annotations provided by GILLET and RICHARD [176], but also added manually
segmented and annotated 11 119 strokes from original studio recordings. Instead
of modelling each sample with its power spectrum density, the author extracted 31
features including temporal centroid, attack time, ZCR, spectral centroid, spectral
skewness, spectral kurtosis, and 13 MFCCs. The dimensionality of this feature set
was reduced with the principal component analysis (PCA). Four different classi-
fiers were used in this work — multivariate Gaussian classifier, feed-forward neural
network, probabilistic neural network, and tree classifier — and language modelling
with HMMs was also attempted to achieve a fair comparison with the previous work.
As in [176], Chordia conducted two experiments by training and testing on the same
and on different subsets, which he names “cross-validation” and “novel generaliza-
tion” tests respectively. The author reports that, on Gillet and Richard’s dataset,
there was a significant performance gain (about 10%) in the cross-validation test
when, in both works, no language modelling is employed. In fact, his results for
classifiers without context clues match those of [176] with HMMs, which the author
attributes to the use of more sophisticated features. A similar trend was reported

sounds overlap due to ringing. Nevertheless, the sequence of strokes is always regarded as a
sequence of individual — simple or compound — bols. A similar thing happens in the case of the
mridangam, where strokes at both drumheads are represented by a single syllable.

10Also, sometimes the same bol can refer to different timbres [103].
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for this dataset in the novel generalization test. Chordia also shows that, across all
datasets, no performance gain was achieved in his system by using language models,
and, instead, performance was degraded in some cases. The author explains that
this is likely due to poor data quality. Overall, neural networks displayed the highest
accuracies in both tests and, for all classifiers, highest rates were obtained when the
recording conditions of train/test sets were the same.

More recently, ROHIT et al. [177] separated tabla strokes into four major cat-
egories according to which drum was hit and whether the stroke was damped or
resonant. They named these archetypes “damped”, “resonant treble”, “resonant
bass”, and “resonant both”, noting that “damped” refer to strokes on either drum
that do have a fast decay and that, for resonant strokes of a single drum (bass or
treble), the remaining drum was silent or articulated a damped sound. Authors
recognized the similarities between these classes and three of the mostly studied
instruments in ADT: the bass and snare drums, and the hi-hats. They traced a
correspondence between “resonant bass” and the bass drum, “resonant treble” and
the snare drum, and “damped” and the hi-hat. “Resonant both” was expressed
as a simultaneous activation of “resonant bass” and “resonant treble”. This map-
ping allowed authors to adapt multi- and single-class CNN-based models derived for
the transcription of the Western drumkit to the task of tabla category recognition.
They experimented with training the models from zero and applying some transfer
learning strategies, as well as implementing some data augmentation (pitch-shifting,
time-scaling, attack-remixing, and tabla-specific) methods. As a baseline, they used
a random forest classifier with a large set of acoustic features, including spectral
moments, MFCCs, spectral energy and flux in bass (50 to 200 Hz) and treble (200
to 2000 Hz) regions, log attack time, temporal centroid, ZCR. Results show that
the classifier based on neural networks outperformed that based on random forest
with regular features in a large dataset of 26 000 strokes, with the single-class model
achieving on average 70.4% F -measure and outperforming the other configurations
in the recognition of each class, except in the case of the scarcest target class, which
was best handled by the fine-tuned multiclass model.

Finally, we highlight works devoted to the similar task of classifying mridan-
gam strokes (also called aksharas). In [178] and [179], isolated stroke samples were
analyzed with the NMF and classified with respect to the resulting activations.
ANANTAPADMANABHAN et al. [178] recorded two solo performances on the mri-
dangam, one tuned to D\ and the other to E. Each set of recordings was separated
into common phrases (134 in D\ and 114 in E) containing a total of 1170 strokes.
They also recorded the first five individual modes of each instrument,11 following

11In the aforementioned study on the Indian musical drums [161], Raman describes in detail how
the modes of a harmonic drum like the mridangam can be individually excited through the careful

114



a procedure described by RAMAN [161]. With the spectrogram representation of
each mode, they ran the NMF algorithm for R = 1 until convergence, which yielded
a dictionary of basis functions representing each of the modes. Then, they pro-
jected the recorded phrases onto the basis dictionary and computed activations for
template modes in these sequences. Since each stroke might be composed of more
than one mode, authors aggregated the activations to determine onsets for each
stroke. Next, they segmented the strokes at the located onsets, keeping only 80%
of the frames in-between successive onsets to avoid interference due to ringing. Ten
classes of strokes were individually modelled (cf. [180, VI-B]) with distinct HMMs
and four-fold cross-validation. They experimented with the classification of only
simple strokes and of all (simple and compound) strokes, achieving higher accuracy
in the former (82.3% and 84.7% for D\ and E, respectively, with four fundamental
modes; and 78.3% and 88.4% with five modes). In the latter, i.e., for the entire set
of strokes, accuracy rates were 72.6% and 75.0% for D\ and E, respectively, with
four fundamental modes, and 73.2% and 87.4% with five modes. Authors reported
larger class confusion in compound aksharas formed of similar simple strokes.

In the previous work, experiments were performed separately for each tuning; in a
subsequent paper, ANANTAPADMANABHAN et al. [179] attempted to transcribe
mridangam strokes independently of the performance’s tonic. They evaluated their
algorithm in a dataset containing a total of 7170 mridangam strokes in six different
tunings (from B to E in steps of a semitone); for the D\ and E tonics authors used
the same recordings as the previous work, whereas new recordings were made for
the other tonics using a tunable instrument. Overall, ten different strokes were
featured in the dataset. The CQT was selected to represent the audio in the time-
frequency domain since transpositions of the same stroke in different tunings were
expected to display the same shape in the CQT magnitude, differing only by a
linear shift on the frequency axis. Authors then applied the DFT over the CQT
frequency bins, and kept only the magnitude of the obtained representation. This
procedure resembles the method for the extraction of MFCCs, in which the DCT is
applied over the log-power spectrum of a mel-frequency representation of the signal.
As in [178], each recording was projected onto a dictionary of NMF bases. Here,
however, this dictionary was learned directly from five different solo recordings (in
the C\, D, G, and G\ tunings, respectively) which were not included in the dataset,

placement of fingers over the membrane followed by simple percussion. Similarly to what is done
in the case of string instruments, fingers that rest on the membrane are used for the creation of
nodes (i.e., nodal lines) in the mode that one desires to excite. For example, to excite the second
harmonic, the drummer can gently touch the membrane with one finger in the direction of a nodal
diameter and then strike the membrane with a finger of the opposing hand in the perpendicular
direction. Raman also discusses how the third, fourth, and fifth harmonics can be produced by
either one of multiple corresponding modes or by a superposition of two or more individual modes
in any ratio.
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instead of from samples of the instrument modes. Another difference consisted on
the extraction of onset times, which was carried through by picking peaks of a
spectral flux function. After the factorization, NMF activations were summarized
in-between detected attacks by computing the relative energy, standard deviation,
maximum and minimum values over frames, producing a 4R-dimensional feature
vector for each stroke. Vectors in the feature space were then classified with SVM
(radial basis function kernels) in ten-fold cross-validation. Two main experiments
were reported. In the first one, they compared the results on the D\ and E subsets
with the previous work, for simple and compound strokes. They show recognition
improvements of up to 10.3% (from 72.6% to 82.9%) in the best case when train and
test sets come from the same tuning, and of 4.2% (66.2% to 70.4%) otherwise. In
the second experiment, each of the six recordings was considered as a fold and used
for testing the system trained with the remaining five. Accuracies were as high as
75.6% and 72.6% for C and C\ tunings, and as low as 56.7% and 57.1% for D\ and
E. Authors pointed out that best results were obtained for those tracks that had
similar recordings conditions (B to D), particularly those with more neighboring
tonics one semitone apart (C and C\). We should note that in both tests authors
used a CQT with twelve bins per octave over six octaves (starting at f0 = 70 Hz)
and R = 20 bases in the factorization step.

Finally, KURIAKOSE et al. [181] modeled up to 41 different aksharas in seven
different recordings (and five distinct tonics) using two different approaches. For
the first approach, they used a group delay novelty curve to find onsets and segment
performances as a series of stroke events. Thirteen MFCCs (including the energy)
were computed over 20-ms frames (with 90% overlap) for each segment, along with
their first and second derivatives, forming a 39-dimensional feature vector. Then,
following a similar approach to that of [178], they built different (three-state, single
mixture) HMMs to model each individual stroke. Lastly, an HMM language model
corrected the stroke transcription. In the second method, onsets were not detected
beforehand and MFCCs were extracted over a larger 100-ms window. Generally,
they report that the method for isolated stroke recognition performed better, es-
pecially when language modelling was used, for train/test sets on the same tracks.
Accuracies in the best case were of 75.7% for long concert recordings and 95.8% for
studio recordings. In a test with only the studio-recorded phrases, in four different
tonics, authors evaluated the transcription with different observation representa-
tions. Results showed that replacing MFCCs with the CQT-based features of [179]
or with cent filter-bank cepstral coefficients (CFCC) yielded greater accuracy when
training and testing on all tonics (from 60% to 74% and 77%, respectively), and
when training on one tonic and testing on the remaining three (from 50% to 62%
and 66%).
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Chapter 7

Investigation of Drum Sound
Classification

In this chapter we apply some of the knowledge reviewed on Chapters 5 and 6 to
the classification of drum strokes from BRID solo tracks. As we mentioned in the
dataset definition (Section 3.1), this dataset encapsulates some of the main rhythmic
patterns in samba and related genres. This poses challenges that were not faced by
many of the works discussed on the previous chapter that dealt with individually
recorded drum strokes both in training and testing [18, 124, 172, 173, 175] or, at
least, only during training [102]. First, when investigating performance recordings,
besides all acoustic properties (e.g., reverberation) that might affect the classification
accuracy and which most systems that operate on isolated samples also have to face,
we must take into consideration that information pertaining to one note might “leak”
into the succeeding event due to mechanical characteristics of sound production.
These effects are unavoidable in segment–and–classify approaches. Second, and most
important, we are not looking into classifying sound events produced by different
drums (e.g., in a drum kit) as most of the earlier works; instead, we look into
distinguishing the different playing techniques used for sound production in a single
drum, such as exemplified by [18, 103, 172, 173, 175–179, 181]. Finally, due to the
richness of instrument variations in the dataset, the different recorded articulations
types identified with a single instrument class may present significant differences in
timbre.

In this chapter, we use an SVM-based supervised classification scheme, following
previous works that had similar objectives [18, 99, 102, 172, 173, 175, 179]. The SVM
leverages a diverse ensemble of features to recognize drum playing techniques from
samples that were first detected and segmented from audio streams. The system
has to be robust enough to detect drum events of very different characteristics
(e.g., energy profile), but also to correctly classify more subtle changes in playing
technique that arise in the sound production of the same instrument (see Figure 7.1).
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We describe in the next sections the samples that were annotated for our experiment,
as well as our approach to onset detection and segmentation. Finally, we describe
the features and procedures for classifying drum sounds.

7.1 Subset Definition

We conduct our investigation with a set of samples from the BRID solos representing
two instruments: tantã and repique de mão. These instruments are commonly
performed together at rodas de samba and pagodes, usually with interwoven rhythmic
patterns. Both instruments are played while placed over one or two legs, with
one hand supporting the instrument by its shell and the other free hand striking
the membrane. Moreover, they present an interesting and manageable number of
different articulations. For tantã, we highlight the following categories [182]:

• FINGERS — the lowest-pitched sound, produced by slapping the membrane
near the rim with the fingers.

• HAND — produced with an open hand on the skin near the center.

• SHELL — produced when the hand that supports the instrument strikes the
drum shell.

Repique de mão, a single-membrane adaptation of repinique, has these main articu-
lations:

• THUMB — the lowest-pitched sound, produced by the thumb close to the
edge of the membrane.

• FINGERS — produced by the fingers at the center of the drumhead.

• SHELL — supporting hand striking the drum shell.

BOLÃO [182] also reports another articulation for repique: “RIM”, which is
produced by the fingers striking the rim of the instrument. However, these are not
featured in our dataset or, at least, could not be recognized afterward during the an-
notation procedure. We note that the articulations described above can be grouped
into certain “archetypes” with respect to their musical meaning and the characteris-
tics of the sound they produce, notably: an open tone/low-pitched sound (FINGERS
in tantã, THUMB in repique de mão), a closed/muffled sound (HAND/FINGERS),
and a sound produced on the drum shell (SHELL/SHELL) that is used to fill in the
rhythm.

In total, there are 23 recordings of tantã and 12 of repique de mão in different
styles (samba, partido-alto, samba-enredo, marcha, and corresponding viradas). In
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Table 7.1: Tantã articulations in the subset.

Variation

Category TT1 TT2 TT3 TT4 Total

FINGERS 282 275 238 397 1192
HAND 309 172 206 384 1071
SHELL 419 320 350 599 1688

Total 1010 767 794 1380 3951

Table 7.2: Repique de mão articulations in the subset.

Category RP1

THUMB 876
FINGERS 620
SHELL 917

Total 2413

particular, for tantã, four different variations (variations 1 to 4), which are char-
acterized by different drumhead sizes and materials, are included in the subset.
Recordings vary also according to the performer: musician #1 plays variation 2;
musician #2 plays variations 3 and 4; and musician #3 plays variations 1 and 4.
For repique de mão, only a single instrument was available — the other repiques in
BRID are repiniques and repiques de anel (see Table 3.1). Tables 7.1 and 7.2 show
the number and types of articulations for tantã and repique de mão, respectively.

Figure 7.1 displays an excerpt of a tantã recording in which the three articulations
are present. We can easily verify that the articulations are very different: not only
in their energy profiles (amplitudes, durations, etc.), but also with respect to their
frequency contents. For example, the first and last strokes in this excerpt have a
strong bass-like component. The remaining strokes present more energy in the mid-
and high-frequency ranges, which is more akin to broadband noise. Moreover, we
can observe that superposition between notes might occur, as with the first and
second strokes, for example.

As we can see, this subset provides an interesting set of challenges for the problem
under study: not only it contains different musicians/instruments combinations, but
also many issues (e.g., inter-note interferences, varying note durations, and different
tempi, among others) that we will have to face during the step of performance
segmentation.
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Figure 7.1: Strokes in an excerpt of file [0357] S3-TT4-05-VSE (tantã solo). From
left to right, they correspond to: THUMB, SHELL, FINGERS, SHELL, THUMB.
Notice a small burst of energy right after 12.6 s, which cannot be heard, and is
possibly caused by the removal of the hand from the drumhead.

7.2 Onset Detection on the Subset

Segmenting an audio signal into its many events (i.e., notes) is a straightforward
procedure provided that high-quality event annotations are available. When no an-
notations are provided, or in real-time/online applications, it is necessary to retrieve
these events using some kind of onset detection function (ODF), so called because
it assumes high values for time frames that contain an onset, and low values oth-
erwise. ODFs are usually produced by processing the signal in time or frequency
domains, but other techniques consider the phase of the Fourier transform, or even
a combination of magnitude and phase. Time-domain methods are regarded as an
adequate choice for detecting onsets of strongly percussive instruments [98] whereas
the spectral flux is usually regarded as a one-size-fits-all solution [71]. Our samples,
however, possess some particular characteristics, such as the superposition of note
articulations with quite different properties, which are not thoroughly discussed in
the onset detection literature. Since we do not know a priori what kind of onset de-
tection function works best for our set of articulations, we choose to experiment with
ODFs computed from different signal domains. We briefly describe these methods
in the following, but the interested reader is referred to [5, 71, 98] for a full review.

To determine the best performing ODF, we first separate a small sample con-
taining 25% of the recordings of tantã (six files) and repique (three files), which are
selected considering tempo and timbral variety, and then produce ODFs for each
of these recordings. Even though we have articulation annotations for all files in
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the dataset, this procedure (of splitting a fraction of the files for evaluation) mimics
that of the real-world application, i.e., when no annotations are available. From
the time domain, we compute the derivative of the short-time energy (E), consid-
ering only energy increases (half-wave rectification). From the set of spectral-based
features, we derive a pair of flux-like functions. The first function uses the L1-
norm of the first-order difference between magnitude spectra (spectral difference,
SD), while the second function uses the L1-norm of the rectified difference (spectral
flux, SF). We also compute the high frequency content (HFC) function, which is
the frequency-weighted sum of the power spectrogram [98]. Finally, we analyze the
four functions from the phase and complex domains [71]: phase deviation (PD),
weighted phase deviation (WPD), complex domain (CD), and rectified complex do-
main (RCD). Phase deviation functions are based on the second derivative of the
frame-wise channel phase, whereas complex domain functions work by computing
the difference between the m-th frame and a prediction produced with the magni-
tude and phase derivative of the previous frame. We use the principal argument
function to map phase differences to a suitable range [5]. Energy- and spectral-
based ODFs are calculated with spectrograms in linear- and mel-frequency scales, in
both linearly-scaled and log-compressed amplitudes (which roughly simulates loud-
ness perception [98]). Phase-based and complex domain ODFs are computed with
linear-frequency spectrograms only. However, unlike what is commonly done in the
literature, we also use log-compressed amplitudes to weight phase deviations and to
produce predictions for frame spectra — we believe that the dynamic range reduc-
tion could also enhance the recovery of more subtle onsets in the case of features that
leverage both magnitude and phase. The log-compressed version of the magnitude
time-frequency representation, X[k,m], is given by

Y [k,m] = log(1 + γ|X[k,m]|), (7.1)

with γ ≥ 1. In all calculations, we use γ = 1000. Input representations are computed
with Hann windows of length 20 ms and 40 ms, and hop length of 10 ms. Mel-
spectrograms are computed with 40 mel bands from 0 Hz to the Nyquist frequency.
All ODFs (exemplified in Figure 7.2) are subjected to min-max normalization.

The selection of peaks is performed on all ODFs following the heuristic presented
by BÖCK et al. [183], which is built upon the verification of three conditions. If
y[m] is the value of the ODF at the m-th time frame, we say that m contains an
onset if it simultaneously satisfies:

1. the local maximum condition: y[m] is the maximum in a neighborhood of m,
i.e.,

y[m] = max{y[m−mmax
pre ], · · · , y[m+mmax

post]}, (7.2)

121



−1

0

1

x
[n

]

12.0 12.2 12.4 12.6 12.8 13.0

Time (s)

N
ov

el
ty

fu
n

ct
io

n
s

E

HFC

SD

SF

PD

WPD

CD

RCD

Figure 7.2: ODFs extracted from an excerpt of file [0357] S3-TT4-05-VSE. Func-
tions were computed with linear-frequency spectrograms in a linear amplitude scale.

2. the local average condition: y[m] exceeds the combination of the local average
and a fixed threshold, i.e.,

y[m] ≥ δ +
1

mavg
post +mavg

pre + 1

m+mavg
post∑

n=m−mavg
pre

y[n], (7.3)

3. the waiting condition: m is located a certain time after the last detected onset,
i.e.,

m−mlast > ∆m0. (7.4)

The peak picking parameters — mmax
pre , mmax

post, mavg
pre , mavg

post, δ, ∆m0 — are usually
determined according to the signal characteristics. Finding these parameters is a
problem that is usually approached with grid search. This is also the approach that
we use in this work. For the maximum condition, we look from 10 to 60 ms before
the actual frame, in 10-ms steps. For the local average condition, we use from 40 to
120 ms before the actual frame, in 20-ms steps. In both cases, we extract peaks in
causal mode (mmax

post = mavg
post = 0, mmax

pre ̸= 0, mavg
pre ̸= 0) and in a strictly symmetric

mode (mmax
post = mmax

pre ̸= 0, mavg
post = mavg

pre ̸= 0). The threshold δ is searched from 0
to 0.07 in steps of 0.01, and the waiting parameter ∆m0 is selected equivalent to
{0, 10, 20, 30} ms. This leads to a total of 794 880 configurations.

We evaluate the peak picking results with the standard F -measure. An esti-
mated onset is deemed correct if it lies within a time tolerance around a reference

122



onset annotation. Given the number of correct detections (true positives, c), missed
detections (false negatives, f−), and extra detections (false positives, f+) let us
define precision (P ) and recall (R) as [71]:

P =
c

c+ f+
,

R =
c

c+ f− ,
(7.5)

respectively, and the F -measure as the harmonic mean between these two figures:

F =

(
P−1 +R−1

2

)−1

=
2c

2c+ f+ + f− . (7.6)

This metric is usually expressed as a percentage.
We separately run this experiment with two time error tolerances (detection

windows) of ±25 ms and ±50 ms around annotations. Because onset positions are
very important for a proper segmentation, we are more interested in the results
produced within the narrower window, whereas the more relaxed condition serves
as a reference since it is commonly employed in the literature [183].

The results of the grid search are summarized in Figures 7.3 and 7.4 for all
configurations (ODF, analysis window, peak picking parameters) with a detection
window of 25 ms. Overall, we can observe that using the logarithm to compress
ODF input representations yields better onset detection results, which has been
extensively reported in the literature. This is also true in the case of our proposed
modifications for the complex domain, rectified complex domain, and weighted phase
deviation ODFs. We also observe that, irrespective of the peak picking parameters,
20-ms analysis windows consistently yield results equivalent to or superior to those
obtained with 40-ms analysis windows. One exception here is the phase deviation
ODF, which profits from the larger window. It is worth noting that, generally
speaking, grouping frequency bins according to the mel-scale yields slightly better
detection. The top-performing ODF for our evaluation data is HFC (20-ms window,
mel scale, log-amplitudes), which is less sensitive to the peak picking parameters, as
evidenced by the highest mean, highest median, and one of the smallest interquartile
ranges (IQR) over all configurations.

We now turn our attention to the results for the top performing configurations
(ODF and grid search), which are shown in Table 7.3. For the sake of comparison,
we also display configurations for the ±50 ms detection window. We instantly notice
that performance figures are overall very similar. The best performing configura-
tions all use as input ODFs computed over the linear-frequency scale STFT with
window length of 40 ms and log-compressed amplitude. Unsurprisingly, configura-
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Figure 7.3: Grid search results for onset detection for ODFs computed with linear-
frequency, and (a) linear- and (b) log-amplitude scales. Each box corresponds to
interquartile range for F -measures (±25 ms) over the test set with different peak
picking parameters. Mean and median values are indicated by • and |, respectively.
ODFs: short-time energy (E); high frequency content (HFC); spectral difference
(SD); spectral flux (SF); complex domain (CD); rectified complex domain (RCD);
phase deviation (PD); weighted phase deviation (WPD).
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Figure 7.4: Grid search results for onset detection for ODFs computed with mel-
frequency, and (a) linear- and (b) log-amplitude scales. ODFs: short-time energy
(E); high frequency content (HFC); spectral difference (SD); spectral flux (SF).

125



Table 7.3: Top five performing configurations in the grid search for each detection window. From left to right, columns correspond
to: tolerance; onset detection function; input representation — frequency scale, amplitude scale, and window length; peak picking
parameters — maximum condition, local average condition, fixed threshold, and waiting condition; average precision, recall, and
F -measure across all files; mean absolute error between annotations and matched detections. X = “don’t care” (all values in the
grid yield the same performance).

Input representation Peak picking parameters Evaluation

Tolerance ODF Freq. Ampl. Win. (ms) Max. (ms) Avg. (ms) Thr. Wait. (ms) P̄ (%) R̄ (%) F̄ (%) MAE (ms)

±25 ms

RCD linear log 40 ±30 ±100 0.04 X 99.41 99.41 99.41 3.0
RCD linear log 40 ±30 ±120 0.03 X 99.22 99.55 99.38 3.1
RCD linear log 40 ±20 ±100 0.05 0–20 99.44 99.33 99.38 3.0
RCD linear log 40 ±10 ±100 0.05 20 99.38 99.38 99.37 3.0
RCD linear log 40 ±20 ±80 0.06 0–20 99.56 99.17 99.36 3.0

±50 ms

E linear log 40 ±30 ±80 0.02 X 99.74 99.45 99.59 9.0
SF linear log 40 ±30 ±80 0.05 X 99.81 99.36 99.58 6.6
SF linear log 40 ±20 ±80 0.05 X 99.73 99.41 99.57 6.6
SF linear log 40 ±10 ±80 0.05 30 99.73 99.41 99.57 6.6

RCD linear log 40 ±30 ±100 0.04 X 99.56 99.57 99.56 3.0
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tions with non-causal peak picking conditions yield better results than their causal
counterparts (which did not make it to the top). With the broader ±50-ms detection
window, the top ODFs are based on short-time energy, spectral flux, and rectified
complex domain. With the shorter window, rectified complex domain remains at
the top positions, whereas the formerly best energy-based and spectral flux config-
urations lose 0.62 and 0.42 (average) percent points on the mean F -measure across
all files, respectively. Moreover, we observe that, with a ±25-ms tolerance window,
the standard deviation of F -measure for the top performing complex domain config-
uration is among the smallest (0.54%). The respective standard deviations of those
same SF and E configurations average at about 1.41% and 1.94%, respectively, when
the short window is used. Even when the broader window is used, RCD presents
good recall rates that surpasses those of the top four configurations. Finally, the last
column in Table 7.3 displays the mean absolute error (MAE) between the detections
produced by each configuration and the corresponding annotations of our evaluation
data, which provides an idea of the accuracy of each configuration. To compute the
MAE, first we seek a maximum matching between the sequences of true annotated
onsets and estimated onsets, i.e., the largest set of correspondences within the given
tolerance, such that each annotation and detection is only matched at most once.
This means we do not consider neither the false positives nor false negatives for
this metric. Then, we take the absolute difference and average the results for all
matched pairs. We observe that the top five RCD-based configurations are also
the best performing configurations with respect to the MAE. Therefore, despite the
higher computational overhead (when compared to other ODFs), we will use RCD
as our ODF, with the representation and peak picking parameters listed on the first
row of Table 7.3. We note that an energy- or spectral-flux-based ODF might be
suitable for our purposes as well, as we discuss in the next section.

7.3 Segmentation of Articulations

The next step in the processing of note articulations is segmentation. This task, like
onset detection, must be approached with care. Note events have different durations
(cf. Figure 7.1), with most information about the articulation being present in the
attack portion of the note. Moreover, overlapping between consecutive articulations
increases the difficulty in the segmentation procedure.

First, we use RCD with previously determined peak picking parameters to detect
onsets in each file of the entire subset, including the recordings used to evaluate
the ODFs. The results of this detection can be seen in Table 7.4, separated by
instrument and articulation type. For the sake of comparison, we include the results
for the other two ODFs (E and SF), with their corresponding best parameters in
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Table 7.4: Onset detection results in the entire subset. F -measure and MAE display
compound performance figures for all articulations.

#true positives F̄ (%) MAE (ms)

Artic. # E SF RCD E SF RCD E SF RCD

TT
FINGERS 1192 1187 1179 1186

98.84 99.05 98.91 9.4 6.7 3.2HAND 1071 1067 1065 1067
SHELL 1688 1677 1682 1683

RP
THUMB 876 875 875 876

99.55 99.46 99.15 8.5 6.2 2.8FINGERS 620 620 619 618
SHELL 917 910 911 911

the evaluation set. It is apparent from the table that, once again, detection F -
measure performances are very similar for the three ODFs. However, we can try
to attribute their minute differences to the way each ODF is built, as well as to
how our preliminary experiment was thought out and developed. For example, the
energy-based ODF performs slightly worse in the detection of SHELL strokes, which
generally carry less energy than the other articulations. Moreover, RCD has higher
recall for tantã (99.44%) than E and SF (99.11% and 99.03%, respectively), while
for repique it performs slightly worse than the other ODFs (99.55% against 99.62%
and 99.57%). A possible explanation for this may be the fact that our grid search
subset features more tantã onsets, which results in peak picking parameters that are
better suited for this instrument.

It seems reasonable that this slightly worse performance by RCD in repique can
also be attributed to the frequency content of each instrument. Repique has consid-
erably more energy in high frequencies (≥ 5 kHz) than tantã and proportionately
more phase instabilities in this region of the spectrum, which may have greater effect
on phase-based and complex domain ODFs than on other methods. Nevertheless,
RCD still produces onset estimates that, on average, are closer to the annotations
than the other two methods, as it is evident by the MAE results in Table 7.4. In
fact, if instead of looking to the absolute error, we compute the mean and standard
deviation of the regular error (estimated onset position minus reference annotation),
given in ms, we obtain (−9.3, 4.0), (−6.5, 4.1), and (−1.5, 4.1) for E, SF, and RCD
in tantã recordings, and (−8.5, 3.5), (−6.1, 3.6), and (−0.6, 3.4), respectively, in
repique. This indicates that there is a general bias towards estimating onsets earlier
than their corresponding annotations,1 which is considerably smaller in the case of
RCD.

1More precisely, we can speak of a bias towards perceiving onsets a few milliseconds after
they occur, which is reported in literature as the difference between the physical (acoustic) and
perceptual onsets. This delay is typically smaller for drums in general, and more so in the case of
high sounding drums, such as the snare drum [184, 185], or the repique in our case.
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Once onset frames (and corresponding timestamps) are estimated, we can finally
segment each event. Since we are only interested in the performance of the classifiers
with respect to the different features, we again perform a maximum matching be-
tween estimates and annotations. We discard the times of detected onsets without a
match (false positives), and use only those with a corresponding annotation, which
are labeled accordingly with articulation types. Next, we perform the segmentation
considering three different starting points: exactly at the estimated onset position;
5 ms before the onset; and a backtracked position — the frame index corresponding
to the previous minimum of the ODF. In all cases, we consider a segment length of
at most 125 ms or 80% of the duration between each starting point and the next
one, whichever is shorter. This criterion is consistent with the average inter-onset
interval in our subset, and is around the durations used by VAN STEELANT et al.
[99] in the classification of percussive sounds. Moreover, a few of the features we in-
vestigate (e.g., modulation features) require a signal analysis over a window that has
a minimum size to produce meaningful representations. If the classification scheme
we are presenting in this Chapter were to be embedded into a realtime system, the
length of the segmentation window and the peak picking parameters (at the pre-
vious step) would have to be taken into account for the total latency. We have
also attempted to determine the length of each segment by gating the instantaneous
power, but resulting segments were inconsistent mostly due to interference between
notes.

7.4 Feature Extraction

We approached the classification of segmented notes with features that can be
grouped into four different categories:

• temporal features — log attack time, crest factor, decrease, attack/decay ZCR,
envelope moments (centroid, spread, skewness, kurtosis), strong decay;

• spectral features — energy and energy band ratios, moments (centroid, spread,
skewness, kurtosis), spectral flatness, spectral crest, strong peak, spectral roll-
off, spectral contrast and valley;

• cepstral features — MFCC, GFCC, BFCC;

• modulation features — CQT modulation spectrum, scattering coefficients.

All features are described in detail in Chapter 5 along with important parameters.
Other parameters were obtained empirically and are defined in the following.

We use the true amplitude envelope for the computation of temporal features.
Spectral and cepstral features are calculated with a sliding Hann window of length
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23 ms with 75% overlap. Eight bands are used for the computation of the energy
distribution (relative to the total energy): 40 to 80 Hz, 80 to 160 Hz, 160 to 320 Hz,
320 to 640 Hz, 640 to 1280 Hz, 1.28 to 4 kHz, 4 to 8 kHz, and 8 to 22.05 kHz. Spec-
tral contrast is computed for seven octave bands, starting at 20 Hz, as formulated
by [107]. For MFCCs and BFCCs, we regroup all frequency bins from 0 to 22 050

Hz with 40 analysis bands, keeping only the first 13 coefficients for the correspond-
ing cepstral coefficients. A similar procedure is followed for GFCCs, but with the
first filter centered at 40 Hz. Scattering transforms are computed with a maximum
log-scale of 10, with Q1 = 3 Morlet wavelets per octave for first order coefficients,
and Q2 = 1 wavelet per scale for the second order. We also investigate the power of
our CQT modulation spectrum in discriminating note articulations. The first stage
is computed at a frame rate of 344 Hz with filters whose center frequencies go from
40 to 8127 Hz, spanning eight octaves with three bins per octave, and the second
stage represents modulation frequencies of 12 to 96 Hz. For simplicity, we will refer
to both as the first and second stages of the CQT modulation, even though the first
stage is a constant-Q spectrum.

The Essentia Python package [106] is used for the computation of log at-
tack time, ZCR, temporal moments, spectral, and cepstral descriptors. We use
Kymatio [186] (Python) to obtain scattering coefficients. For all short-time de-
scriptors, we consider as features both the mean and the variance across frames.
For the sake of simplicity, we concatenate the temporal features and treat them
all together. We proceed similarly for features that describe the general spectral
shape — moments, flatness, crest, strong peak, and roll-off —, which are aggre-
gated as “spectral shape” features. We include delta features (mean and variance of
the first derivatives) for energy and band ratios, spectral shape, spectral contrast,
spectral valley, and cepstral features. Lastly, we also report classification results
with log-compressed versions of the modulation features, as commonly done in the
literature [128].

7.5 Classification of Segments

Three questions motivate our investigation:

• Which set of features allow for a good generalization in tantã articulations
(“FINGERS”, “HAND”, and “SHELL”) when we consider the different in-
strument variations?

• Which set of features yield good classification accuracy for repique articulations
(“THUMB”, “FINGERS”, and “SHELL”)?
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• Which set of features let us identify archetypal strokes (“OPEN”, “CLOSED”,
and “SHELL”) common to both tantã and repique?

In our experiments, we perform the classification of note segments using SVM
classifiers in one-vs-one (OVO) strategy. We have used the implementation available
with the scikit-learn Python package [187]. Note that, for tantã or repique (or
for the archetypal strokes), we are always dealing with a three-class classification
problem. We evaluate SVMs with linear and radial basis function (RBF) kernels,
experimenting with different values for the main hyperparameters: the margin/reg-
ularization parameter, C, and the parameter γ that controls the width of the RBF
kernel κ(·, ·), such that

κ(xi,xj) = e−γ∥xi−xj∥2 , (7.7)

where ∥·∥ indicates the Euclidean distance (L2-norm). Unless otherwise noted, we
perform all tests with nested leave-one-group-out cross-validation (LOGOCV). For
tantã, we first split data into four non-uniform groups, according to the instrument
variation of each recording. This is done to avoid any kind of “data leakage” that
may happen due to training and testing on recordings from the same variation. For
repique, since there is a single instrument, we split data into three groups, one for
each performer. In either case, we average the results of training over all but one
group and testing on the remaining one. We tune all hyperparameters with grid
search in an “inner” ten-fold cross-validation loop, which is repeated three times
with data being randomly split in each repetition, respecting class distributions.
We search for C ∈ {10−1, 100, 101, 102, 103} and for γ ∈ {10−4, 10−3, 10−2, 10−1, 100},
around the recommended values [187]. Training data are scaled to zero mean, unit
variance; these scaling parameters are used to scale corresponding validation and
testing data. In each run of the tuning procedure, models are fit and then evaluated
over validation sets with the macro F -measure, i.e., the arithmetic mean of per-class
F -measures. The model with the best mean cross-validated score is chosen and refit
on the entire training set before being evaluated over each left-out group.

7.5.1 Articulations of Tantã and Repique

We investigate the classification performance of each feature set when extracted
from segments cut at different starting points — “exact”, “5 ms” before the esti-
mated onset, and “backtrack” (i.e., cutting at the previous minimum of the RCD
ODF). This is done separately for tantã and for repique, and the results displayed
on Tables 7.5 and 7.6, respectively. We report averages for both accuracy and macro
F -measure over test sets.

One thing that is interesting about the results in these tables is that there seems
to be a small advantage in cutting the segment before the onset estimation. This
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Table 7.5: Average cross-validation results for the classification of tantã articulations. Standard deviations are shown between parentheses.
In gray, we highlight the best macro-averaged F -measure among different cutting points; in boldface, we highlight the best macro-averaged
F -measure over all features.

Dim. Average accuracy Average F -measure (macro)

Exact 5 ms Backtrack Exact 5 ms Backtrack

Temporal features 10 0.862(0.138) 0.903(0.107) 0.911(0.077) 0.864(0.132) 0.902(0.104) 0.902(0.083)

Sp
ec

tr
al

Energy and band ratios 18 0.743(0.219) 0.809(0.188) 0.760(0.194) 0.721(0.237) 0.795(0.202) 0.732(0.223)
Energy and band ratios + ∆ 36 0.820(0.178) 0.837(0.177) 0.800(0.178) 0.815(0.175) 0.834(0.176) 0.786(0.185)
Spectral shape 16 0.794(0.239) 0.800(0.256) 0.773(0.200) 0.767(0.280) 0.777(0.292) 0.735(0.243)
Spectral shape + ∆ 32 0.796(0.243) 0.803(0.269) 0.795(0.241) 0.778(0.272) 0.780(0.304) 0.776(0.260)
Contrast/valley 28 0.817(0.143) 0.793(0.248) 0.764(0.199) 0.784(0.198) 0.778(0.271) 0.746(0.214)
Contrast/valley + ∆ 56 0.807(0.170) 0.827(0.190) 0.794(0.238) 0.780(0.213) 0.823(0.192) 0.778(0.254)

C
ep

st
ra

l

MFCC 26 0.819(0.199) 0.816(0.195) 0.792(0.183) 0.766(0.275) 0.765(0.268) 0.741(0.254)
MFCC + ∆ 52 0.834(0.213) 0.836(0.220) 0.815(0.203) 0.788(0.285) 0.785(0.302) 0.766(0.282)
BFCC 26 0.764(0.186) 0.773(0.177) 0.768(0.180) 0.692(0.261) 0.710(0.248) 0.713(0.257)
BFCC + ∆ 52 0.842(0.193) 0.831(0.203) 0.811(0.199) 0.806(0.251) 0.785(0.279) 0.764(0.275)
GFCC 26 0.793(0.188) 0.801(0.197) 0.740(0.190) 0.750(0.258) 0.756(0.272) 0.694(0.258)
GFCC + ∆ 52 0.823(0.172) 0.817(0.194) 0.814(0.162) 0.793(0.220) 0.780(0.256) 0.789(0.195)

M
od

ul
at

io
n

Time scat., first order 52 0.847(0.196) 0.820(0.204) 0.823(0.182) 0.828(0.221) 0.810(0.212) 0.793(0.223)
Time scat., first order (log) 52 0.880(0.159) 0.885(0.168) 0.848(0.177) 0.858(0.196) 0.861(0.205) 0.825(0.211)
Time scat., sec. order 182 0.777(0.119) 0.809(0.122) 0.814(0.144) 0.729(0.165) 0.770(0.177) 0.772(0.200)
Time scat., sec. order (log) 182 0.784(0.237) 0.842(0.146) 0.841(0.162) 0.778(0.244) 0.816(0.187) 0.816(0.200)
Time scat., first+sec. order 234 0.883(0.151) 0.867(0.137) 0.843(0.187) 0.862(0.184) 0.858(0.142) 0.812(0.230)
Time scat., first+sec. order (log) 234 0.857(0.162) 0.850(0.200) 0.825(0.235) 0.835(0.198) 0.828(0.235) 0.808(0.257)
CQT, first stage 48 0.837(0.210) 0.839(0.210) 0.774(0.261) 0.811(0.250) 0.829(0.221) 0.763(0.264)
CQT, first stage (log) 48 0.822(0.258) 0.815(0.278) 0.803(0.254) 0.802(0.291) 0.793(0.314) 0.785(0.278)
CQT, sec. stage 192 0.830(0.207) 0.808(0.216) 0.815(0.222) 0.786(0.272) 0.783(0.239) 0.782(0.267)
CQT, sec. stage (log) 192 0.867(0.178) 0.871(0.177) 0.877(0.154) 0.837(0.225) 0.839(0.228) 0.840(0.211)
CQT, first+sec. stages 240 0.859(0.172) 0.856(0.186) 0.839(0.184) 0.834(0.208) 0.851(0.187) 0.823(0.202)
CQT, first+sec. stages (log) 240 0.874(0.188) 0.874(0.194) 0.878(0.176) 0.846(0.235) 0.846(0.241) 0.848(0.225)
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Table 7.6: Average cross-validation results for the classification of repique articulations. Standard deviations are shown between paren-
theses. In gray, we highlight the best macro-averaged F -measure among different cutting points; in boldface, we highlight the best
macro-averaged F -measure over all features.

Dim. Average accuracy Average F -measure (macro)

Exact 5 ms Backtrack Exact 5 ms Backtrack

Temporal features 10 0.919(0.015) 0.933(0.014) 0.904(0.047) 0.916(0.013) 0.929(0.018) 0.898(0.050)

Sp
ec

tr
al

Energy and band ratios 18 0.833(0.061) 0.829(0.048) 0.796(0.026) 0.813(0.067) 0.808(0.056) 0.786(0.023)
Energy and band ratios + ∆ 36 0.842(0.033) 0.887(0.038) 0.834(0.002) 0.828(0.045) 0.879(0.046) 0.823(0.012)
Spectral shape 16 0.853(0.056) 0.808(0.045) 0.850(0.019) 0.838(0.058) 0.791(0.052) 0.836(0.024)
Spectral shape + ∆ 32 0.858(0.032) 0.869(0.061) 0.868(0.021) 0.847(0.035) 0.860(0.065) 0.860(0.016)
Contrast/valley 28 0.818(0.049) 0.891(0.044) 0.891(0.048) 0.797(0.057) 0.881(0.053) 0.882(0.053)
Contrast/valley + ∆ 56 0.794(0.057) 0.886(0.050) 0.872(0.059) 0.769(0.063) 0.873(0.057) 0.864(0.055)

C
ep

st
ra

l

MFCC 26 0.825(0.067) 0.868(0.044) 0.866(0.046) 0.795(0.080) 0.850(0.050) 0.855(0.049)
MFCC + ∆ 52 0.885(0.060) 0.892(0.054) 0.911(0.033) 0.872(0.067) 0.878(0.061) 0.906(0.036)
BFCC 26 0.817(0.075) 0.828(0.064) 0.852(0.032) 0.797(0.080) 0.806(0.070) 0.839(0.025)
BFCC + ∆ 52 0.862(0.058) 0.875(0.055) 0.880(0.009) 0.846(0.065) 0.862(0.061) 0.864(0.015)
GFCC 26 0.873(0.021) 0.829(0.056) 0.865(0.028) 0.856(0.024) 0.808(0.060) 0.850(0.028)
GFCC + ∆ 52 0.888(0.043) 0.872(0.051) 0.886(0.032) 0.876(0.048) 0.857(0.059) 0.874(0.032)

M
od

ul
at

io
n

Time scat., first order 52 0.877(0.091) 0.898(0.079) 0.875(0.100) 0.876(0.087) 0.895(0.076) 0.873(0.096)
Time scat., first order (log) 52 0.874(0.087) 0.857(0.094) 0.892(0.058) 0.858(0.104) 0.838(0.113) 0.880(0.067)
Time scat., sec. order 182 0.832(0.083) 0.845(0.104) 0.897(0.053) 0.825(0.077) 0.841(0.098) 0.888(0.061)
Time scat., sec. order (log) 182 0.851(0.076) 0.840(0.091) 0.871(0.077) 0.841(0.077) 0.826(0.102) 0.858(0.091)
Time scat., first+sec. order 234 0.827(0.144) 0.832(0.147) 0.931(0.043) 0.825(0.138) 0.830(0.140) 0.926(0.044)
Time scat., first+sec. order (log) 234 0.891(0.070) 0.840(0.078) 0.859(0.086) 0.877(0.081) 0.827(0.082) 0.849(0.092)
CQT, first stage 48 0.908(0.045) 0.843(0.143) 0.881(0.072) 0.904(0.047) 0.843(0.137) 0.876(0.072)
CQT, first stage (log) 48 0.827(0.051) 0.821(0.035) 0.844(0.047) 0.803(0.052) 0.793(0.031) 0.823(0.046)
CQT, sec. stage 192 0.928(0.038) 0.925(0.039) 0.903(0.058) 0.925(0.040) 0.922(0.040) 0.900(0.059)
CQT, sec. stage (log) 192 0.953(0.017) 0.938(0.038) 0.917(0.040) 0.952(0.017) 0.935(0.038) 0.912(0.044)
CQT, first+sec. stages 240 0.921(0.049) 0.925(0.046) 0.909(0.053) 0.919(0.050) 0.924(0.046) 0.905(0.055)
CQT, first+sec. stages (log) 240 0.953(0.020) 0.934(0.031) 0.927(0.035) 0.950(0.022) 0.928(0.033) 0.924(0.036)
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is particularly true for spectral-based features in tantã recordings, for which the “5
ms” segmentation procedure yielded the best results. Best F -measures for tantã ar-
ticulations are achieved with: temporal (90.2%); first-/second-order time-scattering
(86.2%); first-order time-scattering log-coefficients (86.1%), and first-/second-stage
CQT modulation (85.1%). For repique, a large proportion of the best results involve
the use of CQT modulation coefficients. Top-performing are the log-compressed
CQT modulation coefficients (95.2%), and the log-compressed version of the aggre-
gation of the CQT spectrum and CQT modulation spectrum (95.0%). Interestingly
enough, the CQT modulation alone produces a F -measure of 92.5% — when append-
ing first-stage coefficients this metric drops by 0.1%, probably due to the increase in
dimensionality. Temporal features also give good results for repique (92.9%). It is
somewhat surprising that our proposed modulation features outperform MFCCs and
other cepstral representations, which have for long been regarded as state of the art
in timbre recognition problems. We observe that adding dynamic features (deltas)
consistently improves the classification results. On the other hand, there is no clear
evidence that log-compression on modulation coefficients boosts performances.

Closer inspection of the results show that tantã classification presents smaller
averages and larger standard deviations when compared with the results for repique
articulations. A likely cause for this might be that tantã recordings contain instru-
ment variations with very different characteristics: from the drumhead size (10 to 14

in) to its material (leather and napa/nylon). Since we separate training and testing
according to the variation (see Table 7.7), some are more affected by this data split
than others. To illustrate this, we present typical cross-validation results for tantã
in Table 7.7. It becomes immediately evident from this table that models trained on
TT1, TT2, and TT3 (leather drumheads) generalize poorly to TT4 (napa/nylon).
This ends up lowering the mean and increasing the standard deviation of the results
for this instrument overall, something that does not happen in the case of repique.

Table 7.7: Example of LOGOCV results with temporal features from tantã record-
ings. We report the best model results on the test group in each case, as well as the
average validation F -measures (macro).

Train Test Best model Val. F
Kernel Acc. F

TT2, TT3, TT4 TT1 RBF (C = 102, γ = 10−1) 0.971 0.969 0.969
TT1, TT3, TT4 TT2 RBF (C = 102, γ = 10−1) 0.978 0.978 0.968
TT1, TT2, TT4 TT3 RBF (C = 102, γ = 10−1) 0.943 0.937 0.971
TT1, TT2, TT3 TT4 RBF (C = 101, γ = 10−1) 0.718 0.725 0.986

Test accuracy avg.(std.): 0.903(0.107)
Test F -meas. avg.(std.): 0.902(0.104)
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Figure 7.5: Confusion matrices in each of the LOGOCV steps for the best performing
model (temporal features, 5 ms) in tantã articulations.

Another way to visualize this is through confusion matrices, which are shown
for the best performing model configurations in Figures 7.5 and 7.6, for tantã and
repique, respectively. For the model trained on temporal features extracted from
tantã recordings, we observe in general very good recall and precision rates for each
articulation, with most mistakes arising from the confusion between HAND and
FINGERS, or HAND and SHELL. However, when training on TT1/TT2/TT3 and
testing on TT4, almost a third of the HAND strokes are misclassified as either FIN-
GERS or SHELL, whereas 36% of SHELL strokes are wrongly labeled FINGERS. It
is worth noting that, due to its synthetic drumhead, the sounds produced by TT4
are “drier” than from its counterparts, which could explain the overall confusion in
this case. The model tested on TT4 also tends to overestimate the number of FIN-
GERS labels. For repique, the confusion matrices have well defined diagonals, with
few errors due to mixes between open (THUMB) and closed sounds (FINGERS).
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Figure 7.6: Confusion matrices in each of the LOGOCV steps for the best performing
model (CQT modulation log-coefficients, exact) in repique articulations.

7.5.2 Archetypal Strokes

For this experiment, we group the labels for tantã and repique segments (observing
the sonorous characteristics and musical meaning of each stroke type) and perform
the classification of these “archetypal strokes”. The labels FINGERS / HAND /
SHELL (tantã) and THUMB / FINGERS / SHELL (repique) are thus mapped
to OPEN / CLOSED / SHELL. To simplify our analysis, we classify only basic
features (no log-compression or delta features) extracted from segments that start
precisely at the onset estimates. This time, we do not perform hyperparameter
optimization, instead using a linear SVM and fixing C = 10, which is around the
average value of the cross-validation procedure from the previous experiment for
this kind of kernel. Again, we carry the training/testing split following a LOGO
procedure with instrument variations (TT1, TT2, TT3, TT4, and RP1).
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Table 7.8: Classification results for archetypal articulations. The highest scores are
highlighted in bold.

Feature Dim. Accuracy F -measure

Temporal features 10 0.822(0.126) 0.798(0.157)
Energy and band ratios 18 0.686(0.213) 0.678(0.218)
Spectral shape 16 0.693(0.169) 0.660(0.199)
Contrast/valley 28 0.511(0.161) 0.426(0.149)
MFCC 26 0.739(0.143) 0.686(0.183)
BFCC 26 0.751(0.171) 0.701(0.210)
GFCC 26 0.747(0.188) 0.702(0.239)
Time scat., first order 52 0.788(0.201) 0.761(0.233)
Time scat., sec. order 182 0.781(0.179) 0.736(0.225)
CQT, first stage 48 0.815(0.167) 0.793(0.202)
CQT, sec. stage 192 0.826(0.193) 0.801(0.227)

Table 7.9: Example of LOGO results with a temporal and modulation features for
the classification of archetypal strokes. For each test group, the highest F -measures
are highlighted in bold.

Train Test Test F -measure (macro)

Temporal CQT mod.

TT2, TT3, TT4, RP1 TT1 0.913 0.935
TT1, TT3, TT4, RP1 TT2 0.946 0.960
TT1, TT2, TT4, RP1 TT3 0.912 0.964
TT1, TT2, TT3, RP1 TT4 0.647 0.367
TT1, TT2, TT3, TT4 RP1 0.569 0.779

Table 7.8 provides summary statistics for test set accuracies and F -measures
from the LOGO procedure. We notice that the CQT modulation coefficients are the
most capable in generalizing the classification of archetypal strokes among different
instrument variations with 80.1% F -measure. The set of temporal features come in
second place, with 79.8% F -measure, but with smaller standard deviation (15.7%
against 22.7% for the former). Table 7.9 shows the test results of each LOGO itera-
tion for both feature families. We observe that classification with CQT modulation
coefficients actually performs better on RP1 than when temporal features are used,
but has a much inferior result on TT4. The performance of the classifier using tem-
poral features on TT4 segments is worse than when other variations (TT1, TT2,
TT3) serve as test, but does not drop as much (about 30 percent points against
60) as was the case with CQT modulation features — moreover, its performance is
better than that of the classification of RP1 samples with the same feature. These
results cannot be simply attributed to imbalances in instrument variations, and
require further investigation.
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We conclude this experimental section with an attempt to improve the cross-
instrumental classification results. One possibility, for example, is to provide the
classifier with sets of aggregated features, like we have done with the first- and
second-stage scattering coefficients, for example. With multiple viewpoints, in par-
ticular, features coming from different domains, the classifier has more options to
define separating hyperplanes. The problem we may face sooner than later when
aggregating features is that of the “curse of dimensionality” — a high-dimensional
feature space requires an even higher number of training samples. Still, the classifier
for the problem at hand could probably benefit from more viewpoints. There are
several ways of boosting the performance of estimators by selecting meaningful fea-
tures — these usually require some kind of scoring function in sequential methods
such as recursive feature elimination. We refer the reader to the work by ESSID [95]
for an application of these techniques to general musical instrument recognition.

In this work, we follow a simple and interpretable approach of combining different
features two by two. We follow the same training procedure as in the single-feature
case, but this time with each concatenated set of features, i.e., we run the train-
ing procedure for all 55 feature combinations. Results for this experiment on the
classification of archetypal strokes can be seen in Figure 7.7. The aggregation of
temporal and CQT modulation features yields the best classification F -measure
(89.0%) over all feature sets. This represents about 8.9-percent-point increase over
classifying only with CQT modulation and 9.2 percent points over classifying only
with temporal features (cf. Table 7.8). Another interesting combination is that of
temporal features with GFCCs, with which the SVM classifier achieves 86.3% F -
measure. Overall, we can note that it is very useful to append temporal features
to any other feature set, whereas adding features from the same domain does not
usually represent a great improvement. Instead, sometimes doing so deteriorates the
performance of the classifier. For example, aggregating MFCCs and BFCCs results
in an average reduction of 5.5 percent points in F -measure.
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Figure 7.7: Results for classification with aggregated features. Single-feature results
are represented along the main diagonal and ⋆ is the best combination.
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Part III

Rhythmic Description

140



Chapter 8

Introduction to Rhythmic
Description

In Section 2.4, we have briefly introduced the concept of rhythm and highlighted
the notions of timelines, contrametricity, commetricity, and polyrhythm (i.e., the
superposition of different rhythmic layers) in samba. We also mentioned the phe-
nomenon of marcialização, which occurs when the main characteristics of samba are
lost due to an increase in playing speed. Moreover, we presented some of the most
common batidas of each instrument in a bateria. Now, we will focus on the MIR
topic of rhythmic description, which aims to represent time in a “compact and gen-
eralizable form” [188]. We can interpret the rhythmic patterns in a music recording
as a combination of pulse rate and amplitude modulations [189, 190]. This means
that an investigation of those patterns could benefit from periodicity analyses, for
example.

In MIR, several methods have been proposed for identifying periodicity pat-
terns and rhythm in music. These methods are sometimes used to detect tempo,
infer meter, and characterize small-scale deviations (e.g., swing) in music signals.
Additionally, they serve as a preprocessing step in many tasks that rely on simi-
larity, including genre classification and collection retrieval. In fact, according to
COCHARRO et al. [15], in the context of machine understanding of rhythm, the
research topics of rhythm description and rhythm similarity are closely connected,
with similarity models being reliant on the subjacent encoded representation of time
patterns [191]. Rhythm description is relevant for various applications, from music
recommendation and retrieval, to musicological analyses, composition, and perfor-
mance [15].

Approaches in the literature vary greatly according to the domain in which
the music is presented, i.e., either symbolic or audio. For the analysis of rhyth-
mic patterns (and their similarity) in symbolic domains, we refer to works by
TOUSSAINT [191–193]. In the case of audio recordings, which are the subject of this
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work, rhythmic representations can be categorized into three levels of abstraction
— low, middle, and high [15, 194]. At the lowest level, we find the representations
obtained via an accent signal, such as the spectral flux and other novelty functions
used in Chapter 7. Mid-level representations elicit information comparable to that
of a transcription. Examples include histograms of inter-onset intervals and other
periodicity features such as the autocorrelation function (ACF). COCHARRO et al.
[15] also include, at this level, the representations obtained from tempo estimation
and beat tracking. Finally, high-level description is defined at the domain of compo-
sition theory or style analysis [15]. These methods can also be classified according
to how they compute the similarity of the derived representations: a few examples
are the Euclidean and cosine distances, and dynamic programming algorithms [188].

In this chapter, we present a review of the main rhythmic description methods in
the MIR literature. We begin, however, by defining a few concepts common to this
chapter and the following ones. Lastly, we briefly investigate some techniques from
the literature for representing the rhythmic patterns in our datasets and propose a
few modifications.

8.1 Musical Concepts for Rhythmic Description

Figure 8.1 presents, in an idealized score-notation format, a simple motivating ex-
ample containing the concepts used in this and the following chapters. We identify
the beat as the main temporal unit perceived in a music piece. This predominant
pulsation is performed at a rate per unit of time that defines the piece’s tempo. In
our example, the beat is related to the quarter note and the metronome marking of
100 bpm indicates the general tempo. However, throughout a piece, tempo is rarely
maintained constant: it can vary greatly as a result of compositional or performa-
tive choices. We note that music genres can be sometimes characterized by typical
tempo [3].

The meter defines a regularly recurring pattern established by the succession
of rhythmic pulses and corresponding accents (metrical structure). One such com-
plete pattern is the measure (bar, cycle), whose boundaries lie on so-called strong
beats, and are indicated by vertical bars in Western notation. Over these longer
time spans, the strong beats are also known as downbeats, whereas the remaining
beats are weak in possibly a variety of degrees — these degrees of accentuation are
defined in the metrical sense and do not necessarily correspond to note attacks (i.e.,
onsets) of varying loudness [3]. In Western music, two kinds of meters are commonly
found — duple or triple —, depending on how the basic pulsation is subdivided.
Our example shows a duple meter, and the time signature 2

4 indicates the number
of notes of a particular value (in our case, the quarter note) featured in each bar.
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downbeat

beat

tatum

onset

deviations

Figure 8.1: Musical concepts concerning rhythm overlaid on the score from Fig-
ure 2.13a. Arrows illustrate timing deviations: directions indicate whether notes
are played ahead or behind the expected (quantized) positions, and lengths show
the magnitude of the deviation.

Meter perception is influenced by the listener’s musical training and cultural back-
ground [195]. For example, different listeners might perceive “beat” pulsations that
lie in different metrical layers, leading, for example, to perceived tempi related by a
factor of two [196].

Located at the fastest sub-beat level perceived in music, tatums (“temporal
atoms” [171]) are generally dependent on local inter-onset intervals. The tatum rate,
which is the tempo analog at this scale, is thus hardly ever constant throughout a
piece. Expressive deviations may shape time and shift onset positions at this small
scale in ways that Western music notation cannot accurately represent. We note
that the systematic use of these deviations, which we will refer to as microtiming, is
of structural importance in defining the style of many music genres. This is the case
of jazz [197–200], Cuban rumba [171], Brazilian samba [201, 202], and Uruguayan
candombe [203].

Finally, as alluded to in Chapter 1, one of the acceptations of the word “rhythm”
is the specific patterned configuration of note attacks in time — the “perceivable
pattern of temporal space between attacks” [3]. In the example, we can readily
identify two phrases that share the same rhythmic pattern (short–long–short–short–
long–short–long–long). It is true that the rhythmic cell “short–long–short” (the
“characteristic” syncope) is also a relevant pattern in this piece. In our experiments
that follow, this particular aspect concerning the duration or extent of the rhythmic
pattern will not be taken into account.

8.2 Literature Review

In this section, we will explore various methods proposed in MIR for describing
rhythm, with a specific focus on works that emphasize rhythmic similarity. The
task of beat tracking, which COCHARRO et al. [15] mentioned in their review, is a
crucial aspect of transcription and constitutes an entire field within MIR. Thus, it
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will receive special attention in the following chapter.
Most early approaches to rhythmic description and similarity involved comput-

ing periodicities from features sensitive to musical tempo (e.g., signal similarity
matrices, band-wise autocorrelations, inter-onset interval histograms). Since small
tempo changes are common not only within music genres but amid performances,
due to physical limitations or even expressive intents and conventions, this tempo-
dependency of the rhythmic features hinders the performance of most systems with
respect to the assessment of similarities. Therefore, some works required prior es-
timation of the beat frequency and sometimes even of the beat phase (cf. Chap-
ter 9) to avoid the influence of tempo in the final representation. For instance, with
knowledge of bar boundaries in a given music recording, we can extract bar-length
rhythmic patterns from a quantized representation of the bar interval at a fine tem-
poral grid [38] — the influence of tempo is discarded, allowing for the comparison
or bar patterns that were executed at different speeds. To bypass this problem,
tempo-robust features were later specially targeted for retrieval and classification
problems.

Early Approaches

FOOTE and UCHIHASHI [204] introduced the “beat spectrum”, which was com-
puted by summing the diagonals of the signal similarity matrix at different lags.
Its short-time version, the “beat spectrogram”, can be calculated over time using
a sliding window. TZANETAKIS and COOK [205] analyzed the audio signal in
octave bands using a discrete wavelet transform and extracted a smooth envelope of
the rectified signal in each band. Then, they computed an enhanced autocorrelation
on the sum of all frequency bands and selected its dominant peaks, which resulted
in a feature called “beat histogram”.

DIXON et al. [206] represented rhythmic patterns by extracting, from each mea-
sure of a track (known a priori), an RMS envelope at a rate of b samples per bar
with a hop length directly proportional to the bar duration. Best results were re-
ported for b = 72 and a hop of 50%. This feature worked as the ODFs described in
the previous chapter: assuming high values near onsets, low values otherwise. Each
piece was then represented by the centroid of the most significant k-means cluster.
They achieved a 50.1% classification rate of genres in the Ballroom dataset.

Another early approach, by GOUYON et al. [207], used a total of 73 descriptors
to classify Ballroom genres. These included features derived from an inter-onset
interval histogram (IOIH) and from a periodicity histogram inspired by [205]. They
experimented with different subsets of features, but a classification system using
IOIH-based features alone achieved a 51.2% accuracy, whereas 56.7% accuracy was
achieved when using a set of features derived from the periodicity histogram. We
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note that the IOIH-based features required the estimation of the tatum of each
piece, yielding a tempo-independent feature. They also reported a maximum genre
classification accuracy of 90.1% when global (average) annotated tempo was used
as one of the feature dimensions (78.9% with estimated tempo).

To circumvent the influence of tempo, PAULUS and KLAPURI [208] first es-
timated the metrical structure of the musical signal and then compared rhythmic
patterns extracted at that grid resolution using dynamic time warping. This dy-
namic programming algorithm allowed measuring the similarity between two musical
pieces even if they were executed at different speeds by finding an optimal match
under certain restrictions.

PEETERS [209] estimated periodicities from an onset strength function by
multiplying the magnitude of the DFT with a frequency-mapped ACF. A tempo-
independent rhythmic representation was obtained by normalizing the feature by
a local tempo estimate or by the annotated global tempo. Peeters exemplified the
discriminative power of this feature with a genre classification experiment with re-
gression methods. The system achieved a recognition rate of 80.8% in the Ballroom
genres, and 90.4% when tempo information was added. One should note that 78%
accuracy was obtained with tempo alone [209].

Avoiding Meter and Tempo Estimation

Other works extracted tempo-robust features without the need for estimating meter
or tempo altogether. HOLZAPFEL and STYLIANOU [210] employed a dynamic
periodicity warping (DPW) technique as a dissimilarity measure to directly compare
periodicity spectra, i.e., the DFT of the onset strength signal (OSS), which is the
signal described by an ODF. Later, authors used the scale transform to produce a
descriptor that is robust to tempo variations [211, 212]. The choice for the scale
transform representation came from the observation that the ACF of a scaled signal
(e.g., the same rhythmic pattern at a different tempo) is equal to the autocorrelation
of the original signal scaled by the same factor [212]. In other words, the transfor-
mation compensates for small scaling factors in the periodicity representation of two
similar rhythms with different tempi. To obtain their descriptor, they first computed
the local autocorrelation of the OSS. Then, they applied the scale transform to each
analysis frame. Finally, features were averaged over time and used for comparisons
through the cosine distance. A genre classification accuracy of 91.7% was obtained
with an SVM classifier on the Ballroom dataset using this feature, named “scale
transform magnitudes” (STM). MARCHAND and PEETERS [213] extended this
idea in the “modulation scale spectrum”, which analyzed band-wise periodicities in
the scale domain. Authors later included auditory statistics (cross-correlations of
energy profiles in different bands) achieving an average recall of 96% in Ballroom
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classes with SVM [214].
Other approaches obtained similar results to the STM by normalizing for tempo

via the transformation of the lag-axis of autocorrelation-based features into the
logarithmic domain [215, 216]. In the log-scale, the effect of tempo changes on the
autocorrelation function is not scaling, but translation, which can be eliminated by
further processing (e.g., cross-correlation, DCT).

Modulation-Based Features

PAMPALK et al. [217, 218] described a set of features known as “fluctuation pat-
terns” (FP), which also allowed for a multi-band analysis of rhythmic periodicities.
These were defined by the amplitude modulation of the loudness of an audio signal in
each frequency band. The original proposal included a set of psychoacoustic-related
transformations such as, for example:

• bundling STFT frequency bins into critical bands (Bark scale);

• emulating masking effects by suppressing spectral components;

• translating sound pressure levels into a perceptive domain (sone scale).

Moreover, modulations were computed for each channel with the DFT and weighted
according to a perceptual model of fluctuation strength. Finally, the output was fil-
tered to emphasize beat information and smoothed to improve similarity retrieval.
Note that this computation of per-channel periodicities is not robust to large tempo
variations, although somewhat insensitive to small-scale tempo changes as a conse-
quence of all the postprocessing steps.

Many modifications have been proposed to this set of features. For example,
LIDY and RAUBER [219] aggregated FPs over frequency bins to produce a descrip-
tor known as “rhythm histogram” (RH). POHLE et al. [220] drew inspiration from
FPs and defined the “onset patterns” (OP), which used a cent-scale representation
as input and mapped the linear-scale modulations onto a log-axis at the output.
Through this transformation, tempo differences between recordings are represented
by translations in the log-modulation-frequency axis. Authors further processed
OPs by applying a two-dimensional DCT and obtained another feature, the “on-
set coefficients” (OC). The DCT operates by discarding phase information, further
improving the robustness to tempo. They show that the classification of Ballroom
styles can be improved from 75% with FPs, to 86.7% with OPs, and 87.7% on aver-
age with OCs, depending on the number of coefficients of the DCT in the frequency
and periodicity dimensions. ABRASSART and DORAS [221] follow the original
implementation by PAMPALK et al. [217, 218], but replace the second stage for a
CQT to obtain the “constant-Q fluctuation patterns” (CQFP).

146



FOROUGHMAND and PEETERS [222] introduced a feature denoted “har-
monic-constant-Q-modulation”, which was computed by extracting a harmonic
CQT [223] from a multi-band onset strength signal. This feature was used as the
input of a convolutional neural network for global tempo estimation and rhythm
pattern classification, achieving modest results in the latter task.

HOLZAPFEL et al. [224] and PANTELI and DIXON [225] presented a com-
parison of rhythmic descriptors based on the scale transform and fluctuation/onset
patterns. In particular, HOLZAPFEL et al. [224] show that, depending on the
tempo distribution of a music genre, it can be advantageous to use tempo-robust
features or to encode large tempo changes in the representation when computing
rhythmic similarity.

8.3 Rhythmic Descriptors

We now describe the rhythmic descriptors that will be used in Chapter 11. While
the first descriptor remains mostly unmodified from the STM implementation
of HOLZAPFEL and STYLIANOU [212], we propose a few important modifica-
tions for the OP descriptor of PAMPALK et al. [217, 218]. Namely, we (1) compress
the amplitudes of the base representation and (2) use of a CQT for the computation
of periodicities.

We derive our rhythm descriptors from the same log-amplitude mel spectrogram.
To obtain this base representation, we first resample the audio tracks to 8000 Hz.
Then, a short-time Fourier transform (STFT) of the signal segmented by overlap-
ping sequential 32-ms Hann windows is calculated to produce a 50-Hz frame rate
spectrogram. Finally, we map the frequency bins to a 40-band mel scale and take
the logarithm to represent amplitudes in the dB scale.

Scale Transform Magnitudes (STM)

To extract this tempo-robust descriptor we follow the original proposal of [212].
First, we compute a spectral flux from the mel-scaled spectrogram. This is possible
via first-order differentiation and half-wave rectification of each mel band, followed
by the aggregation of all bands. We detrend the resulting OSS by removing the
local average with the following difference equation

y[n]− 0.99y[n− 1] = x[n]− x[n− 1], (8.1)

where y[n] is the “detrended” OSS. We also smooth the resulting signal with a one-
dimensional Gaussian filter with a standard deviation of 20 ms. Then, we determine
the short-term autocorrelation of the OSS with a moving rectangular window of
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length 8 s and 0.5 s hop. Each frame of the ACF is transformed into the scale
domain by the direct scale transform [90] using a resolution of [212]

∆c =
π

ln Tup+Ts

Ts

= 0.52, (8.2)

where Tup = 8 s is the maximum retained lag time and Ts = 0.02 s the sampling
period in our case. We limit our representation to the first 400 scale coefficients (up
to scale C = 400∆c = 208). At the final step, we average this feature over time,
achieving a dimension of 400 for each track.

Onset Patterns Histogram (OPH)

The other feature we use to compare audio excerpts is our tempo-sensitive descrip-
tor that draws mostly from [217, 218], but also [220, 224–226]. We will refer to this
simply as the “onset pattern histogram”. To extract our OPH descriptor, we first
subtract, from each mel channel, the moving average computed with a normalized
rectangular window of length 0.25 s, and half-wave rectify the result. This “un-
sharp mask” also has an effect of amplitude normalization, since the spectrogram is
represented in dB [226].1 At the second stage, instead of using the FFT to obtain
per-channel modulations and mapping them to a log-frequency scale [220, 224], we
compute a CQT of the signal in each channel and take its magnitude as in [221].
Like previous works, we define a minimum modulation frequency of 0.5 Hz (30 bpm).
Periodicities are described in 25 bins, at five bins per octave, up to 14 Hz. Similar
to [219, 225], we average the periodicities over all channels and take the mean feature
across all time frames. This results in a descriptor with a dimension of 25.

8.4 Distance Metric

Several metrics have been proposed for evaluating rhythmic similarity with the de-
scriptors from the STM and modulation-based families: Euclidean distance [217,
218, 220, 224], cosine distance [211, 212], correlation [225], Mahalanobis dis-
tance [225], Jensen–Shannon divergence [220].

In particular, for the STM descriptor, HOLZAPFEL and STYLIANOU [212]
discuss how the Euclidean distance is not really applicable due to an unknown energy
normalization factor

√
a in the scale magnitude that is different for each recording.

The angle between STM representations should be used to compare representations
instead, which can be expressed by the cosine distance. If x and y are two vectors,

1POHLE et al. [220] and HOLZAPFEL et al. [224] apply the logarithmic scaling on amplitudes
after the unsharp mask, while PANTELI and DIXON [225] skip this step.
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the cosine similarity between them is computed as

scos(x,y) =
x · y
|x||y| , (8.3)

where · is the dot product, and the cosine distance is given by

dcos(x,y) = 1− scos(x,y). (8.4)

Following the recommendation of [212], we will use this metric for computing the
distance between rhythmic representations derived from the STM feature. The
cosine distance will also be used for comparing OPHs.

8.5 Qualitative Analysis of Rhythmic Descriptors

In this section, we briefly demonstrate the properties of the STM and OPH as
rhythmic descriptors through a few examples.

Synthetic Patterns

For the first example, we use the rhythmic cell of teleco-teco (Figure 2.19c) as a
basis pattern. We consider only the pattern generated by the drumstick striking the
drumhead, discarding the soft notes played with a finger. We artificially synthesize
six different versions of this pattern, the first five using a tamborim note sample:

• xref [n] (reference signal), the pattern synthesized at a tempo of 100 bpm;

• xa[n], the pattern synthesized at a tempo of 120 bpm;

• xb[n], a simplified version of the pattern, with some notes removed — this
pattern corresponds to a different subdivision of note groupings;

• xc[n], a version of the pattern with added microtiming deviations, ranging
from 1% to 11% of the inter-beat interval (IBI);

• xd[n], a version of the pattern that includes dynamic variations;

• xe[n], a version of the pattern synthesized with a different instrument (using
an agogô note sample).

All synthesized versions share a duration of 30 s and a sampling rate of 44 100

Hz. Figure 8.2 shows the first few seconds of the reference signal and its alternate
versions.

We then compute the STM and OPH for each of these signals, following the
procedure of Section 8.3. The results are shown in Figure 8.3, up to the 200th scale
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Figure 8.2: Signals derived from the teleco-teco timeline, from top to bottom: xref [n],
the reference signal (tempo = 100 bpm); (a) xa[n], at a tempo of 120 bpm; (b)
xb[n], a simplified version (missing onsets); (c) xc[n], with microtiming deviations;
(d) xd[n], including dynamic variations; and (e) xe[n], synthesized from a different
sample (agogô).
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Figure 8.3: STM (left) and OPH (right) coefficients for the signals in Figure 8.2.
Representations of the reference signal xref [n] (black, dashed) are displayed against
the representations for other variants (in solid colors), from top to bottom: (a) xa[n]
(tempo = 120 bpm); (b) xb[n] (simplified); (c) xc[n] (w/ microtiming); (d) xd[n]
(w/ dynamic); and (e) xe[n] (agogô). For each representation, we also display the
cosine and Euclidean distances between the representation for xref [n] and that of
the corresponding variant.
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coefficient for STM and all modulation frequency bins for OPH. We also display
Euclidean and cosine distances between the representations for the reference signal
and its different versions. Our comparative analysis is based on the cosine distance.

Comparing the representations for xref [n] and xa[n], we can see how the different
descriptors deal with tempo differences. STM is insensitive, as expected, whereas
OPH displays the greatest cosine distance to the reference across all versions. More-
over, we observe that peaks in the OPH representation shift right following the
increase in bpm. For instance, the rightmost peak lies at bin 19 (∼6.96 Hz) for the
reference signal and at bin 20 (8 Hz) for the scaled version. These correspond to
the smallest IOI in the synthesized signals, 0.15 s and 0.125 s, respectively.

We now turn our attention to the representations for xb[n]. Its STM representa-
tion shows the greatest distance (in cosine sense) to the reference. By removing that
specific onset from the original pattern, we have also removed a set of peaks from
the autocorrelation function, particularly the one that has the smallest lag. The
difference in the representations is more significant at higher scale values (above the
200th coefficient). OPH, on the other hand, is less affected by this variation, but we
can observe an overall increase in the energy of the lower modulation frequencies;
this matches our intuition about the nature of the periodicities after the removal:
more weight is transferred to lower frequency components.

Microtiming deviations (c) had little effect on either representation. In the case
of the STM descriptor, this is by design and can be explained by the smoothing
operation (convolution with a Gaussian kernel). The Gaussian has a standard devi-
ation of 20 ms, which is greater than the maximum shift of 11% of the IBI (6.6 ms

at a tempo of 100 bpm) that onsets have been subjected to. In OPH, we note that
energy has shifted slightly between neighboring bins in this version of the pattern.
Similarly, neither dynamic variation (d) nor the timbre change (e) had a noticeable
effect on the representations — this indicates that only the temporal distribution of
the pattern is being analyzed.

Number of STM Coefficients

In the second example, we use the STM descriptor to represent all solo tracks in
the BRID dataset. First, we evaluate the influence of the number of scale coeffi-
cients in a subgenre classification task, exploiting the fact that we have different
subgenres among BRID solos (e.g., samba, samba-enredo, partido-alto). To sim-
plify this problem, we aggregate tracks containing viradas (e.g., labeled as VSA)
in the main subgenres (e.g., SA). We vary the number of scale coefficients in
{3, 10, 50, 100, 200, 300, 400} and perform the classification with a linear SVM, choos-
ing the weights inversely proportional to class frequencies due to natural imbalances
in the subset. With a linear SVM we can have an idea of how linearly separable
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Figure 8.4: Average ROC-AUC scores for the cross-validated classification of genres
with a varying number of coefficients.

the classes are in the high-dimensional feature space. We perform this classifica-
tion process three times using a stratified cross-validation scheme with 10 folds. A
different randomization is used in each repetition. The average ROC-AUC score is
reported, with classes being compared in a one-vs-rest (OVR) strategy for simplic-
ity. This score is determined by calculating the area under the receiver operating
characteristic (ROC) curve, which shows the relation between true positive and false
positive rates at various binary classifier thresholds. The closer the value is to 1, the
higher the performance of the classifier. We note that there is some data “leakage”
in this approach to the classification problem, as train and test sets might contain
neighboring frames of the representation from the same recording, with a lot of
overlap. Nevertheless, our objective is to evaluate how the similarity is affected by
the number of coefficients of the STM. The results for this classification can be seen
in Figure 8.4. We observe from this graph that, for this subset, the classification
is barely improved when the representation has more than 100 coefficients, where
the ROC-AUC score reaches 0.999. We will use this number of coefficients (up to
C = 52, at the optimal resolution) in the following example.

UMAP Visualization

As regards the last example, to visualize the feature space generated by the STM in
BRID solos, we used a dimensionality reduction technique called “uniform manifold
approximation and projection” (UMAP) [227]. Unlike principal component analy-
sis, UMAP does not expect a linear relationship between the different dimensions,
instead focusing on learning the complex structure of the data. Moreover, a major
advantage of UMAP over other commonly used dimensionality reduction approaches
like t-distributed stochastic neighbor embedding (t-SNE) is that it can better rep-
resent global data structure while preserving local neighborhoods [228]. Once again
we incorporate viradas into the main subgenres. Embedding results are shown in
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Figure 8.5: UMAP projection of BRID solos with the STM descriptor (cosine metric,
n-neighbors = 100, min-dist = 0.5). Colored by genre.

Figures 8.5 and 8.6, with different colorings revealing genres and instruments, re-
spectively. Instead of averaging the results along the time axis, we have represented
each frame of the STM feature as a point in the embedding. We observe many in-
teractions in the subset, but a fine structure also seems to emerge from the manifold
visualization of Figure 8.5. The different subgenres have some particularities in com-
mon to most of their tracks, as evidenced by the large clusters of datapoints from
SA and CA, for example. The two OT tracks, corresponding to patterns typically
seen in baião and maxixe genres, are also separated in the embedding, as outliers. In
the central area of the plot, there are many similar rhythmic cells from MA, PA, and
SE — these mostly correspond to “fuller” cycles, with mostly all tatums articulated.
Since the feature is somewhat insensitive to small-scale timing deviations, we can-
not determine if this intersection of samba-enredo/partido-alto (which are performed
at a high tempo, >100 bpm) and marcha can be attributed to the phenomenon of
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Figure 8.6: UMAP projection of BRID solos with the STM descriptor (cosine metric,
n-neighbors = 100, min-dist = 0.5). Colored by instrument.

marcialização, i.e., performers are not able to impress the characteristic microtiming
on the former genres.

By directly comparing this figure with Figure 8.6, we see that similar patterns
are played in different instruments; this points to the existence of genre-specific
cross-instrumental patterns. It is worth noting that most of the frames from surdo
(SU) and tantã (TT) are located in close proximity to each other in the northeastern
region of the graph. As we have mentioned before, these two instruments typically
play similar parts, one in the bateria and the other in the roda. At the northeastern-
most part of the figure, we mainly have recordings from these instruments playing
beats “1” or “2”. As we get closer to the central “mass” of the embedding, how-
ever, the patterns played by these instruments get increasingly complex — there
we find most of surdos de terceira recordings as well as tantã parts with numerous
embellishments.
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Figure 8.7: UMAP projection of BRID solos with the STM descriptor (cosine metric,
n-neighbors = 100, min-dist = 0.5). Highlighting tamborim.

Figure 8.7 brings the same embedding plot, now highlighting STM frames from
tamborim recordings. We call attention to two regions in this figure. Region 1
contains STM frames from recordings [0129], [0130], [0134], [0135], [0214],
[0215], [0302], [0303], which display the styles of samba and partido-alto. The
most prevalent pattern in these recordings is the teleco-teco. After listening to all of
these examples, we have found out that the only distinguishing factor between these
teleco-teco versions is that in SA tracks the soft note produced with a finger on the
underside of the drumhead is quite prominent and widespread, whereas in PA tracks
it is either absent or less noticeable. Region 2 represents the tracks [0131], [0132],
[0136], [0216], [0218], [0304], and [0306], which are all recordings of carreteiro
cycles. We refer the reader to Figure 2.19 for the main differences between these two
cycles. Other TB points scattered around the embedding mostly come from tracks
that document more complex viradas ([0217], [0219], and [0317]).
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Figure 8.8: UMAP projection of BRID solos with the OPH descriptor (cosine metric,
n-neighbors = 50, min-dist = 0.3). Colored by genre.

In Figure 8.8, we display an embedding for the framewise OPH feature of the
same subset, colored by subgenre. Arguably, the subgenres are more separable in
this representation. However, considering that OPH encodes tempo information, it
provides a great clue for genre recognition in this subset, which was built with a
different target bpm for each genre (except viradas). Finally, Figure 8.9 shows the
projection using PCA instead of UMAP. As mentioned before, PCA is unable to
capture the more complex structures in the rhythmic feature data.
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Figure 8.9: PCA projection of BRID solos with the STM descriptor. Colored by
genre.
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Chapter 9

Metrical Structure and
Microtiming

In the previous chapter, we discussed some useful tools for describing rhythm in
a compact form [188]. We will now delve into two related topics: beat tracking
and microtiming analysis. Beat tracking is of particular importance in MIR due
to the number of applications that benefit from the knowledge of beat positions or
from beat-synchronous features. For instance, proper beat synchronization is of ut-
most importance in automatic accompaniment, score alignment, music transcription,
DJ’ing (synchronization between stems/tracks), expressiveness transformations, mu-
sic similarity analysis, and structural segmentation, among others. These two topics
were not covered in Chapter 8; instead, they are addressed here in a dedicated chap-
ter where we can better present the substantial amount of research devoted to them.

Beat tracking algorithms were first introduced in the 1980s [229]. This task
involves the automatic detection of the most salient metrical level (tactus [12]),
which is the pulse where a person would tap along with the music. Beat tracking
is closely related to other rhythmic tracking tasks, such as tempo, meter, rhythmic
pattern, and sub-beat/super-beat structure (i.e., faster/slower pulsations). Some
works have attempted to track beat positions and these related properties, either
jointly or separately. For instance, few works have simultaneously tracked the sub-
beat level of the tatum, which is the fastest regular pulse that can be inferred from
the music. Other levels such as sections and parts have been featured less often, but
can also be automatically estimated [230]. More commonly, though, systems have
attempted to jointly track beats and downbeats, which are indicators of measure
boundaries. Downbeat tracking has also been carried out as a task in itself, i.e.,
independent of beat estimation, but relying on a different subdivision of the bar
(usually the tatum [231–234]).

A simplifying assumption in many early approaches to beat tracking is that
the tempo of a piece is constant or varies slowly, and that beat locations tend to
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coincide with note onsets. However, in expressive music, beats are rarely distributed
isochronously, as interpreters shape tempo to convey different musical meanings
(e.g., rubato, notes inégales [235]). Beyond this issue of timing, estimating the
phase and period of beats and downbeats becomes more complex in music genres
with syncopation, triplets, or even swing [76], which are elements common to many
non-Western music genres, for example.

In the particular case of challenging expressive pieces and of recordings from
non-Western music traditions, microtiming analyses are of great interest. As men-
tioned in Section 8.1, microtiming refers to small-scale temporal deviations that are
systematic and genre-defining. These deviations occur at the onset level and have a
composite origin, arising due to the player’s own mechanical limitations and expres-
sive intentions, including the aforementioned genre-specific characteristics. These
analyses are also crucial when dealing with music synthesis, in humanization algo-
rithms aiming at creating natural-sounding performances [236–238].

In this chapter, we will review the literature on both tasks to set the stage for
further investigations and contributions in the remainder of this thesis.

9.1 Approaches to Beat and Downbeat Tracking

This section reviews the main architectural choices for tracking beats and downbeats
in musical audio signals. We also discuss current trends, and detail a few examples
of algorithms tailored for this task. For more thorough reviews, we refer the reader
to [5, 10, 229, 239–242] which either discuss early techniques in more detail or shine
light on the more recent deep learning-based systems. In particular, the tutorial
of DAVIES et al. [241] provides a good hands-on approach to tempo, beat, and
downbeat estimation.

Early Approaches to Beat Tracking

Most of the early approaches have treated beat tracking as a problem of finding the
frequency and phase of a time-varying signal [229]. The instantaneous frequency of
this signal is proportional to the local tempo, whereas the phase helps determining
beat positions. A solution for this problem has usually been obtained after a few
common steps: first, low- or mid-level features are extracted from the audio signal;
the periodicities are analyzed within the selected feature sequence; and, finally, the
beat times are properly estimated. This general scheme of traditional beat tracking
methods is presented in Figure 9.1a.

In many instances, little musical knowledge has been embedded into the beat-
tracking model. One common assumption is that beats occur synchronously with
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Figure 9.1: General (simplified) schemes for traditional beat tracking. Adapted
from [243].

significant changes in the music (e.g., percussive onsets, harmonic changes) that
should somehow be represented in the feature sequence. Thus, the choice of feature
representation usually depends on the type of music at the input (e.g., when drums
are present, an amplitude envelope could be beneficial), but also on the subsequent
estimation steps [243]. Examples of low-level features include amplitude/energy
envelopes, spectral features (e.g., spectral flux [244, 245], complex spectral differ-
ence [246]), and phase features (e.g., group delay [247]). Other works have leveraged
mid-level features which comprise indications of chord changes [248] and lists of onset
times [249, 250], among others.

For the analysis of periodicities in the input feature, most works have used tech-
niques based on autocorrelation functions [208], comb filter banks [244, 246], beat
histograms [251], and predominant local pulse functions [252]. The final step of
detecting pulse phases has also been carried through in a variety of forms, includ-
ing, but not limited to: multiple agent hypotheses [248], dynamic programming
(DP) [245, 246, 252], and inference via HMMs [244, 247].

Downbeat Tracking and the Incorporation of High-Level Information

The problem of downbeat phase estimation has received far less attention in the
early days of rhythm tracking systems. Few works have turned to the exploitation
of preference rules, such as the fact that harmonic changes usually correlate well
with measure boundaries in Western pop music [248]. Due to the more complex
nature of downbeat tracking, other methods have incorporated even higher-level
musical information. For instance, some works have attempted to match known
bar-length patterns to the feature sequence [244, 253], or to hierarchically select
downbeat positions from previously estimated beat data [254]. One hierarchical
model, by DURAND et al. [255], leverages time signature estimation and musically-
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inspired features (chord and pattern changes, bass-to-snare-drum ratio, and accents)
with an SVM to classify annotated beats into downbeats. In contrast, JEHAN [256]
reported a semi-automatic model in which an SVM classifies candidate events into
downbeats using prior information learned from a human listener, without tempo
or beat annotations.

Beat tracking has also been improved by introducing high-level knowledge into
the models. Oftentimes, this has been done via a probabilistic formulation, such
as an HMM, a dynamic Bayesian network (DBN), or a conditional random field
(CRF) that integrates style-specific information (e.g., genre-specific tempo distribu-
tion or rhythm patterns) as hidden variables, and through which the beat period
and phase are generally jointly estimated [76, 257–260].1 This “joint model” is
represented in Figure 9.1a by the dashed line. In one such model, known as the
“dynamic bar-pointer model”, the Bayesian formulation has also allowed to jointly
track other rhythmic parameters — downbeats, meter, tempo, and patterns —,
which were all integrated into the state space [76, 262, 263]. This paradigm has
been originally presented by WHITELEY et al. [259] and later adapted by many
authors [76, 196, 263–269]. Most of these systems are data-driven and capable of
learning parameters (conditional distributions) from annotated audio input. This
learning step has been achieved, for example, by modeling beat/downbeat likelihoods
with a Gaussian mixture model (GMM) [76, 263, 265] or a different unsupervised
clustering technique (e.g., k-means [63]) over a spectral-flux-like input. Whenever
exact inference is feasible (e.g., in a coarsely discretized state space), the maximum
posterior probability can be computed with the Viterbi algorithm [76]. Sometimes,
however, exact inference is not possible or is too costly (e.g., in large state spaces),
requiring either the simplification of variable dependencies or approximate inference
using particle filters (PF) [196, 263, 267, 268]. We further investigate this model in
Section 9.1.1.

A Change in Paradigm: Neural Networks

A new state of the art was inaugurated for both beat and downbeat tracking with the
introduction of models based on deep neural networks, an approach first proposed
by BÖCK and SCHEDL [243] for beat tracking. These networks allowed transfer-
ring the bulk of beat/downbeat determination to a preliminary step of likelihood
estimation (feature learning), which can then be followed by a less complicated
post-processing step [243]. The model architecture of this new paradigm is better
illustrated by the diagram shown in Figure 9.1b.

At the input, neural-network-based systems use chroma features, spectral
1This has also been achieved outside a Bayesian framework under more restrictive (i.e., fixed

tempo) assumptions [261].
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flux [231–234, 270], or other representations such as timbre-related features
(MFCCs) [231]. However, most commonly an audio input is preprocessed to
obtain a time-frequency representation, which then passes through the network.
These can be difference [243] or linear [231] spectrograms, or other log-scaled time-
frequency representations — STFTs, CQTs, mel-spectrograms [231–234, 240, 271–
276] — that are possibly presented to the network in different time-frequency res-
olutions [240, 243, 271]. In some cases, the representation is further processed to
generate a tatum-synchronous feature sequence [231–234]; or beat-synchronous fea-
tures [270] are used, when the model is only concerned with tracking downbeats.
Networks can receive a single type of features [273, 274] or multiple features repre-
senting a set of musical attributes [231–234, 270]. Furthermore, the model can also
be developed to learn hierarchically-related feature representations [275].

At the likelihood estimation stage, many different neural network topologies have
been used, including multi-layer perceptrons [231], CNNs [232–234, 272, 277], recur-
rent neural networks (RNNs) [243, 265, 267, 270, 271], and convolutional recurrent
neural networks (CRNNs) [239, 268, 269]. The state-of-the-art beat and downbeat
performance has been achieved by models based on temporal convolutional neural
networks (TCNs) [273–276] — an architecture that processes sequential data using
dilated convolutions — and Transformers [278, 279] — an architecture that uses
self-attention mechanisms to process entire sequences in parallel —, or a combina-
tion of both [278]. A TCN-based state-of-the-art tracking model is further reviewed
in Section 9.1.2.

Finally, for the majority of the works that depend on neural networks, the post-
processing stage, i.e., the selection of the most likely pulse candidates, has been
tackled with probabilistic graphical models: either HMMs [231, 232, 234, 269, 272,
277], DBNs [239, 240, 270, 271, 274, 275, 278, 279], or CRFs [233, 280]. These act as
constrained versions of the bar-pointer model, where global optima can be obtained
through exact or approximate inference schemes (e.g., particle filters [267, 268]).
Alternatively, few works have resorted to simple peak picking algorithms [243, 272],
which typically yield inferior results. An interesting investigation, by CHEN and
SU [276], showed that, if the network’s architecture and loss function are carefully
reformulated, the performance of a joint beat and downbeat tracking scheme can be
improved even when no post-processing stage is used.

We end this section highlighting a couple of works that manage likelihood esti-
mation in interesting ways. First, we comment on the multi-model of BÖCK et al.
[240], in which multiple RNN models were trained and specialized on different gen-
res. Each recurrent network consisted of a concatenation of three bi-directional long
short-term memory (BLSTM) hidden layers with 25 units per layer. At runtime,
the model with the most adequate activation function was selected to produce a
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beat likelihood. The adequacy of each model was computed as the mean square
difference to the output of a reference model trained on the whole training set.
Tempo and beat phase were determined using a DBN. A joint beat and downbeat
tracking system was later presented by BÖCK et al. [271]. The authors used three
different magnitude spectrograms and their first order difference as input represen-
tations, in order to help the networks capture features precisely in both time and
frequency. These representations were fed into a cascade of three fully-connected
BLSTMs, obtaining activation functions for beat and downbeat as output. Subse-
quently, a highly constrained DBN was used for inferring the metrical structure. In
another work, by KREBS et al. [270], a downbeat tracking system was proposed
using as input two beat-synchronous features, which represented the percussive and
harmonic content of the audio signal. These representations, based on spectral flux
and chroma, were then fed into two independent bi-directional gated recurrent units
(BGRU), a different type of RNN similar to LSTMs, whose output was averaged to
obtain the downbeat likelihood. Once again, the inference over downbeat candidates
relied on a constrained DBN. Lastly, in the work presented by DI GIORGI et al.
[277], a different CNN architecture, exploiting scale-invariant convolutional layers,
was used for downbeat tracking. These layers learn temporal patterns from the data
without caring for their scale. The model was shown to achieve tempo invariance,
thus generalizing well to unseen tempi during training. This is a particularly impor-
tant contribution, since conventional CNN-based models might suffer from learning
bias due to uneven tempo distributions in the annotated data [277].

9.1.1 Dynamic Bar-Pointer Model

The dynamic bar-pointer model is a Bayesian formulation that allows tracking not
only the beat pulsation of a music track, but also more complex rhythmic parameters
(tempo and meter). These parameters are treated as a sequence x1:K of hidden
states in a latent space inference problem, which generates the observed sequence
of features y1:K from the audio data with length equivalent to K frames. In this
model, which is generally expressed as a DBN, the joint distribution of hidden and
observed variables, P (y1:K ,x0:K), can be factorized as

P (y1:K ,x0:K) = P (x0)
K∏
k=1

P (xk|xk−1)P (yk|xk), (9.1)

where P (x0) is the initial state distribution, and P (xk|xk−1) and P (yk|xk) are the
transition and the observation models, respectively. We note that P (x0) is usually
assumed to be uniform, although it can be learned from data or manually set using
a priori knowledge about the music under study.
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The main idea behind this Bayesian formulation of the beat tracking problem is
that, by explicitly modeling these three concepts (beats, tempo, and meter), one can
resolve the ambiguities in the musical structure, and adequately deal with changes
in the underlying rhythmic pattern [259]. In the following, we present a general
definition of the bar-pointer model inspired by both [196] and [266]. Other versions
with discretized variables or other dependency relations can be seen in [76, 263–
265, 267–269]

Variable Definition

The bar-pointer model tracks the dynamics, xk, of a hypothetical “bar pointer”,
which traverses each measure (or cycle) of the music at a velocity proportional to
the local tempo. Here we define the hidden variable xk = [ϕk, ϕ̇k, rk] at time frame
k, where:

• ϕk ∈ [0,Mmax) represents the current position in the bar. It increases from 0

to Mmax and goes back to 0 at the start of a new bar.

• ϕ̇k ∈ [ϕ̇min(rk), ϕ̇max(rk)] is the velocity at which the pointer progresses through
the bar, i.e., instantaneous tempo, given in bar positions per time frame (or
sometimes in bpm). Tempo limits ϕ̇min(rk) and ϕ̇max(rk) can be dependent on
the rhythmic pattern and learned from data, or simply set by the user.

• rk ∈ {1, . . . , R} is the index of the current bar-length rhythmic pattern, and
indicates which of the R observation models learned from data or defined by
the user is being traversed. Different rhythmic patterns might have different
lengths, Mr — it is common to set Mmax with the length of the longest pattern
and scale other lengths accordingly.

Transition Model

The factorization of the transition model is contingent upon the conditional indepen-
dence relations between hidden variables. For example, given the model presented
in [76] (see Figure 9.2), we can write

P (xk|xk−1) = P (ϕk|ϕk−1, ϕ̇k−1, rk−1)× P (ϕ̇k|ϕ̇k−1, rk−1)× P (rk|rk−1). (9.2)

Simplified variable dependencies have been proposed in other works, including [263].
The position transition is defined so that the bar position increases consistently,

at a rate given by the instantaneous tempo at the previous position, ϕ̇k−1. We could
express this as

P (ϕk|ϕk−1, ϕ̇k−1, rk−1) = 1ϕ, (9.3)
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Figure 9.2: DBN of the bar-pointer model. Squares and circles designate discrete and
continuous variables, respectively. Gray nodes are the observed variables, and white
nodes are part of the hidden state. Arrows indicate direct dependency relations.
Adapted from [76].

where this indicator function equals one when ϕk = (ϕk−1 + ϕ̇k−1) mod Mrk , for
instance. The modulo operator is used to guarantee that ϕk is reset when it exceeds
Mrk (i.e., the bar pointer crosses a bar boundary).

The tempo transition can be specified as a normal distribution N (µ, σ2) with
mean of ϕ̇k−1 and standard deviation σϕ̇, which is possibly dependent on ϕ̇k−1, such
that [196, 263, 266]

P (ϕ̇k|ϕ̇k−1, rk−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇
)× 1ϕ̇, (9.4)

where this indicator function guarantees ϕ̇k stays inside the allowed tempo range.
Other transition forms are presented in works dealing with discrete tempo variables.
For example, complementary probabilities can be assigned for the three disjoint
cases when the bar pointer remains at the same velocity, is accelerated, or is decel-
erated [76, 259, 264]. Some works have presented the tempo transition as a Laplace
distribution, also symmetrical about ϕ̇k−1 [265, 272],

P (ϕ̇k|ϕ̇k−1, rk−1) ∝ e
−λ

∣∣∣∣ ϕ̇k
ϕ̇k−1

−1

∣∣∣∣
, (9.5)

which is controlled by the parameter λ ∈ Z∗ and only allowed at estimated beats
positions. We note that λ controls the steepness of the distribution [265], with λ = 0

indicating tempo transitions are all equiprobable.
Finally, in the presented model, it is assumed that the rhythmic pattern is fixed

for a single track, such that
P (rk|rk−1) = 1r, (9.6)
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with the indicator function being one when rk = rk−1 and zero otherwise. Different
model constructions might allow for change at bar boundaries. This modifies the
factorization and produces a transition function like [263]

P (rk|rk−1, ϕk, ϕk−1) =

Ark−1,rk , ϕk < ϕk−1,

1r, otherwise
, (9.7)

where A is a homogeneous transition matrix for rhythmic patterns. In this latter
case, the transition probabilities are usually learned from data [263, 264, 266].

Observation Model

From the derivation of Figure 9.2, we can express the observation model as

P (yk|xk) = P (yk|ϕk, rk), (9.8)

which means the probability of observing a feature at frame k depends only on the
bar position and rhythmic pattern variables [196]. In most works, the observation
features yk are obtained after the computation of a spectral-flux-like function in
two channels, typically above and below 250 Hz. The low frequency channel, in
particular, provides good representation of rhythmic patterns in the audio [76]. One
common approach is to assign a rhythmic pattern to each bar in the training data,
using either manual annotations or clustering techniques (e.g., GMM, k-means). For
instance, bars can be discretized into 64th note cells, for example, and a GMM can
be fitted for each point in this temporal grid and for each rhythmic pattern. This
manifests the tempo independence of observations probabilities, and allows for a
slow change only at every 64th note step (e.g., 25 bar positions when Mmax = 1600).
Other works have exploited activations produced by neural networks as observation
sequences [265, 269, 271].

Inference

The objective of the bar-pointer model is to identify the most probable state tra-
jectory x∗

1:K given the observations, i.e., the maximum a posteriori (MAP) sequence
that maximizes the posterior probability,

x∗
1:K = argmax

x1,...,xK

P (x1:K |y1:K). (9.9)

For a discrete space state, exact inference is possible with the Viterbi algorithm.
Results can be approximated with particle filters [196, 263, 266–268].
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9.1.2 TCN-Based Multi-Task Approach

Early deep-learning models mainly used RNNs (BLSTMs) at the likelihood estima-
tion step. RNNs are widely known to be expensive to train and have several lim-
itations such as vanishing gradients, low interpretability, and non-parallelizability,
despite being naturally suitable for modelling sequential data [274].

The current state of the art has been achieved by replacing the BLSTM network
for a TCN, first for beat tracking [274], then tempo and beat [273], and finally tempo,
beat, and downbeat [275]. A TCN is a special type of CNN where temporal struc-
tures in the data are learned using dilated convolutions, which are convolutions
across subsampled input representations [275]. The TCN-based model presented
by DAVIES and BÖCK [274] was inspired by the WaveNet generative model [281].
When compared to the traditional BLSTM formulations, the TCN was shown to
perform at the same level, while requiring less trainable parameters and being much
more efficient to train due to the parallelization property of CNNs. In particu-
lar, [273] and [275] showed that multi-task formulations improve the quality of the
beat tracking. This section reviews the components of the multi-task architecture
in [275], which can be seen in Figure 9.3.

Input Representation

The input representation of the TCN model is a single log magnitude spectrogram
obtained from a mono audio input signal (sampled at 44.1 kHz) with a hop size of 10
ms (i.e., a frame rate of 100 Hz) and a window size of 46.4 ms (2048 samples) [274].
The frequency axis is represented in the log-scale by grouping frequency bins with
a set of 12 overlapping triangular filters with 12 bands per octave. This yields an
input representation with 81 logarithmically spaced frequency bins from 30 Hz to
17 kHz [274].

Convolutional and Pooling Layers

Prior to being passed through the TCN, the input spectrogram is first processed by
three convolutional layers. Each layer has 20 filters of sizes 3× 3, 1× 12, and 3× 3,
respectively, and is followed by a 1 × 3 max-pooling layer that samples the largest
value along the frequency direction. This means that overlapping spectrogram slices
of 5 frames in length are reduced from 5× 81 down to 3× 26, 3× 5, and finally to
a single dimension with 20 features. Each convolutional layer has an exponential
linear unit (ELUs) as the activation function and a dropout rate of 0.1 is applied
after pooling.
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Figure 9.3: Architecture of the TCN model. Adapted from [17].
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TCN Layers

The 20-dimensional feature output by the convolutional block is then fed to the TCN
block, which captures temporal structure using filters with dilated convolutions.
While regular convolutions can only handle contexts in the sequential data whose
sizes vary linearly with the depth of the network [282], dilated convolutions enable
exponentially large receptive fields [241] and much wider contexts. Moreover, the
TCN beat tracking model uses non-causal filters, which allow capturing information
both forwards and backwards in time. Figure 9.4 illustrates this processing. Authors
have used 11 layers with one-dimensional filters of size 5 and geometrically increasing
dilations from 20 to 210 frames. A second feature map obtained from a second dilated
convolution (at a doubled dilation rate) is concatenated with the first feature map,
before spatial dropout (with a rate of 0.15) and ELU activation. The feature maps
are combined by a 1 × 1 convolution with 20 filters, added to the identity path of
the layer,2 before being forwarded to the next layer.

Tempo, Beat, and Downbeat Estimations

The TCN uses skip connections that are branched from the parameterized paths
of residual blocks to predict tempo in a linear range from 0 to 300 bpm. These
skip connections are aggregated by summation and averaged over time, leading to a
single 20-dimensional feature vector for classification in a dense layer (with softmax
activation). Quadratic interpolation over targets is used to find the exact tempo of
the piece.

The main TCN output is used in two different binary classification problems,
where the network is asked to predict if any given frame is a pulse (beat or downbeat)
or not. To accomplish this, the authors implemented two branches, one for beats
and the other for downbeats, each with its own dropout layer, dense layer, and
sigmoid activation. These branches are trained to indicate the likelihood of a frame
containing the desired pulse. Both likelihood sequences then pass through a post-
processing stage with a DBN, where inference can be done jointly or separately. In
the latter case, the beats are first detected and then, based on the beat predictions,
downbeats are estimated in a second inference step.

Tempo, beat, and downbeats targets are widened such that direct neighbouring
frames and the ±2 bpm values are also positive, but with lower weights than the
annotation.

2A residual block contains two branches that are added to form the output of the block: a
“shortcut” or “identity” connection directly taken from the input; and the transformed version of
the input (a parameterized “residual” mapping). This is done for the ease of training, as layers are
then trained to learn modifications to the identity signal, rather than full transformations [282].
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Figure 9.4: Overview of the TCN structure. Example of a non-causal network with a depth of four layers, and geometrically increasing
dilation factors (d = 1, 2, 4, 8). Gray dashed lines show the network connections shifted back one time step. Adapted from [274].
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Data Augmentation

We alluded before to the fact that CNN-based systems can suffer from tempo bias,
i.e., when the model is unable to generalize well to unseen tempi. With this in mind,
BÖCK and DAVIES [275] introduced a simple data augmentation strategy to ex-
trapolate information from well-covered regions of the training data to sparser ones.
Instead of applying transformations (e.g., time stretching, pitch shifting, sample
rate conversion) to the audio signal, they change the hop parameter of the STFT
sampling from a normal distribution with 5% standard deviation from the anno-
tated tempo (updating the targets accordingly). These representations produced by
different overlaps are effectively interpreted by the network as differing in tempo.

9.1.3 Adaptive Beat Tracking

Much of the previously addressed research on beat tracking with data-driven strate-
gies has focused on developing “universal” models trained on large amounts of an-
notated data. Due to the nature of these state-of-the-art solutions, which typically
depend on deep learning methods, high accuracy scores can usually be achieved
given a sufficiently large pool of quality data annotations [242, 275, 283]. However,
this good performance cannot be guaranteed when models are used to estimate beats
from challenging or unseen music, e.g., music with highly expressive timing [284] or
from culturally specific traditions that were not present during training [21, 22].

In recent years, there has been an increasing amount of literature on this real-
world problem, i.e., when an end user wants to apply state-of-the-art models to
a limited subset of examples with unseen rhythmic characteristics. For example,
FIOCCHI et al. [283] proposed an inductive transfer learning approach: a beat
tracking system, built with a three-layer LSTM network, was first trained on popular
music (including some songs from the Ballroom dataset) and later adapted to work
on a smaller target dataset of Greek folk music. The adaptation was achieved by
freezing the lower two layers of the network and running more training cycles on
the previously unseen data. As in other similar works, a DBN was used for the
inference of beat positions. The main model was compared against a baseline RNN-
based network trained only on the popular music dataset and another BLSTM-based
network trained only on Greek music. In all cases, the same 40% of the Greek music
dataset was left out for testing. Authors reported several metrics, with modest
results — a gain of 6 percent points on average (e.g., F -measure of 57.2% in the
baseline network, 58.4% in the “specialist” network, and 64.0% with the transfer
learning approach). In this work, recurrent networks provide an interesting approach
for genre adaptation but are computationally expensive, making them of concern
for real-world applications.
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Other systems have leveraged the subjective nature of beat induction to allow a
user to guide and improve the tracking process with a limited amount of annotation.
Unlike FIOCCHI et al. [283], PINTO et al. [17] restricted the network adaptation
problem to a single music piece. They used as baseline the multi-task TCN-based
model presented in Section 9.1.2, which was trained on six large datasets (over 26 h

of music material): Ballroom, Beatles [285], Hainsworth [273, 286], HJDB [271, 287],
Simac [288], and SMC [289]. The fine-tuned model used the same architecture as
the baseline, and in both cases a DBN was used to process the outputs. The network
was fed with a 10-second excerpt of an unseen music piece — the first 5 s were used
for training and the remaining 5 s for validation — and required to predict beats for
the remaining of the piece. The adaptation was performed allowing all layers to be
updated at a smaller learning rate than (one fifth of) the one used in the baseline.
They reported promising results across common datasets. More interestingly, they
exemplified the improvements obtained when using the proposed approach with
two challenging pieces: an a cappella performance and a guitar piece with a lot of
rubato. This system could be used in the real-world applications to enhance the
annotation workflow, providing an end-user some flexibility in the selection of which
small portion (10-second region) of the audio to annotate, and ultimately leading to
more accurate and efficient annotations.

Finally, YAMAMOTO [290] presented a different solution in the form of an
interactive beat-tracking interface. His system used an architecture very similar to
that of the TCN model, but with delta MFCCs as input representation, which was
trained on a local context (∼5 s) with the following datasets: GTZAN [205, 235, 291],
RWC popular and genre [292, 293], and an in-house dataset of 400 musical pieces
of various genres. Beat positions were inferred with a hidden semi-Markov model
(HSMM) and the Viterbi algorithm. Once the user has loaded a music signal, the
system estimated beats for the entire piece with the pre-trained network. A derived
network architecture including an adaptive self-attention mechanism was used at
runtime. Every time the user has made a correction on a single beat, the system
adapted to this local modification, and reflected changes over the global context.
His experiments showed that, by adapting to both user and piece, the framework
dramatically reduces the effort for manual corrections during the annotation process.

9.2 Approaches to Microtiming Analysis

In this section, we discuss various works related to micro-rhythmic characterization
of music, both from musicological and computational perspectives. We specifically
focus on the computational analyses performed on Brazilian samba, but investi-
gations on jazz are also presented. FUENTES [294] has classified computational
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methods for microtiming description into two categories: those based on grouping
of rhythmic patterns and those based on the autocorrelation function. We will also
follow this classification in this section.

Musicological Aspects

As we mentioned in Chapter 2, Brazilian music and dance practices have been sig-
nificantly influenced by various African cultures. This influence can be perceived
in rhythm, melody, instrumentation, and overall organization of the musical phe-
nomenon. For instance, the rhythmic pattern of the “characteristic” syncope is
believed to have been either brought to or developed in the continent by enslaved
Africans from the diaspora, possibly after the contact with the triplets commonly
found in Iberian music [50]. The “texture” of samba is itself generated by the super-
position of different rhythmic and timbral cycles, much akin to percussive ensembles
found on the other side of the Atlantic [24]. In many types of African music, and
in West African dance music traditions in particular, bells are played in an os-
tinato that provides a structural matrix around which the entire performance is
organized [295]; different high-pitched instruments (or even hands clapping) have
the same responsibility in samba de roda [296] and partido-alto.

Moreover, musicologists report how there exists, especially in West African and
Afro-Atlantic music, a systematic approach to rhythmic expression that is delivered
at a very fine scale [199]. Practically speaking, this corresponds to performing small
timing deviations, i.e., articulating notes a little earlier/later than what would be
expected in an equidistant division of the cycles and beats (isochrony), in order to
elicit the sensation of “groove”. Examples of these non-isochronous rhythms include
Cuban rumba [171], Malian djembe music [14], and candombe [38, 203]. This phe-
nomenon is also featured in different Afro-Brazilian genres [296, 297]. GERISHER
[297] investigated these micro-rhythmic properties in samba baiano using steady six-
teenth notes, i.e., four-beat cycles where each beat contains four fast pulses. She
found a consistent microtiming pattern in each beat across different instruments
(reco-reco, triângulo, and pandeiro), expressed by the inter-onset intervals following
an order given by: medium–short–medium–long. A similar pattern was later ver-
ified in samba carioca by GRAEFF [296], which postulated that these deviations
emanate from the performer’s body movements, configuring the “acoustic–motional
structure” [298] of the performance. GRAEFF [296] explained that these micro-
rhythmic accents must be related to the stress accents on pulses 1 and 4, which in
turn correspond to wider motions of hand or arm made by the player. Specifically
for pulse 4, GERISHER [297] noted that the extension of its duration is greater
when it is followed by a strong accented beat (e.g., beat “2” in the 2

4 meter typi-
cal of samba), for which it “prepares” the dancer and the listener. We could say
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Figure 9.5: Microtiming profile found in some Afro-Brazilian genres. Beats (at
positions 0.00 and 1.00) and other sixteenth notes are displayed as arrows. Dashed
lines correspond to expected positions in an isochronous grid.

that the faster pulses of the ostinato patterns lie between an even subdivision of
the beat and the triplet [201], due to this microtiming “compression”. Figure 9.5
illustrates the microtiming profile of a single beat as measured by GERISHER [297]
and GRAEFF [296]; notice how the medium–short–medium–long structure corre-
sponds to playing pulses 3 and 4 ahead of their nominal positions in an isochronous
subdivision of the beat interval (positions 0.5 and 0.75). More recently, HAUGEN
and DANIELSEN [299] studied these non-isochronous duration patterns in samba
with a pandeiro. They reported a medium long–short–medium short–long pattern
irrespective of tempo.

Computational Approaches

Computational approaches for the analysis of microtiming can be generally divided
into grouping- or statistical-based and those that exploit ACF representations. In
methods of the first type, the audio signals are commonly preprocessed to obtain a
feature vector at a slower frame rate; bar patterns (or patterns of another size) are
length-normalized, making the representation independent of local tempo; and the
multiple patterns in the piece are stacked together for a statistical analysis. A similar
bar-length feature vector was proposed by DIXON et al. [206] (see Chapter 8).

GOUYON [300] conducted an analysis of microtiming in samba de roda carioca.
In total, this study used 49 audio excerpts taken from commercial CDs (44.1 Hz,
mono) and ranging between 10 to 30 s in length. The excerpts featured instruments
like cavaquinho, pandeiro, and others. The signal was first analyzed and a complex
domain ODF was computed with a frame size of 23.2 ms and 50% hop, resulting
in a feature rate of 86.1 Hz. Beat positions were obtained with a semi-automatic
software and manually corrected to align with the nearest maxima in the ODF.
Beat-length patterns were resampled to 40 points per segment and clustered with
k-means. Most of the reported patterns present local maxima at the sixteenth-
note level, which corresponds to the fast rhythm usually set by the cavaquinho and
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pandeiro in samba de roda. Gouyon also confirms the compression in time observed
by GRAEFF [296], GERISHER [297] of the third and fourth sixteenth notes, which
are played ahead of their corresponding quantized positions by about 1

40
of the IBI

(e.g., 20 ms at a tempo of 90 bpm).
NAVEDA et al. [201, 301] performed a similar investigation over 106 excerpts

(median duration of 33 s) from commercial recordings of samba carioca, samba-
enredo, partido-alto, and samba de roda baiano. Instead of resorting to an automatic
beat tracker, beats and downbeats were manually annotated by three Brazilian mu-
sicians with the Sonic Visualiser application [302]. Features were extracted with the
following process. First, the audio data was preprocessed by a model of the audi-
tory system, yielding loudness curves at a rate of 200 Hz in 44 channels distributed
over 22 critical bands (centered from 70 Hz to 10 843 Hz). After aggregating the
channels into three spectral regions (low, mid, high) according to the “spectral sig-
natures” of the different instruments, authors used the annotations to segment the
recordings at three metrical levels: one-beat, bar (two-beat), four-beat. Then, for
each excerpt–metrical level combination, they interpolated an isochronous grid at
the sixteenth-note level (using the annotated IBI); obtained a refined position of the
first beat of the pattern with the average peak position of the loudness across all
spectral regions; retrieved the position of the highest peak around each sixteenth
note in each spectral region. The refined position of the first sixteenth note is the
reference relative to which all IBIs and microtiming were computed. Then, for each
sixteenth note, they recorded the position of its peak (relative to the IBI) and its
intensity, all stored in a (3 × 2 × n)-dimensional vector, where n is the number of
sixteenth notes at the metrical level. Confirming previous studies, they observed
significant anticipations of the third and fourth sixteenth notes with respect to the
quantized positions at the one-beat level. Separated by spectral region (low, mid,
high), these anticipations were valued at −0.026, −0.031, −0.032 beats and −0.028,
−0.018, −0.027 beats for the third and fourth sixteenth notes, respectively. This
results are very consistent with the findings by GOUYON [300]. They also clustered
the data to analyze the relations between microtiming, metrical level, intensity and
spectral region. This final analysis revealed a small delay of the instruments at the
lower part of the spectrum on the first sixteenth note of each beat, which is more
expressive on the second beat of a bar. Moreover, they also detected a rhythmic
device akin to accelerando and ritardando at the microtiming level.

Other works that use similar techniques to analyze drumming recordings in-
clude [171] (rumba), [38, 203] (candombe), and [14] (djembe).

We end this section highlighting two approaches that describe micro-rhythmic
elements with the help of an autocorrelation function. The object of study in these
works is the “swing” at the eighth-note level that is employed in jazz music, but
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also in other genres as blues or rock [235]. This deliberate micro-rhythmic variation
occurs when the performer modifies the beat subdivision between two consecutive
eighth notes. As a result, the first note is lengthened while the second is shortened.
The swing ratio is precisely defined as the ratio between the durations of the long
and short notes [235]. This is a continuous scale, usually ranging from “straight
eighths” (1:1), “triplet feel” (2:1), to “dotted eighths” (3:1), and occasionally more
extreme ratios [198].

The system by MARCHAND and PEETERS [235] started the estimation of the
swing ratio the same way as the other approaches, i.e., with the computation of an
ODF. They used a frame size of 16 s in length, with a hop of 1 s for the analysis.
They noticed that, when there was no swing, the ACF of the ODF showed one peak
representing the tactus (quarter note) and one peak representing the duration of
the eighth note. However, when swing was present, the eighth note peak was split
in two for the durations of the “short” and “long” eighth notes. To determine the
corresponding durations of the eighth notes, the system first found the tactus with
a probabilistic framework, from which it estimated the duration of the eighth note,
δe; then it performed two Gaussian fits, one in the interval [ δe

2
, δe] and the other in

[δe,
3δe
2
]. The mean of each Gaussian (µs and µl) and their standard deviations were

used in a series of heuristics to determine if there was swing or not in each frame.
Where swing was present, the swing ratio could be computed as

sr =
µl

µs

. (9.10)

Authors reported a mean recall of 74% for the recognition of swing/no swing in
a subset of the GTZAN dataset annotated at the eighth-note level. When anno-
tated tempo was also used (and the beat tracking stage was bypassed), mean recall
improved to 91%.

DITTMAR et al. [197, 198] explored the same idea, but instead of the reg-
ular ACF, they used the log-lag ACF (LLACF), which, as mentioned in 8.2, is
a tempo-insensitive representation where tempo changes become translations in a
logarithmically-warped lag axis. Then, they constructed a dictionary containing the
equivalent representations of an idealized ride cymbal pattern with different swing
ratios in the range 1 ≤ sr ≤ 4. Swing ratios were estimated from audio recordings
by matching against the dictionary prototypes with either the Pearson correlation
coefficient [198] or the inner product of the DFT magnitudes [197]. The latter is
particularly efficient, and works by ignoring the translation of the LLACF repre-
sentation when the phase information is discarded. In [197], authors also presented
the swingogram, which can be interpreted as a spectrogram with a swing-ratio axis
instead of frequency. Each bin (m, sr) in the swingogram is equivalent to the sim-
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ilarity score between the m-th audio frame and the prototype corresponding to sr.
This representation allowed the tracking of the swing ratio along the performance.
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Chapter 10

Investigation on Beat and
Downbeat Tracking

In this chapter, our focus is on the challenge of producing high-quality beat and
downbeat annotations for our datasets. We described in Chapter 3 how BRID was
manually annotated. Manual annotations are labor-intensive and costly, so it would
be beneficial to evaluate the suitability of different automatic algorithms in our
specific musical context. However, it is important to note that most of the beat
and downbeat trackers presented in the literature have either been tailored for or
developed with Western music in mind. Therefore, we approach this problem of
annotation cautiously, as these out-of-the-box tools might be ineffective if directly
applied to music from different cultural traditions.

Before presenting our investigation, we introduce a few evaluation metrics that
allow the interpretation of large-scale experiments. To simplify, we explain all met-
rics as they are used in beat tracking, but their extension to downbeat tracking is
evident. Some of the information described here was originally published in [19, 20],
and we maintain nearly the same structure and results of these documents, with
some additional text and experiments that connect the publications in this work.
Sections 10.4 and 10.5 go into detail on the annotation of beats and downbeats in
SAMBASET, respectively.

10.1 Evaluation Metrics

Several evaluation metrics are used in beat tracking without consensus among re-
searchers [285, 289]. Among such metrics, in objective methods, a list of I tracked
beat times {bi}, i ∈ {1, ..., I}, is compared against one or more ground truth an-
notated beat times, e.g., a sequence {aj} of J elements, where j ∈ {1, ..., J}. This
kind of evaluation is analogous to that of onset detection (see Section 7.2).
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As the hand-labelled ground-truth data (beat and downbeat times) are bound
to carry uncertainties, which typically revolve around 50 ms [285], and it is virtually
impossible that estimates exactly match them, evaluation metrics usually set error
tolerance intervals in either absolute (e.g., ±70 ms) or relative (e.g., 20% of the
inter-annotation interval, IAI) time [285]. We present in the following a few usual
metrics, explaining their functionality and limitations. The reader is referred to [285]
for other metrics and a more thorough discussion about the subjective nature of beat
(and downbeat) annotations, and the relation between the actual perception and the
delay in human response. We note that in our experiments all figures of merit are
computed with standard settings of the mir_eval Python package [303] (v0.7).

F -Measure

First, there is the F -measure [250], which is obtained via the harmonic mean between
precision and recall, as defined for onset detection in Equation 7.6. An estimated
beat position bi is considered correctly detected if it lies inside a window centered
at annotation aj. As mentioned before, the tolerance is usually set to ±70 ms [285].

F -measure values go from 0% to 100%, where the former can only occur when no
beat times fall within any of the tolerance windows. If beats in the estimated and
annotated sequences are well aligned, but express different metrical levels related
by a factor of two, we have what is known as an “octave error” [5]. In this case,
the F -measure drops from 100% to 66.7% [289]. Completely unrelated sequences
typically perform around 25% [289].

Continuity-Based Measures

Continuity-based evaluation [286] considers the ability of the beat tracking system
to correctly and continuously track the meter in different regions of the music,
which contrasts with the simpler evaluation scheme of the F -measure. Continuity
is assessed by three conditions where, within a tempo-dependent tolerance factor
(ξ = 17.5%) of the current inter-annotation interval ∆aj = aj+1−aj, a beat detection
bi is said to have been correctly estimated if [285]:

1. it falls within a tolerance window around the closest annotation, i.e.,

|bi − aj| < ξ∆aj; (10.1)

2. the same holds for the previous estimated beat, i.e.,

|bi−1 − aj−1| < ξ∆aj−1; (10.2)
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3. the estimated inter-beat interval is locally consistent with inter-annotation
interval, i.e.,

|∆bi −∆aj| < ξ∆aj. (10.3)

The proportion of detected events that satisfy these conditions and the total number
of annotations defines the total number of correct beats at the correct metrical level
(CMLt). If, by resampling {aj}, we allow for detections at double or half the correct
metrical level (octave errors), we obtain the AMLt (allowed metrical level).

A score of 0% can only occur for these metrics if no two consecutive beats fall
within any tolerance windows, e.g., when the sequences are related by unspecified
metrical relations like 3:2 [289]. For completely unrelated sequences, AMLt reports
scores around 18%, on the account of coincidences [289].

Information Gain

Finally, the information gain [304] is defined as the Kullback–Leibler divergence be-
tween two distributions (approximated by histograms). The first one is the observed
beat error distribution, which considers the normalized timing errors of all estimated
beats within a beat-length window around the annotations. The second is a uniform
distribution that models the error of a pair of unrelated (estimated and annotated)
beat sequences. Therefore, the information gain measures the distance between the
empirical beat error distribution and the theoretically worst beat tracker.

If we define the set of beats within a one-beat window around aj as {bq|aj −
∆aj−1/2 ≤ bq ≤ aj +∆aj/2}; and the normalized timing error as

ζb|a(q) =


bq − aj
∆aj−1/2

, bq ≤ aj

bq − aj
∆aj/2

, bq > aj

; (10.4)

then we can construct, from the sequence of errors ζ, a K-bin histogram pζ(zk),
which represents the estimated probability of bin k ∈ {1, . . . , K} centered at the
beat error value zk ∈ [−0.5, 0.5] beat, such that

∑K
k=1 pζ(zk) = 1.

Finally, we can determine the information gain as [285]

Dζ =
K∑
k=1

pζ(zk) log2

(
pζ(zk)

1
K

)

=
K∑
k=1

pζ(zk) log2 pζ(zk) + log2K

= log2K −H(pζ(zk)), (10.5)
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where

H(pζ(zk)) = −
K∑
k=1

pζ(zk) log2 pζ(zk) (10.6)

is the entropy of the estimated beat error distribution. Since the entropy is lower
and upper bounded by 0 (single-valued probability distribution) and log2K (uniform
distribution), respectively, the information gain also spans this range [0, log2(K)] bit.
In practice, the largest entropy of the forward and backward sequences ζb|a and
ζa|b is selected. An empirically determined good choice for the number of bins is
K = 40 [304] or 41 [303]. This parameter controls the quantization of the beat
error: if it is too small, the shape of the distribution is not accurately captured,
whereas if it is too large, the histogram becomes too sparse [304].

This metric is insensitive to consistent beat-relative offsets (phase errors) and
not very sensitive to octave errors,1 while at the same time providing a true zero
value for unrelated sequences.

10.2 Typical Beat and Downbeat Tracking Errors

In this preliminary test, we estimate beat and downbeat positions on a few samples
from the BRID datasets (solos and mixtures) using three different deep-learning-
based systems that are available as out-of-the-box tools. We then perform an anal-
ysis of the results, discussing the limitations of these models with respect to their
application on non-Western datasets through an analysis of typical errors.

We select a subset of eight audio files that are representative of the content of
the dataset. This subset comprises four solo and four mixture tracks, involving
different rhythms (samba, samba-enredo and partido-alto), tempi, and ensembles, as
summarized in Table 10.1.

Table 10.1: Recordings in the selected subset.

Filename Instruments Genre

So
lo

s

[0218] S2-TB3-01-SE Tamborim Samba-enredo
[0229] S2-CX2-02-PA Caixa Partido-alto
[0258] S2-SK2-02-PA Chocalho Partido-alto
[0280] S2-SU2-05-SE Surdo Samba-enredo

M
ix

tu
re

s [0013] M4-13-SE Cuíca, Caixa, Tamborim, Surdo Samba-enredo
[0039] M3-20-SE Caixa, Tamborim, Tantã Samba-enredo
[0047] M3-28-SE Caixa, Surdo, Surdo Samba-enredo
[0051] M2-03-SA Tantã, Surdo Samba

1Tapping at different metrical levels creates multiple modes (peaks) in the error distribution,
which will still be far from uniform, and therefore yield high information gain. Provided that the
tapping tempo is close to the actual tempo, octave errors do not seriously harm the metric [304].

182



Finally, we adopt three deep-learning-based tracking systems that were briefly
discussed in the previous chapter: the multi-model beat tracking system of BÖCK
et al. [240] (BO1), the joint beat and downbeat model of BÖCK et al. [271] (BO2),
and the downbeat model of KREBS et al. [270] (KRE). We use the implementations
available in the madmom package (v0.16) and score detections with the F -measure
against our manual annotations.

Analysis of the Selected Solos

As we have stated many times, the instruments in samba, such as tamborim or
chocalho, are usually played in an ostinato, i.e., a repeating rhythmic pattern (see
Figure 10.1). This phenomenon was captured in the BRID dataset. Due to this
cyclic performance, it can be very difficult to establish the location of beats and even
more so of downbeats in solo tracks without any further references — this was also a
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Figure 10.1: Beat tracking for the selected solo track examples. Instruments: tam-
borim and caixa. The waveforms show two bars of the rhythmic patterns, with
dashed lines indicating annotated beats. Other markers depict the position of beat
estimates with BO1 and BO2. Rhythmic patterns are schematically represented in
music notation (below) and roughly aligned. (Continued on the following page.)
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Figure 10.1: (Continued from previous page.) Instruments: chocalho and surdo.

challenge during the manual annotation process. Of course, the dynamic evolution
of the pattern (succession of strong and weak pulses) as well as the microtiming
profile give important clues for the annotator. However, this specific musicological
knowledge is not available to most tracking models. For this reason, we restrict
ourselves to only investigating beat tracking in solo tracks in this section.

The beat positions for each of the four solo track are estimated using the BO1 and
BO2 algorithms and results are presented in Table 10.2. A two-bar length excerpt
of each audio file is shown in Figure 10.1, which also depicts the annotated beat
positions, the beat estimates for each algorithm, and a roughly-aligned notation of
the rhythmic pattern. Although we are not interested in downbeats at this time,
we indicate in this figure the beat number of the annotations considering a 2

4 meter
(i.e., “1” and “2”), for reference.

We see from these results that the algorithms perform very similarly: both miss
the phase of the beat in two of the files ([0218] and [0229]) and correctly track the
other two tracks ([0258] and [0280]). A detailed inspection of Figure 10.1 makes
it clear that the troublesome rhythmic patterns, i.e., from tamborim and caixa,
have strong accents displaced with respect to the metric structure. Conversely, the
chocalho pattern accentuates every beat more than other pulses. Finally, in the
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Table 10.2: Beat F -measure for different models on selected solos.

Beat F (%)

Track BO1 BO2

[0218] S2-TB3-01-SE 0.0 0.0
[0229] S2-CX2-02-PA 0.0 0.0
[0258] S2-SK2-02-PA 100.0 100.0
[0280] S2-SU2-05-SE 96.5 100.0

case of the surdo track, which records a surdo de terceira, there are actually several
different rhythmic patterns played. Nevertheless, most of the time, the second beat
of the bar is clearly articulated. We mentioned before that this accentuation of beat
“2” is a distinctive trait of samba. While advantageous for beat tracking, it proves
to be very challenging for downbeat estimation, as will be shown next.

Analysis of the Selected Mixtures

We track both beats and downbeats in the four recordings of acoustic mixtures, as
the ambiguity in the rhythmic cycles can be better resolved in these cases due to
extra information provided by the superposition of different instruments. Beats are
estimated using BO1 and BO2, while downbeats are inferred with KRE and BO2.
Since all mixtures are in 2

4 meter, we set the search-space of the downbeat-tracking
DBN to bar lengths of {2, 4} beats. Results are displayed in Table 10.3.

Table 10.3: Beat and downbeat F -measures for different models on selected mix-
tures.

F -measure (%)

Beat Downbeat

Track BO1 BO2 KRE BO2

[0013] M4-13-SE 99.1 100.0 0.0 0.0
[0039] M3-20-SE 98.1 100.0 0.0 0.0
[0047] M3-28-SE 97.9 100.0 0.0 0.0
[0051] M2-03-SA 56.2 39.5 0.0 0.0

Beat tracking in the mixtures is apparently met with ease, except for file [0051],
for which half of the estimates are out of phase probably due to the presence of
an anacrusis.2 On the other hand, downbeat tracking algorithms are completely
unsuccessful; both fail to correctly track the downbeats for all the recordings. We
observe that the downbeat estimates tend to follow not the first, but the second beat,

2In music, an anacrusis is the presence of one or more notes that precede the first metrically
strong beat of a phrase [3].
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Figure 10.2: Downbeat tracking for one of the selected mixture track examples. The
waveform shows two bars, with dashed lines indicating the annotated beats. Markers
depict the position of downbeat estimates with KRE and BO2. We have notated
(below) the surdo part, which we believe is mostly responsible for misleading the
downbeat detection process.

what suggests that samba’s characteristic accent is misleading the trackers. This can
be mostly attributed to the patterns executed by surdo and tantã, which most clearly
articulate this beat. Figure 10.2 illustrates this problem when estimating downbeats
for track [0013].

10.3 Beat Tracking on BRID Mixtures

In the previous investigation, we have seen the limitations of deep-learning-based
trackers, which represent the state-of-the-art in beat estimation for many datasets,
in producing reliable estimations for solo (beat) and mixture (beat/downbeat) tracks
of BRID. Given the apparent success of these models in tracking beats on the acous-
tic mixtures, we now perform a more in-depth investigation of available beat trackers
in this specific task. We expand the number of algorithms with two other systems:
BeatRoot, by DIXON [250] (DIX), which is based on a multiple agent architec-
ture, and available in Java (v0.5.8); and the dynamic programming system of [245]
(ELL), available in the librosa [305] Python package (v0.6.2). Since we are only
dealing with beat tracking, we do not consider KRE in this case, and investigate
only the BO1 and BO2 algorithms. The beat estimation results for BRID mixtures
is summarized in Table 10.4, including the continuity metrics and information gain.

Contrary to our expectations, this time the average beat tracking performance is
much lower, with a mean F -measure of 60.5% for BO1 and 53.5% for BO2 (cf. Ta-
ble 10.3). Moreover, we observe that both deep-learning-based systems have been
outperformed by DIX (considering F -measure and AMLt) and ELL (under all met-
rics). In fact, ELL presents itself as the most accurate in this scenario.
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Table 10.4: Performances of different beat tracking models on BRID mixtures.

Model CMLt AMLt F -meas. Inf. gain
(%) (%) (%) (bits)

DIX 42.8 83.6 72.8 3.48
ELL 82.3 84.6 85.4 3.66
BO1 45.1 66.8 60.5 3.51
BO2 37.0 62.5 53.5 3.32
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Figure 10.3: Histograms for beat detection errors across all mixture tracks.

The large differences between the CMLt and AMLt for DIX, BO1 and BO2 point
towards the occurrence of octave errors in the metrical level of several tracks. This
can be better understood with the aid of Figure 10.3, which presents the estimated
error histograms for each model. In all histograms, we notice a high peak centered
close to 0 and smaller masses in the neighborhoods of −0.5, −0.25, 0.25, 0.5 (i.e.,
±1

2
and ±1

4
beat), which display higher densities for DIX, BO1, and BO2. While

the relative errors of ±0.25 can be attributed to simple phase errors, errors of half a
beat can also appear as a result of octave errors (i.e., methods estimated double/half
tempo). These errors are ignored by the AMLt, but absorbed by the CMLt metric.
The global beat tracking information gain quantifies these differences: the beat error
distribution for BO2 is more spread out (less related to the actual annotations),
whereas the distribution for ELL is more concentrated around a single value.

Figure 10.4 illustrates two interesting situations. We show an excerpt of file
[0009] M4-09-SA, which records an ensemble made by tantã, pandeiro, agogô, and
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Figure 10.4: Beat tracking for two mixture tracks. The waveforms show two bars of
the rhythmic patterns, with dashed lines indicating annotated beats. Other markers
depict the position of beat estimates with DIX, ELL, BO1, and BO2.

surdo. ELL correctly predicts all beats (F -measure = 98.6%, CMLt = AMLt =
97.3%, inf. gain = 3.60 bits), whereas the other algorithms have doubled the meter
(F -measure ≈ 66.7%, CMLt = 0.0%, AMLt ≈ 98.6%, and inf. gain ≈ 3.00 bits).
We also display a typical case of phase error in track [0036] M3-17-PA (repique,
tamborim, tantã). In this case, BO2 and BO1 have correctly estimated the tempo
of the piece, but the beat phase is incorrect. The former has settled with the second
sixteenth note of each measure, whereas the latter constantly tracks the fourth one.
All metrics penalize this, except the information gain (3.78 bits for BO1 and 2.92
bits for BO2), which, as explained in Section 10.1, is insensitive to consistent phase
errors. DIX shows a drifting behavior and, consequently, low values across all metrics
(F -measure = 48.6%, CMLt = AMLt = 28.9%, inf. gain = 2.54 bits).

Since model BO2 jointly tracks beats and downbeats, we report here its downbeat
tracking performance for the sake of curiosity: an F -measure of 1.6% and a CMLt of
4.6%. As in the previous investigation, what happens with almost the entirety of this
subset of multiple-instrument recordings is that the BO2 model ends up consistently
tracking the characteristic strong accent in the second beat of each measure, which
is usually more heavily stressed by the surdo or the tantã. The consistency of this
phase error in the estimation results in a high global downbeat tracking information
gain of 4.0 bits, out of an approximate maximum of 5.4 bits.

188



10.4 Annotation of Beats in SAMBASET

Next, we consider the problem of beat annotation and estimation in SAMBASET.
When compared to the purely percussive BRID, this dataset contains a lot more cues
(e.g., harmonic changes) for the annotators and algorithms. This investigation was
originally carried through when no beat annotations were available for SAMBASET.
In order to measure the degree of challenge presented by this dataset in regard to
beat perception, we have exploited a selective sampling technique, inspired by [289,
306, 307], to extract a series of recordings sampled at different levels of “difficulty”.
This difficulty is measured by the agreement between members of a committee of
beat tracking systems. Notice that this procedure does not require annotations, just
the beat time estimates produced by each algorithm. As a by-product, this analysis
also gives us information about which methods are good candidates for estimating
beats in the dataset. Initial beat estimates can then be produced with the best
algorithm, and manually corrected by a human annotator afterwards.

We start this section by reviewing the procedure of [289, 306, 307].

10.4.1 Selective Sampling for Beat Tracking Evaluation

HOLZAPFEL et al. [289, 306] presented a method for selecting challenging music
examples for the beat tracking task without ground-truth annotations using a query-
by-committee approach [308] with a set of beat tracking algorithms.

When annotations aj are available, the procedure for quantifying the difficulty of
a piece is straightforward [306]. Authors first estimated, with each beat tracker Bk,
a sequence of beat positions bki for the piece. Then, they scored each sequence with
a measure that takes the ground truth into consideration. Finally, they averaged
all scores S(bki , aj) to obtain the mean ground truth performance (MGP). In this
regard, a piece was considered difficult if its MGP was low.

However, when no ground truth is available, the MGP cannot be used to infer the
difficulty of the piece. The idea in [289, 306] is that, leveraging the beat committee,
a piece can be considered “informative” or “interesting” by comparing the different
estimated beat time sequences. First, they defined the mutual agreement between
two estimated beat sequences {bk1i , bk2j } output by two beat tracking systems, Bk1

and Bk2 , for the same piece as

MAk1,k2 = Dζ1|2 , k1 ̸= k2, (10.7)

where, in a simplified notation, Dζ1|2 is the information gain (in bits) of the empirical
beat error sequence of bk1i given bk2j . For a committee of N beat trackers, they
calculated the N(N − 1)/2 different mutual agreements and averaged them all to
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obtain the mean mutual agreement (MMA) for that piece. HOLZAPFEL et al.
[289] showed a correlation between low MMA and perceptual/musical properties
that make tapping difficult for humans, inferring MMA can be used as a measure of
the difficulty of the piece. They build a challenging dataset by selecting examples
with MMA < 1 bit, given a committee of five beat trackers.

In a related paper [307], they showed that the MaxMA, i.e., the algorithm whose
output presents the maximum mutual agreement with the rest of the committee,
provides the most reliable estimation for a given music example. Using the same
committee of five beat trackers, they conducted subjective listening tests to de-
termine a perceptual threshold for acceptable quality of this chosen output given
the corresponding MMA. They proposed an MMA threshold for the committee of
1.5 bits: an MMA ≥ 1.5 bits indicated that automatic beat tracking should be
perceptually acceptable; whereas an MMA < 1.5 bits suggested inaccurate beat
tracking.

10.4.2 Selection of SAMBASET Excerpts

In this thesis, we follow a similar approach to select samples of various difficulties
for the committee of state-of-the-art algorithms. We have collected the implementa-
tions of 14 beat tracking systems, removing eight that were featured in the original
work [289] but were now unavailable, and adding six others that were presented after
that publication, most notably those provided in the madmom package [72].

The algorithms are implemented in different programming languages and, in
a few cases, require different operating systems. We used the Python implemen-
tations of AUB (v0.4.9), ELL (librosa [305] v0.6.2), DEG and MFT (Essentia
package [106] v2.1-beta5-dev), BO0, BO1, and BO2 (madmom package [72] v0.16.1);
and the available releases of DIX (Java, v0.5.8), DAV (Vamp plugin in conjunction
with the Sonic Annotator [309]), IB1 and IB2 (v1.0 binaries). Finally, the C++
implementation of KLA was kindly run by Martín Rocamora from a copy of the
code provided by the author.

To obtain our selection of excerpts with different difficulty levels, we first extract
30-second audio segments from the middle of all the different sambas-enredo in
SAMBASET. Then, from each of the 493 excerpts, we compute the MMA between
the beat estimates produced by the committee of beat trackers. As the different
collections in SAMBASET (HES, ESE, and SDE) have different characteristics (as
discussed in Chapter 3), we perform the following analysis separately.

We sort the excerpts from each collection in ascending order by mean MMA, as
presented in Figure 10.5. Then, for each collection, we determine P evenly spaced
MMA values (including the maximum and minimum points), and select the excerpts
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Figure 10.5: Collections sorted by mean MMA (solid line), with standard deviation
(shaded region). Annotated samples (solid circles) were chosen as the closest to ten
evenly spaced MMA values (solid triangles). One sample was treated as an outlier
(cross) in ESE.

closest to each of these values. These are the excerpts that we manually annotate.
There are two reasons for this procedure. The first one is that, by selecting the same
number of samples from each collection, we compensate for the large imbalance
between them (e.g., in SDE there are nearly seven times more excerpts than in
HES), while ensuring that their unique characteristics are equally represented in the
annotated subset (we recall that the expression and variability in HES is much higher
than that in ESE, or SDE, as mentioned in Section 3.2.1). The second reason is
that, this way, we guarantee that the beat tracking algorithms are compared within
a group of samples where they have varying levels of agreement (and that would
possibly provide a human annotator with a gamut of challenges). We use P = 10

and, in total, manually annotate 30 files, totalling just over 1900 beats. It should
be noted that a moderate number of annotated samples is sufficient, since we are
dealing with a single music genre, which considerably limits the range of variations
between them.
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10.4.3 Discussion of the Results

We see in Figure 10.5 that, in general, the 14 beat tracking systems show more
agreement in beat time estimates for tracks in the ESE collection, followed by those
in SDE, with HES in last. In fact, for over 50% of the tracks in ESE, the algorithms
presented an MMA > 3 bits, against slightly under 12% for SDE tracks and 0%
in HES tracks in the same conditions. Considering a threshold at 2.5 bits, those
percentages grow to 95%, 70% and 23%, respectively. This agrees with our overall
impression that the HES collection is the most “flavorful”, whereas ESE is less
expressive (cf. Section 3.2.1).

With the manual annotations for the 30 excerpts, we can also estimate the indi-
vidual performances of each algorithm, which are reported in Table 10.5 along with
the mean across all methods. We observe that seven beat trackers perform better
than the mean in all metrics, some of them outperforming the others by a large
margin. For our dataset, the four best algorithms are BO1, BO0, DAV, and BO2.

Table 10.5: Performance of the beat tracking algorithms on the selected SAMBASET
excerpts. The best performance for each metric is highlighted in bold. The five-
member committee proposed in [289] is indicated by an asterisk.

Beat tracking model CMLt AMLt F -meas. Inf. gain
(%) (%) (%) (bits)

Aubio (AUB) [310] 59.4 65.6 61.9 2.30
BayesBeat-HMM (KR1) [76, 265] 42.7 65.6 67.6 2.27
BayesBeat-PF (KR2) [76, 196] 47.6 52.9 58.0 2.25
*BeatRoot (DIX) [250] 79.4 82.8 86.4 3.15
Davies (DAV) [246] 97.2 97.2 97.5 3.66
*Degara (DEG) [311] 88.3 91.2 89.7 3.40
*Ellis (ELL) [245] 76.9 76.9 78.7 3.35
IBT causal (IB1) [312] 83.4 83.4 86.2 2.45
*IBT non-causal (IB2) [312] 51.1 90.8 80.0 2.49
*Klapuri (KLA) [244] 61.3 63.7 63.1 3.09
BeatTracker (BO0) [243, 313] 98.1 98.1 98.6 3.78
DBNBeatTracker (BO1) [240, 265] 99.5 99.5 99.5 3.80
DBNDownBeatTracker (BO2) [271] 94.0 97.3 97.1 3.68
MultiFeature (MFT) [314] 86.4 86.4 86.8 3.55

Mean 76.1 82.2 82.2 3.09

For the sake of comparison, we also evaluated the MMAs of the 493 excerpts
with the five-member committee proposed in [289] and used in [307]: for 98.6% of
the dataset the committee yields an MMA > 1.5 bits; a single excerpt has MMA <

1 bit. This indicates that, overall, SAMBASET excerpts are not very challenging to
the algorithms in this reduced committee, which would provide a good number of
acceptable estimates or a good level of confidence in the MaxMA estimation. This
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Figure 10.6: Histogram of the frequencies of each algorithm as MaxMA.

analysis of state-of-the-art algorithms indicates a safe approach to semiautomatically
annotating beats in this dataset.

Instead of obtaining the MaxMA from the reduced committee of HOLZAPFEL
et al. [289], we perform this analysis in our expanded committee. Figure 10.6 shows
that BO1 is the MaxMA for over 54% of the excerpts in the dataset. We have
therefore used this algorithm for producing initial guesses for beat positions in the
entire tracks of SAMBASET, which have then passed through manual corrections
before being stored as actual annotations.

10.4.4 Musicological Insights

Here we investigate the evolution of average tempo in samba-enredo recordings across
the years as represented in the SDE collection. For each excerpt, we use the auto-
matically detected beats provided by BO1, and compute the average tempo in bpm
as the inverse of the mean IBI. Figure 10.7 shows the average tempo for every track
in SDE, plotted against the release year.

Although no clear trend is apparent from the whole data, we can readily verify
the existence of local trends in three different regions of the graph. The first region
accounts for the years of 1994 through 1998, and corresponds to the end of an era
of “live” recordings in the Teatro de Lona (Barra da Tijuca), a large circus-like
tent. As Moehn reveals on his essay “The Disc is not the Avenue” [315], by then
the recordings were being made with a large number of musicians from each escola
(around sixty) as well as large choirs from the respective community.

A radical change took place in the production of the 1999 disc: the entire process
was moved to the studio and the number of escola members was reduced, not only
to cut costs, but also to regain control over the sound organization [315]. Produc-
ers wanted the disc to sound “clear” and, thus, constrained the creative liberties
of the bateria’s directors (e.g., they were not allowed to choose the tempo of the
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Figure 10.7: Average tempo across the SDE collection. Trend lines are shown for
three distinct regions, along with the respective confidence intervals (shaded areas).

performance or to follow certain musical conventions that are common in live per-
formances). This was an attempt to recover the disc’s marketability (sales had
been dropping in previous years), despite distancing it from the actual phenomenon
of samba-enredo [315]. In 2010, “live” recordings were resumed, this time in the
Cidade do Samba (Gamboa neighborhood). Producers retreated in their interfer-
ence on the soundscape creation, and the escolas were able to reclaim the final saying
in some aspects of the recording, such as the tempo. The larger space provided by
the Cidade do Samba also lead to an increase in the number of musicians taking
part in the recordings: more than 8 000 for the 2014 CD against 1 500 in the 1998
recording [315].

Therefore, we can say that the first and third regions of Figure 10.7 more closely
represent actual samba-enredo performances. In particular, notice that the average
bpm in the third region is above the averages in the other two regions. This can be
seen as a direct translation to the digital media of the decisions to accelerate the
live performances (and the marching pace), so that the escolas satisfy changes in
parading time limits, as reported by many specialists [28, 58, 316].

10.5 Annotation of Downbeats in SAMBASET

In this final section, we present the results for downbeat tracking on the previously
selected and annotated SAMBASET excerpts. We estimated downbeats with four
systems. Three of them jointly estimate beats and downbeats, and were also featured
in Section 10.4: KR1, KR2, and BO2. The other one is KRE, which solely estimates
downbeats, and was used before in Section 10.2.
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We report the average CMLt and F -measure, and also two alternate metrics that
represent an evaluation with inverted targets, i.e., exchanging the labels of beats “1”
and “2” in the annotations. These alternate versions of the original metrics are in-
dicated as “starred metrics”. Instead of looking at simple phase problems or octave
errors, these metrics show us whether the downbeat trackers are wrongly treating
beat “2” as beat “1”, which is highly probable considering the strong contrametric
accent found in samba. If this were the only problem with the downbeat tracking
algorithm, it would be simple to manipulate the results to obtain accurate anno-
tations: this would only require the knowledge of the beat phases and a relabeling
procedure exchanging the labels “back”.

We show the results for downbeat tracking on the 30 excerpts in Table 10.6.
What can be seen from the table is that downbeat tracking performance is overall
poor, but this cannot be entirely attributed to the models simply exchanging beats
“1” and “2”. This is only part of the issue, as the starred metrics show a moderate
improvement (except for KRE) over the regular ones. In fact, looking into the
results, we observe that finding the exact phase of the downbeat is challenging for
all models, and in most cases we end up with phase errors of fractions of a beat. For
this reason, we manually annotated downbeats in SAMBASET by selecting which
estimated beats (after manual correction) corresponded to the labels “1” and “2”.

Table 10.6: Downbeat tracking on the selected SAMBASET excerpts.

Downbeat tracking model CMLt F -meas. CMLt* F -meas.*
(%) (%) (%) (%)

BayesBeat-HMM (KR1) [76, 265] 5.8 12.6 20.6 45.0
BayesBeat-PF (KR2) [76, 196] 3.2 9.6 3.8 32.2
BarTracker (KRE) [270] 0.0 41.7 0.0 28.1
DBNDownBeatTracker (BO2) [271] 0.0 19.4 3.3 47.2

Mean 2.2 20.8 6.9 38.1
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Chapter 11

Contributions to Beat and
Downbeat Tracking with Few Data

We presented in Chapter 9 a brief overview of the evolution of meter tracking
models and, in particular, the recent developments in the state of the art with
the introduction of deep learning methods. The data-driven supervised nature of
these approaches conflicts with a current trend of expanding the frontiers of MIR
and shifting its focus from Western music to other underrepresented music tradi-
tions [6, 63, 64, 317–319]. On one hand, these traditions often lack annotated data,
which are costly to produce and usually require culturally-aware expertise. On the
other hand, off-the-shelf general-purpose models typically underperform in these
music genres, since they are unrepresented in the datasets used for training. We
have exemplified this latter issue in Chapter 10, where we showcased the poor re-
sults of beat/downbeat tracking on BRID solos, beat tracking on BRID mixtures,
and downbeat tracking on SAMBASET excerpts.

In this chapter, we present some contributions to beat and downbeat tracking
that were originally reported in [22, 23]. Instead of proposing a novel architecture,
we approach the problem of beat tracking from the perspective of an end user, i.e.,
someone that wishes to use state-of-the-art algorithms to annotate a dataset. We
assume this user is not an expert in the music genre featured in the dataset or, at
least, is not willing to manually annotate a large amount of data. Moreover, for
this user, generating labels is not an end in itself; instead, it is a first step towards
solving more complex, perhaps musicologically-inspired, questions that require prior
knowledge of the temporal organization of music. If the object of study, i.e., the
dataset, is composed of Western music that does not contain much expression (e.g.,
large tempo changes, rubato, swing), we expect that the beat and downbeat induc-
tion can be performed with out-of-the-box models and will be largely successful —
after all, this is precisely the kind of music on which most of the state-of-the-art
methods are trained. However, when dealing with styles that differ much from this
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kind of musical material, e.g., non-Western music with challenging rhythmic prop-
erties (microtiming or displaced phenomenological accents, among others), the user
is bound to find some difficulties.

Assuming the user is willing to annotate a reduced number of audio examples
that can then be used to train a state-of-the-art model, our solution is to refine and
adapt this model to work well in that specific context, i.e., the particular music genre.
The model should be trained on the small subset and work on the remaining data,
facilitating the annotation process. This goes in hand with a series of recent efforts
that, instead of developing “universal” models capable of performing equally well
across various music genres (requiring large quantities of labeled data), have shifted
towards adapting preexisting models to succeed on a subset of interest [283, 320],
which can be as restricted as a single musical piece [17, 284, 290]. These efforts were
discussed previously in Section 9.1.3.

Of course, many questions can be raised at this point, especially regarding the
aforementioned “hungry” nature of deep-learning-based models set against the small
annotated subset the user is asked to provide. We argue that, if the dataset is
sufficiently homogeneous (in some senses), then there is no need for being wary of
an “overfitted” solution — in fact, it is precisely what we require. Additionally, one
could ask whether there is an appropriate way of selecting the subset to annotate,
while at the same time minimizing the annotation effort and generalizing to the
remaining samples in the dataset. We also tackle this problem here.

We start this chapter by quickly presenting two machine learning concepts that
are relevant to our discussion. Then, we demonstrate our main premise, i.e., that it
is possible to train meter tracking models with small quantities of data for “cohesive”
music traditions and achieve a high performance comparable to that of traditional
training schemes (which require much more data). We explore this adaptability in
terms of data, performance, and computational cost. Lastly, we present a scheme for
selecting informative samples from the dataset using the rhythmic features presented
in Chapter 8 and a set of selection techniques based on representativeness and
diversity. We show the results for applying this scheme in the task of beat tracking.

11.1 Active and Few-Shot Learning

The discussion presented in this chapter has parallels with two machine learning
subareas. The first is the technique of few-shot learning [321–323], whose main
idea is to train a model that is able to generalize to unseen classes at inference
time by exploiting a few examples. Then, there is the concept of active learning,
in which it is posited that a supervised learning algorithm performs better and
with less data if it is allowed to choose its training samples [324]. These instances
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are selected from the most informative ones of the unlabeled dataset and sent to an
oracle, typically a human user, that annotates them and forms a labeled training set,
which in turn is used to update the model. Both paradigms have been increasingly
used in audio and music-related tasks, most notably sound event detection [325–
327], drum transcription [328], musical source separation [329], and music emotion
recognition [330].

The most commonly used active learning sampling methods are uncertainty
sampling and query-by-committee. In particular, we described in Chapter 10
how HOLZAPFEL et al. [289] explored this latter concept to create a committee of
beat trackers that allow the determination of difficult-to-annotate examples. And,
of course, we ourselves have exploited this notion to select a gamut from “easy” to
“challenging” excerpts in SAMBASET. Other sampling methods take advantage of
the internal structure of the input data distribution, either by analyzing local den-
sities or by trying to construct a diverse labeled dataset. For example, SHUYANG
et al. [325] used a k-medoids clustering technique to annotate and classify sound
events. Similar to k-means, the k-medoids algorithm attempts to minimize the
distance of points in a cluster to a referential data point (medoid) using a custom
dissimilarity measure. SHUYANG et al. [325] leveraged it to cluster unlabeled sound
segments and propagate labels from the medoids.

Moving away from MIR, an influential work by SU et al. [331] investigates the
performance of several selective annotation methods as a first step before retriev-
ing prompts for in-context learning of large language models. Authors included
confidence-based selection as well as methods that promoted representativeness, di-
versity, and both.

Section 11.2 deals with minimizing the amount of data seen by a meter tracking
model, similar to few-shot approaches, but at training time, consequently reducing
the annotation cost. In Section 11.3, we build on the idea that a set of informative
samples can be extracted from the input data distribution and that the small an-
notation effort is better employed over these data, much akin to the active learning
paradigm.

11.2 Training with Few Data

We stand by the intuition that BRID is somewhat homogeneous with respect to
timbre and rhythm, which is supported by our previous exposition of the main char-
acteristics of samba in Sections 2.4 and 2.5, and of the dataset in Chapter 3. To
further validate our findings, we will include, at this point, an analysis of candombe.
We assume that the same intuition applies to datasets representing this music genre,
which contains strong phenomenological accents and well-described rhythmic prop-
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erties [38, 203].
Our objective in this section is to understand, using these music traditions —

samba and candombe, whether it is possible to train meter tracking models with small
quantities of data to obtain good tracking performances, and if so, how much data
is actually needed. We train the models with increasing amounts of annotated data,
ranging from less than a minute up to nearly 40 min, and compare the performance
and computational cost of each configuration against the others. We contrast three
different training strategies:

1. Training the model from scratch with either candombe or samba snippets;

2. Fine-tuning a model previously trained with 38 h of data from diverse datasets
of Western music to work on either candombe or samba;

3. Same as the previous two, but training the models with data augmentation to
artificially increase the “small data” input.

We use a state-of-the-art TCN-based model [275] for our experiments, as it
presents an interesting compromise between performance and computational cost.
We contrast the TCN against off-the-shelf models trained in/developed for Western
music. To understand the adaptability and computational cost of deep-learning-
based methods, we compare the TCN against another simple yet effective baseline,
a Bayesian model (BayesBeat) [76], trained on the same non-Western data. In the
following, we explain our methodology in detail.

11.2.1 Datasets

As aforementioned, we have selected datasets of two different Afro-rooted Latin
American music traditions for our experiments. Due to the challenge it posed to
both beat and downbeat tracking tasks in Chapter 10, we use in our experiments
the acoustic mixtures subset of BRID. Just as a reminder, this corresponds to 93
short tracks (about 30 s each) of musicians playing together rhythm patterns found
in samba and two of its subgenres (samba de enredo and partido-alto). To represent
candombe, we use the Candombe dataset [63, 74], which consists of 35 recordings
of candombe drumming, for a total of nearly 2.5 h. As discussed in Chapter 3,
Candombe tracks have been segmented into non-overlapping 30-second excerpts to
allow comparison with BRID, and, in each experiment repetition, we use a random
sample of 93 candombe excerpts.

We also use six datasets to train a baseline TCN model: Ballroom [75, 76],
Beatles [285], GTZAN [205, 235, 291], and RWC (Classical, Popular, Jazz) [292, 332].
Together, these correspond to over 38 h of audio data. We note that Ballroom and
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GTZAN datasets comprise many diverse music genres (e.g., waltz, tango, rumba,
rock, pop, country, etc.). We used the loaders from the mirdata Python package
(v0.3.6) [333], except for a custom loader used with Ballroom.

11.2.2 Handling Small-Sized Datasets

For our experiments, in all cases, we first separate train and test data (80% and
20% of 93 excerpts respectively) to ensure a fair assessment of the models. Then,
we divide the training data into six subsets, spanning {4, 9, 18, 37, 55, 74} 30-
second tracks. We want to determine how differently the models adapt to small
quantities of data, so we followed a similar approach to that of PINTO et al. [17]
(see Section 9.1.3) to define the amount of data to be used for training. We select
short 10-second temporal regions at the beginning of the audio excerpts, along with
the corresponding beat and downbeat annotations, and discard the remaining audio
portion. Then we split each of these regions into two adjacent 5-second parts, the
first to be used for training and the second reserved for validation in the TCN
model; alternatively, we use the entire 10 s for training the Bayesian model with
off-the-shelf parameters. Considering that each snippet only lasts 10 s, those data
subsets add up to approximately 40 s, 1.5, 3, 6, 9, and 12 min of annotations.
The rationale behind this strategy is that, given a set of recordings of such Latin
American music traditions in real-world applications, it would be reasonable to ask
a user to annotate just a few seconds to a few minutes of data; of course, the less
data needed, the better.

Since we are using very few data points to train the models, performance is
strongly affected by data sampling. To mitigate this, we repeat all of our experiments
10 times with different seeds for the random data split generation, which means that
models are trained 10 times with each of the differently-sized subsets. Note that
selecting the best strategies for data sampling is not discussed in this section, and
left to be addressed in Section 11.3. Test data are left uncut, i.e., we use the full 30
s, to keep compatibility with common model evaluation practices in meter tracking.

11.2.3 TCN Model

We use in our experiments the TCN multi-task model presented in [275] and reviewed
in Section 9.1.2, particularly the open-source implementation of DAVIES et al. [241].
In this section, we focus on meter tracking, and ignore the tempo estimation head
of the network. First, the TCN estimates the beat and downbeat likelihoods. Then,
we use two different DBN implementations from madmom (v0.17.dev0) [72], one for
beats and the other for downbeats, to infer the final positions of beats and downbeats
respectively. Inferring them separately rather than jointly led to better results.
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11.2.4 Training Strategies

Training from Scratch (TCN-FS)

When datasets have high similarity in terms of instrumentation, rhythmic patterns,
and tempo, we anticipate that training a model from scratch with just a few data
points will work well for most of the similar data.

Following the explanation in Section 11.2.2, we train one model per data subset,
and repeat this 10 times with randomly initialized weights and seeds. We also
consider the case in which all annotations are available and include the analysis
of model performance when training with the entire 30-second excerpts. In this
situation, we split the 74 train excerpts into train and validation (75%/25%). For
every strategy, we use a learning rate of 0.005, and reduce it by a factor of 0.2 if
validation loss does not improve after 10 epochs. We train for a maximum of 100
epochs, with early stopping if the validation loss does not improve after 20 epochs.

Fine-Tuning (TCN-FT)

We also approach the problem of meter tracking in a culture-specific setting from a
“transfer learning” perspective. Following [17, 283, 320], we adapt a meter tracking
model that has been previously trained for a different musical context. The intuition
here is that if the model is first trained on a large dataset, even if it was built around
Western music, it can serve as a good starting point for a model that is to be tuned
for a specific out-of-training music tradition. This is a realistic approach since most
of the available annotated data and trained models are Western-based. For this
purpose, we trained a baseline TCN model on the Ballroom, Beatles, GTZAN, and
RWC datasets. Due to the nature of its training data, this baseline model has to
cope with many different meters, genres and acoustic conditions, which makes it a
good starting point. We fine-tune it by using the same training procedure described
previously with the initial learning rate reduced to 0.001, a fifth of the value used
in the FS approach, as suggested in [17].

Data Augmentation (TCN-FTA, TCN-FSA)

Data augmentation techniques are useful for artificially increasing the number of
training data points, which can be of great benefit in cases of low or insufficient data
such as ours. In order to evaluate the impact of data augmentation in our models, we
adopted a simple strategy inspired by [17, 275] in the experiments conducted with
the TCN model, i.e., computing the input STFTs with different frame rates (varying
hop sizes) so as to even out the distribution of tempi in the training set. Instead of
randomly sampling tempi from a normal distribution around the annotated tempo,
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we selected a set of frames rates±2.5% and±5% around its value. This allowed us to
increase our sample size five-fold while maintaining the same amount of annotation
effort. Models obtained with the data augmentation procedure are labeled TCN-
FSA and TCN-FTA.

11.2.5 Baselines

We include two types of baselines. Firstly, the BayesBeat statistical model [76]
is used as a reference to the adaptability and computational cost of the TCN. It
has fewer parameters, thus training is faster. The second type of baselines is com-
posed of three off-the-shelf models — a signal processing technique, and two neural
networks trained on Western music —; they illustrate the need for tailor-made so-
lutions/adaptations in our context. Details are presented below.

BayesBeat

BayesBeat is based on the bar-pointer model, and simultaneously estimates beats,
downbeats, tempo, meter, and rhythmic patterns, by expressing them as hidden
variables in an HMM. An observation feature based on the spectral flux is computed
from the audio signal and the observation model uses GMMs that are fitted during
training to the feature values of each bin in a one-bar grid, so that rhythmic patterns
are learned. Several patterns can be modeled, though is usually assumed that one
pattern remains constant throughout a given music signal.

This model has a few hyperparameters that the user should choose depending
on the music. Those are the number of rhythmic patterns, the type of feature to use
(e.g., using only low, or low and high frequencies), and the feature grouping (e.g.,
how to compute the rhythmic pattern clusters), the tempo range, and the number
of whole note subdivisions. In [76], it is reported that using two separate frequency
bands (≷ 250 Hz) helps finding the correct metrical level and is beneficial for beat
and downbeat tracking. Considering more frequency bands did not seem to improve
the results [76]. According to [264], using one rhythmic pattern per rhythm class is
usually enough to achieve a good performance and provides the best results in most
cases. Following these recommendations, we learn only one rhythmic pattern in two
frequency bands.

Off-the-Shelf Baselines

We use the joint beat and downbeat tracking model of BÖCK et al. [271] (BO2)
as implemented in madmom [72]. We note this LSTM-based model was trained in
ten datasets spanning Western genres, and Carnatic, Cretan and Turkish music
excerpts. We also include the beat tracker from ELLIS [245] (ELL), which uses a
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dynamic programming approach. As a final baseline, we include the same TCN
architecture of BÖCK and DAVIES [275] trained on 38 h of Western music material
from the datasets described in Section 11.2.1. We name this baseline “TCN-BL”.

11.2.6 Evaluation Metrics

We use as our main metric the F -measure, along with the CMLt and AMLt metrics.
For the computational cost of the models, we simply report the time they take to
train by using in-build timing functions in the code.

11.2.7 Performance of Models

Figure 11.1 shows the F -measure results for the TCN models trained for samba and
candombe with different amounts of data using each of the training strategies, as
well as BayesBeat, computed as the bootstrapped results of ten experiments (95%
confidence) with different random seeds for each combination of model and data
amount.

A first striking observation is that, for both beats and downbeats, the perfor-
mance curve for most models has a small positive slope after a budget of 3 min,
which means it is indeed possible to nearly achieve best model performance (which
would require training with the complete dataset, represented by “all” in the figure)
just by training with few samples. This is particularly true for the estimation of
beat, for which models rapidly reach F -measure scores above 80% with 1.5 min of
data in both Candombe and BRID for all configurations. This is an interesting
result, meaning that not much gain in performance is expected with an increase in
the number of annotations for these datasets. Therefore, an end-user could annotate
about a minute of data and possibly obtain decent performance figures. The same
holds for downbeat in the best performing models for Candombe, but not in BRID.
For the latter, there is a clear gain when adding more data, which has to do with
the differences between candombe and samba, as discussed in the following.

Differences Between Candombe and Samba

Observing the results in Figure 11.1, we see that the models tend to require more
data to achieve better performance on BRID than on Candombe. Our first intuition
behind this result is that, as samba has a greater combination of timbres and pitches
than candombe, the decision about which snippets to annotate (i.e., the sampling)
may be more critical for BRID than for Candombe. For instance, it might require
ensuring the representation of timbre.
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Figure 11.1: Performance of different model and training configurations. Label “all”
indicates fully-annotated dataset.

Best Model Configuration

The best performing configuration for beat and downbeat tracking in both music
traditions is the fine-tuned TCN model with data augmentation (FTA). Particularly,
data augmentation produced significant improvement in performance for downbeat
tracking in BRID. Interestingly, for the adaptive setting concerned in this section,
the BayesBeat baseline is competitive with the TCN model, especially considering
the computational cost (see Section 11.2.8).

Comparison with Off-the-Shelf Benchmarks

Table 11.1 shows the performance of the TCN and the BayesBeat baseline for dif-
ferent data subsets, namely the two smallest and the largest subsets, and the full
dataset. It also shows the performance of the three off-the-shelf baselines presented
in Section 11.2.5. In alignment with other works [63] and our previous findings
(Chapter 10), the models trained with Western music (TCN-BL and BO2) perform
very poorly in Candombe, and reach only about 66% beat F -measure in BRID,
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Table 11.1: Mean F -measure (F ) and continuity scores (CMLt = C, AMLt = A) in beat and downbeat tracking tasks across both genres.

Candombe BRID

Model Beat Downbeat Beat Downbeat

C (%) A (%) F (%) C (%) A (%) F (%) C (%) A (%) F (%) C (%) A (%) F (%)

BayesBeat (0.67) 95.0 95.0 96.1 82.2 92.0 81.7 70.5 74.2 78.8 57.4 72.9 57.9
BayesBeat (1.50) 95.3 95.4 96.6 93.8 94.8 93.5 82.3 85.2 88.7 76.8 83.9 77.9
BayesBeat (12.33) 99.6 99.6 99.6 99.8 99.8 99.4 93.5 96.0 96.7 92.5 94.9 92.9
BayesBeat (all) 98.6 98.6 98.9 98.8 98.8 98.4 94.0 96.0 96.9 92.0 95.3 92.5

TCN-FSA (0.67) 88.2 89.1 90.2 56.5 70.4 61.6 74.4 78.2 79.9 24.3 60.1 41.8
TCN-FSA (1.50) 94.3 95.1 94.7 71.9 81.5 75.3 82.0 86.7 86.8 58.9 77.9 70.2
TCN-FSA (12.33) 97.9 98.0 98.4 95.8 98.0 95.4 94.3 96.3 97.0 92.8 97.5 95.7
TCN-FSA (all) 98.4 98.4 98.6 97.4 98.4 97.5 96.0 98.6 98.2 95.0 96.6 95.9

TCN-FTA (0.67) 96.7 96.7 97.3 81.8 89.7 82.1 85.3 93.0 91.7 28.5 81.5 60.9
TCN-FTA (1.50) 98.0 98.0 98.1 94.1 97.9 92.9 89.7 95.3 94.8 52.2 89.2 75.8
TCN-FTA (12.33) 99.4 99.4 99.4 96.5 99.5 96.1 95.8 97.8 98.1 92.0 97.2 95.0
TCN-FTA (all) 99.4 99.4 99.4 97.4 99.5 97.1 96.3 98.4 98.2 96.1 97.7 96.0

TCN-BL 11.1 18.7 15.9 14.9 31.9 4.1 46.5 65.6 60.0 5.9 52.5 9.6
ELL 34.8 38.1 38.0 - - - 82.3 87.6 87.1 - - -
BO2 11.7 14.4 11.5 26.7 40.3 0.5 46.9 76.0 66.4 5.2 66.6 2.0
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both significantly lower than the typical performance of the same models in West-
ern music datasets. ELL scores considerably better in BRID, comparably to the
results in the previous chapter, but is not as consistent in Candombe. This shows
the necessity of adapting meter tracking models to these music genres, as even the
models trained with the smallest subsets of data (0.67 and 1.5 min) outperform the
baselines.

11.2.8 How Much Time do the Models Take to Train?

Our analysis is motivated by the adaptation of meter tracking models in real-world
use cases. Therefore, it would be interesting if this adaptation could be done quickly,
i.e., consistently with moderate computational demands. In this regard, we estimate
the time each model configuration takes in training, and contrast it with the Bayes-
Beat baseline. Figure 11.2 shows how the train duration varies with the size of the
training set for BRID (very similar results were obtained for Candombe). To show-
case the accessibility of our method for researchers and practitioners without access
to high-performance computing resources, all experiments were strictly conducted
using the CPU (Intel Xeon CPU E5-2403 @ 1.80GHz).

The TCN has a minimum training time of about 100 s for the smallest subset.
Among the TCN configurations, the most expensive ones use data augmentation.
This makes sense given that more data is used for training. As expected, the Bayes-
Beat trains significantly faster than the TCN, taking on average 1.62 s to train with
0.67 min of data, and being in the order of 50 to 350 times faster than the TCN
when data augmentation is not used. This big gap in computing time, together
with the results of Figure 11.1 and Table 11.1, makes BayesBeat an overall good
alternative for adapting meter tracking to these Latin American music. We observe
that all configurations take about the same inference time, around 20 s for the full
test set.
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Figure 11.2: Training time for the different amounts of data.
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11.2.9 When Can We Train With Small Data?

Our intuition is that the more variability in the data (in terms of meters, rhythmic
patterns, and instrumentation), the harder it is for a model to learn with small data.
This aligns with our experiments on the adaptability of these methods to samba
and candombe. To have a more quantitative understanding of this, we derived a
bar profile for each type of music. First, we extracted a feature map from each
excerpt using the beat/downbeat annotations to time-quantize a locally normalized
onset strength function [334] at the tatum scale — this was done with the carat
toolbox [335] considering the tatum duration as one quarter of the time-span between
successive beats. Then, for each dataset, we summarize these feature maps across
time using the downbeat annotations, which results in a distribution of feature values
per tatum in a bar (16 tatums in 4

4 meter, 8 tatums in 2
4). To allow an analysis of

these profiles in different regions of the spectrum, we compute the onset strength
in two frequency bands (from 20 to 200 Hz; and above 200 Hz). We present these
distributions as violin plots in Figure 11.3 for the Candombe and BRID datasets.
To enrich our discussion and prepare the following section, we have also added these
bar-wrapped tatum-quantized onset strength distributions for tracks in 4

4 meter of
the Ballroom dataset.

We verify in this figure that, for some tatums, strength distributions are concen-
trated around 1 or 0, indicating a strong characteristic accent or lack thereof at that
point of the bar, respectively. High variance, in its turn, means “fuzzyness” in the
rhythmic pattern, which could justify the difficulty in learning that rhythm with a
meter tracking model, specially under small data constraints.

Samba, which has eight sixteenth-note tatums per bar at a 2
4 meter, is known for

having a strong metrical accent at beat “2”, which we may readily identify in the
low-frequency channel for BRID at tatum 5. The first beat (tatum 1) of this profile
also has a high median value but is less “deterministic” due to its high variance. In
turn, the low-frequency profile of Candombe displays a high-variance downbeat, no
accent on beat “2” (tatum 5), and strong accents on beats “3” and “4” (tatums 9
and 13), but a strong contrametric accent at tatum 4. These characteristics could
help explain why the off-the-shelf beat tracking models, which expect beats to be
accentuated, perform worse on Candombe. Looking back at the BRID profile, we
see that tatums 2 and 3 show small standard deviations and correspond to “off”
tatums; together with beat “2”, they make three out of eight tatums that exhibit
very small variance in the low channel. In the Candombe profile, besides tatum
4, tatums 2, 3, 7, 8, 9, 14, and 16 also present small variance. This abundance of
“anchor” points could justify why adaptation in candombe comes with little data.

In Ballroom, we clearly see that beats are distinct for having high strength and
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Figure 11.3: Tatum strength distribution per frequency band for Ballroom (just 4/4
tracks), Candombe, and BRID.
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low variance in both channels, whereas the rest of the tatums show no clear trend.
Its fewer reference points (only 4 out of 16) could however pose a challenge for
learning models. Furthermore, beat patterns (the combination of the four tatums
in-between beats, including the beat itself) are also indistinguishable from one an-
other, which could aggravate this matter specifically for downbeat tracking. To
test these observations, we trained a set of models from scratch for Ballroom us-
ing the same methodology used for BRID and Candombe. Results are depicted in
Figure 11.4. The performance results correlate with the intuition that Ballroom is
a more challenging dataset, particularly for beat tracking, given that it comprises
multiple genres, and also that for learning beat and downbeat more data would be
needed.
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Figure 11.4: TCN-FS performance in Ballroom.

11.3 Selective Annotation of Few Data

After verifying the validity of our approach to training meter tracking models with
limited data, specifically in music datasets with a high degree of self-similarity (ho-
mogeneous), we now address the issue of data selection.

We present in this section an offline data-driven framework that allows the se-
lection of informative training data for state-of-the-art beat tracking models, under
a constrained annotation budget and given this homogeneity condition. At the first
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step, we extract a rhythmically meaningful feature from each track of the dataset.
The second step consists of selecting, with an appropriate sampling technique, the
portion of the dataset that should be annotated. The pipeline resumes and the
annotated samples are used to train the model so that beats can be estimated for
the remaining unannotated tracks.

Our experiments investigate the importance of selection in low-data scenarios;
explore the suitability of two rhythmic descriptors; and evaluate the performance
of a TCN-based state-of-the-art beat tracking model trained with data selected
according to four different sampling schemes as well as a random selection baseline.
To validate our methodology, we perform the data selection on BRID and Candombe,
and compare the results with those of the Ballroom dataset. We also investigate
the different rhythmic properties of each dataset and dive deeper into the meaning
of “homogeneity”.

11.3.1 Data Selection Methodology

Our data selection pipeline is a two-step process. First, by using a rhythmic de-
scriptor, we represent each track i in a dataset of size N as a vector xi. At this
stage, we use two feature representations — STM and OPH — exactly as described
in Chapter 8. Notice that the former is a tempo-robust descriptor, while the latter
is sensitive to tempo variations. We investigate both features following the conclu-
sions of HOLZAPFEL et al. [224] that, depending on the tempo distribution of the
dataset, it might be better to use tempo-robust or tempo-sensitive features.

At the second step, given a user-defined annotation budget, we perform sampling
in the feature space using selection techniques based on representativeness and di-
versity. The examples selected by the algorithm are then annotated by the user, and
form the training set for a beat tracking model. This is summarized in Figure 11.5.

We assume that, under annotation budget constraints, if we wish to achieve a
good1 beat tracking performance for a given dataset represented by a set of points
X = {xi}Ni=1 in the rhythmic feature space, the most informative training samples
can be retrieved by an appropriate model of the input distribution. Therefore, our
objective is to select samples to be annotated and serve as training data for a state-
of-the-art beat tracking model. The cardinality of the resulting labeled set L is the
labeling budget M , and all remaining samples in the unlabeled set U serve as test
set for the model. The selected data have to be informative in the sense that, by
training the tracking model on the examples in L, we should achieve good evaluation
results over tracks in U . We will abuse our notation and refer to points in X , L,
and U as both the tracks and their corresponding features.

1In the rest of this chapter, “good” will mostly be used in place of “better than the performance
of an equivalent system trained on randomly selected data”.
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Figure 11.5: Construction of a set of annotated samples.

11.3.2 Selection Schemes

We borrow some selective annotation techniques from [331] and [325], which are
presented below.

Fast Vote-k (VTK)

One of the selection techniques we use is the graph-based selective annotation
method, proposed by SU et al. [331], which determines a set of simultaneously
diverse and representative examples given the annotation budget. First, a directed
graph G = (V,E) is created where each feature vector in X is a vertex in V . Edges
E are defined from each vertex to its k nearest neighboring vertices in the embed-
ding space, according to the cosine similarity. We start with L = ∅ and U = X .
Then, at every iteration, unlabeled vertices u ∈ U receive a score

ς(u) =
∑

v∈{v|(v,u)∈E,v∈U}

w(v), (11.1)

where

w(v) = ρ−|{ℓ∈L|(v,ℓ)∈E}|, (11.2)
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with ρ > 1 and | · | the cardinality of the set. The score ς(u) depends on the
vertices v from which u can be reached. Each v contributes with its weight, w(v),
which is small for v close to vertices already in L. These two properties account for
representativeness and diversity in the selected set, respectively. At every iteration,
a vertex

u∗ = argmax
u∈U

ς(u) (11.3)

is moved from U to L, until |L| = M . At the first iteration, the algorithm se-
lects the most reachable vertex. We experimented with a few values for k ∈
{3, 5, 7, 10, 15, 20, 25, 30}, but ended up choosing k = 5 as it provided good results
across all budgets and datasets.

Diversity (DIV)

Another technique we use in this work focuses on maximizing the diversity of the
labeled set. Following SU et al. [331], beginning with a random sample, at every
iteration t ≤M the furthest sample from those already in L is selected.

Maximum Facility Location (MFL)

We also employ a representativeness selection based on an algorithm by LIN and
BILMES [336] adapted for the facility location problem [331]. This greedy algorithm
optimizes the representativeness of selected samples by measuring the pairwise co-
sine similarity between embeddings. At every iteration t ≤ M , it selects the most
representative example u∗ as

u∗ = argmax
u∈U

N∑
j=1

max{0, scos(xj,u)− ρj}, (11.4)

where ρj is the maximum similarity of xj to the selected samples. At every step, ρj,
which starts as −1∀j, is updated to max{ρj, scos(xj,u

∗)}.

k-Medoids (MED)

We include a data selection scheme inspired by the work of SHUYANG et al. [325].
We first cluster data with a k-medoids algorithm. Since the medoids returned by
this clustering algorithm are the center points that represent local distributions and,
at the same time, reside in distinct places of the feature space, we set k = M and
directly use the medoids as the set of selected samples L. As in the case of vote-
k, this selection scheme aims to provide simultaneously diverse and representative
examples for training.
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Random (RND)

All selection schemes are compared to a random baseline: a subset of size M is
randomly selected from the dataset to make up L.

By leveraging representativeness and diversity, all of the presented selection
schemes (except random sampling) are indirectly conditioned by the input data
distribution. Since the musical properties (e.g., global tempo, rhythmic patterns,
complexity, density) pertinent to our task and features vary differently according to
genre and performer, we expect that each distinct dataset might benefit from a dif-
ferent sampling method. In the case of a highly homogeneous dataset, it is perhaps
better to annotate a set of more diverse examples. For datasets with increasingly
more heterogeneous data distributions, representativeness should be weighted more.
Moreover, if the dataset is unimodal and highly homogeneous (e.g., composed of
a single music genre and displaying little variance in its rhythmic properties), we
would expect to observe little improvement in using smart selection schemes over
training on randomly selected data. For less homogeneous (still unimodal) datasets,
a proper smart selection should be able to systematically provide better training
examples for beat tracking. Finally, in a dataset containing different genres with
particular characteristics: (1) a single selection scheme might not be effective for
all genres; (2) on average, random sampling will select more examples from the
most populated genres, possibly overlooking the less populated ones. In contrast,
when genres have the same number of tracks, due to (1) we should not expect large
improvements in employing data selection methods.

11.3.3 Training Strategy

In all experiments, we train the TCN model from scratch with the labeled set L
output by the data selection stage. We stand on the idea, verified in Section 11.2,
that one can overfit a neural network model for a specific musical genre by training
it with few samples, provided the dataset is sufficiently homogeneous in terms of
instrumentation, rhythmic patterns, and tempo. Unless otherwise specified, we
evaluate the results over the remaining data (U). This matches our real-world
application, where an end user would employ a small annotation effort (with a
budget of M tracks) and train a model on the labeled data hoping to obtain good
beat time estimates for the remaining unlabeled tracks. The annotation step by a
human-user is emulated by retrieving the corresponding ground truth annotations.

Previously in Section 11.2 (following [17]), we extracted a single 10-second seg-
ment from each musical sample and split it into two disjoint 5-second regions, the
first reserved for training and the second for validation. This allowed for more con-
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trol when tuning the model’s hyperparameters, despite sacrificing half the available
information. We now assume a slightly different approach: we split each audio track
from L in half and use the first and second halves as training and validation, re-
spectively; test data are not cut. We use the same training parameters as seen in
Section 11.2.4 for the FS training scheme.

11.3.4 Dataset Homogeneity

Preceding our experiments, we investigate tempo and rhythmic variability of tracks
from each dataset.

Figure 11.6 presents the datasets’ global (per-track average) tempo distributions
smoothed by a Gaussian kernel density estimation technique. Candombe exhibits
a slim distribution, averaging 132 bpm (8 bpm standard deviation), while BRID
is approximately bimodal, whose peaks at 95 and 130 bpm can be respectively as-
sociated with samba/partido-alto and samba de enredo subgenres. Unsurprisingly,
Ballroom’s multi-genre characteristic is disclosed by multiple modes; individual dis-
tributions are described by [76].
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Figure 11.6: Global tempo distributions.

A representation of the rhythmic patterns across all datasets is displayed in
Figure 11.7. The STM feature was obtained from each track following the procedure
described in Section 8.3. Then, manifold learning with UMAP [227] was used to
reduce the feature space dimension from 400 to 2 using the cosine distance as a
metric. UMAP diagnoses that Ballroom patterns mostly lie in regions whose local
dimension is estimated as high, which means they are less accurately represented in
this embedding, and thus display greater rhythmic variation than can be represented
in two dimensions. Candombe has a small set of outliers but is mostly represented in
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a compact structure, whereas BRID, despite having fewer examples, is more spread
out in the embedding space. Interestingly, the subset of Ballroom located near BRID
and Candombe is mostly composed of tracks labeled as samba, with few examples
of jive.

Ballroom

BRID

Candombe

Figure 11.7: STM features embedded by UMAP (cosine metric, n-neighbors = 15,
min-dist = 0.1).

11.3.5 State-of-the-Art Results Without Selection

To contextualize the outcomes of our experiments, we present in Table 11.2 the beat
tracking performances on BRID and Candombe of models using the architecture
of [275] under three different training schemes:

• “Pre-trained”: results of the TCN-BL model from Section 11.2.5 — network
trained on 38 h of Western music material from six datasets (including Ball-
room), and tested on the entire BRID and Candombe datasets. Results were
extracted from Table 11.1.

• “Fine-tuned”: the “pre-trained” model that we fine-tuned for each dataset
with 3 min of randomly selected data (tracks were split in half for training
and validation), tested on the remaining data. We used 10 random selections,
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Table 11.2: Performance figures of the state of the art (with random data selection):
mean (standard deviation) in %.

Beat F -measure (%)

Model BRID Candombe

Pre-trained (TCN-BL) 60.0 15.9

Fine-tuned (3 min) 93.4 (3.4) 98.2 (1.1)
Trained from scratch (all) 98.9 (1.2) 99.8 (0.3)

30 training seeds, and the fine-tuning parameters as seen in Section 11.2.4 for
the FT training scheme.

• “Trained from scratch”: the TCN model initialized randomly and trained
for each dataset on full 30-second tracks, using an eight-fold cross-validation
scheme. One fold was used for testing, one for validation, and six for train-
ing. The training was repeated until all folds had been used for testing. The
training parameters are the same as the main model and the FS training of
Section 11.2.4.

11.3.6 Experiment 1: Does Sampling Matter?

In this first experiment, we assess how beat tracking performance is affected by
random sampling of the training sets in low-data scenarios. Depending on the
size of the dataset and the annotation budget, it might not be feasible to explore
all possible training sets combinations. We choose to focus on the BRID dataset,
which has the smallest number of tracks of all datasets, so that we can be able
to survey a larger proportion of all random combinations. In this sense, we set
the annotation budget to M = 4 tracks, which yields around 3 million possible
combinations of four distinct elements out of 93 total tracks. Then, we select 1000

of these combinations with an in-house algorithm that forces all tracks in the dataset
to be about equally represented overall. We use each unique combination of four
tracks (about 40 s of annotations) to train/validate the TCN model, which we
evaluate over the complementary test set of 89 files. We repeat each training 30
times with different randomly initialized weights and seeds.

Figure 11.8 shows the averages and standard deviations for the performances of
all trained models in ascending order of mean beat F -measure. We note that mean
beat F -measures range from 46.5% to 90.1% depending on the training set, with the
5th and 95th percentiles corresponding to 61.0% and 85.4%. A mean F -measure of
74.4% is achieved on average.
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Figure 11.8: Random data selections on the BRID dataset ordered by mean F -
measure, showing standard deviations (shaded area).

This experiment shows the importance of adequate data selection for the TCN
model when dealing with low-data training scenarios. With an annotation bud-
get of M = 4 tracks, we observe a considerable improvement of about 16 percent
points over the average case and 44 percent points over the worst combination when
estimating beats on the BRID dataset.

11.3.7 Experiment 2: Feature Structure

In this second experiment, we investigate the local structure of the feature space
generated by each rhythm description feature (STM and OPH) and its capability
of conveying meaning for the data selection scheme. For this purpose, considering
the distribution of a dataset in the feature space, we analyze the performance of
the TCN model when trained with points sampled from different regions around
single test tracks. We hypothesize that regions closer to the test sample provide
better training examples, thus yielding good beat tracking results. Again we set the
annotation budget to M = 4, but this time we experiment with all datasets.

The regions are limited by concentric hyperspheres centered at each test sample,
whose radii depend on the distribution of the dataset in the feature space. If Q1,
Q2, and Q3 are the first, second, and third quartiles of the pairwise feature distances
of points in the whole dataset, respectively, we define Rj

1, Rj
2, and Rj

3, the regions
in increasing distance from a given test file, xj, as

Rj
1 :=

{
xi

∣∣ dist(xi,xj) ≤ Q1

}
(11.5)

Rj
2 :=

{
xi

∣∣Q1 < dist(xi,xj) ≤ Q2

}
(11.6)

Rj
3 :=

{
xi

∣∣Q2 < dist(xi,xj) ≤ Q3

}
, (11.7)

where i ̸= j. We also define the set of remaining points, which lie outside the largest
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hypersphere, as

Rj
4 :=

{
xi

∣∣ dist(xi,xj) > Q3

}
. (11.8)

Figure 11.9 exemplifies the computation of these regions from a normal data distri-
bution in a two-dimensional space using the Euclidean distance. In practice, we use
the cosine distance, i.e.,

dist(xi,xj) = 1− scos(xi,xj). (11.9)

Once all regions are determined for a reference track, xj, we can compare how
well models trained and validated on sets of randomly selected points from each
region perform on the test set U = {xj}. We repeat this process for all points in the
dataset that contain at least M = 4 examples in each of its regions.2 This way, we
end up training four different models per reference sample. Once again, we repeat
the training process 30 times, with different seeds, keeping the same training sets.

The results of this experiment are presented in Figure 11.10. We show the average
F -measure gain ∆F (Ri) across all models when using points from each region (R1,
R2, R3) over using points from the farthest region (R4). Mathematically, if F (Rj

i )

is the F -measure of a model trained on points from the region Rj
i around sample

xj, j ∈ {1, . . . , L}, then

∆F (Ri) =
1

L

∑
j

∆F (Rj
i ), (11.10)

where ∆F (Rj
i ) = F (Rj

i )−F (Rj
4), for i ∈ {1, 2, 3}. For all datasets, we observe that

the best models are trained on points from the closest regions (R1), independently
of the feature. We may also compare the gain from using R1 over R2, for example.
Using a set of immediate neighbors leads to significant gains in BRID, as shown by
the substantial difference between results in the two regions. In Ballroom this gain
is much smaller, and in Candombe it is almost negligible. It is worth noting that
for Candombe, the absolute beat F -measure values are 91.7% and 96.4% for STM
and OPH, respectively, in R2. These compare to 62.6% and 65.3%, respectively, for
the same region in BRID. This means that there is more room for improvement in
BRID than in Candombe. Without forgetting that the definition of these regions
depends on the data distribution of each dataset, we can say that data selection
must be more important in the former than in the latter.

We have shown with this experiment that one can train beat tracking models
that are better able to generalize to recordings in local neighborhoods defined in the

2If a data point does not meet this criterion, it is disregarded in this analysis.
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Figure 11.10: Average beat F -measure gains (95% confidence interval) w.r.t. sam-
pling from R4.

space of the rhythmic features. This is a promising result that suggests that these
features can be employed to retrieve informative samples.

11.3.8 Experiment 3: Sampling Strategies

In this experiment, we examine all setups of rhythm description and sample selec-
tion techniques across different annotation budgets; and evaluate the beat tracking
performance of a TCN model trained on the selected data and tested on the re-
mainder of each dataset. This experiment represents the use case of our proposal.
As we mentioned before, the main difference to the real-world scenario is that we
use ground-truth annotations instead of asking for a human to provide labels for L.
We wish to investigate how much a sampling strategy can improve tracking perfor-
mance against random sampling. Naturally, this depends on the properties (e.g.,
tempo and rhythm pattern distributions) of each dataset as well as on the specified
annotation budget.

For BRID and Candombe, we vary the annotation budget from 4 to 14 samples
(in steps of 2), i.e., about 2–7 min of annotations. Since Ballroom has many more
tracks (about 7.5 and 2.5 times more than BRID and Candombe, respectively) and
genres, we use larger budgets for this dataset, M = {10, 16, 22, 28, 34, 40} (∼5–20
min), i.e., around 2.5 times more data. As in all experiments, training files are split
in half for training and validation purposes. Regarding the selective sampling tech-
niques, we observe that MFL and VTK are deterministic and as such always provide
the same labeling sets. DIV and MED depend on a random initialization. How-
ever, we noticed that a considerable number of files (usually M − 2 or M − 1) were
repeatedly selected over multiple executions of the DIV sampling process, which
means that, especially for larger budgets, it is nearly deterministic. In the case of
MED, smart initialization of cluster centers with a k-means++ algorithm [337] and
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multiple runs were used to obtain a more robust clustering. Once these sampling
techniques have provided consistent results in terms of the selection, we use them to
select one set of training examples for each setup, which is composed of dataset, la-
beling budget, and feature representation. Finally, for the random baselines (RND),
10 random selections of M files were carried through for each dataset–budget pair;
these are used to indicate the expected performance of the TCN model. For each
selected data, we repeat the training process 30 times with different seeds.

Beat tracking performance (means and standard deviations) is summarized in
Table 11.3. Looking at these results, we notice that, in most cases, selective sam-
pling techniques are consistently better than random sampling across all budgets,
although the best feature–selection pair greatly depends on the dataset and training
size. In particular, STM+MFL stands out as the best setup for Ballroom, closely fol-
lowed by STM+MED and OPH+MED, showing gains of up to 5.2 percentage points
(M = 16) over the random baseline. In extremely low-data scenarios, OPH+MED
produces the best results for BRID, with an 18.3 points increase over random at
the smallest budget, although STM+MED and OPH+MFL provide good results
as well. In both Ballroom and BRID, diversity sampling gives worse results than
random for STM (−4 percent points on average). DIV is also worse than RND
with OPH in Ballroom (almost −5 points on average), and inconsistent in BRID
when paired with the same feature representation. Finally, the RND baseline perfor-
mance in Candombe is already very high (94.0–96.8%), which leaves little room for
improvement in this case. However, except for the two smallest budgets, OPH+DIV
provides moderate gains for this dataset (2.3 points average).

The general conclusion is that using sampling techniques can provide better
training examples for the TCN model, since most feature–selection setups are shown
to outperform the random baseline. This performance gain is typically larger the
smaller the annotation budget. We also note that a smart data selection can reduce
the standard deviation of the results, leading to more stable solutions than those
obtained through random selection. Unsurprisingly, since there are many possible
dataset configurations (e.g., highly homogeneous, highly heterogeneous), there is no
optimal setup. We discuss a set of recommendations based on our results in the
following.

11.3.9 Discussion

In this section, we have studied the influence of data selection on the effectiveness of
beat tracking systems that are trained using a limited amount of data. We found out
that selective sampling techniques, which take into account the data distribution,
can significantly improve beat tracking performance compared to a random selection
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Table 11.3: Performances of the different selective sampling setups: mean value (standard deviation) in %. In boldface, we highlight the
best-performing selective sampling technique given M (budget) and feature, for each dataset; in gray, we highlight the best-performing
setup in each dataset–budget pair. Sampling techniques: diversity (DIV), k-medoids (MED), maximum facility location (MFL), vote-k
(VTK), random (RND).

Beat F -measure (%)

Onset patterns histogram (OPH) Scale transform magnitudes (STM)
RND

Dataset M DIV MED MFL VTK DIV MED MFL VTK

Ballroom 10 69.5(2.3) 77.2(2.0) 76.7(2.5) 74.8(3.0) 66.0(2.9) 77.4(2.0) 75.5(1.9) 75.2(1.8) 72.5(4.5)
16 72.3(2.7) 81.1(1.1) 78.4(2.3) 77.9(3.6) 76.7(1.9) 80.4(1.1) 82.1(1.1) 78.8(0.9) 76.9(3.2)
22 74.1(1.5) 82.2(1.1) 82.0(1.2) 79.7(1.0) 79.8(2.3) 84.1(0.7) 85.4(0.6) 81.3(1.4) 81.1(2.8)
28 79.0(1.5) 83.8(0.7) 83.0(1.2) 81.0(0.9) 77.8(2.4) 84.7(0.8) 85.9(0.5) 83.2(0.8) 83.5(1.5)
34 79.8(1.0) 85.6(0.8) 84.3(0.9) 83.0(1.2) 78.1(2.0) 85.7(0.8) 85.8(0.6) 85.3(0.8) 84.6(1.4)
40 81.1(1.4) 85.2(0.9) 84.9(1.0) 83.5(0.9) 79.3(1.8) 84.8(1.0) 85.2(1.3) 85.2(0.5) 85.2(1.4)

BRID 4 83.9(4.4) 91.0(2.2) 88.7(3.8) 81.8(3.3) 66.7(8.2) 86.0(2.7) 76.3(9.5) 75.0(4.1) 72.7(8.4)
6 75.9(5.3) 90.9(2.8) 89.2(4.2) 86.7(1.7) 72.5(4.9) 88.2(5.7) 82.9(3.4) 84.2(4.6) 76.3(8.3)
8 81.4(5.0) 89.9(3.8) 89.6(3.0) 90.6(2.1) 87.4(3.1) 82.8(4.3) 89.4(2.4) 91.2(1.9) 78.2(8.4)

10 84.3(4.6) 93.7(1.9) 94.9(1.4) 89.1(1.2) 79.6(3.7) 91.3(2.5) 89.2(2.6) 94.3(1.7) 82.7(8.7)
12 90.5(1.7) 93.3(1.7) 94.0(6.0) 91.0(1.7) 80.7(4.7) 89.6(4.8) 90.7(2.6) 94.1(1.5) 85.5(6.9)
14 87.9(2.3) 92.7(2.0) 94.1(1.9) 91.2(1.4) 80.7(3.3) 91.4(3.2) 91.5(2.2) 95.8(1.1) 89.3(4.7)

Candombe 4 81.2(7.4) 91.6(2.5) 82.8(3.7) 90.3(2.5) 89.5(2.8) 90.5(4.5) 94.9(0.8) 93.7(1.1) 94.0(3.7)
6 83.7(13.7) 95.2(2.6) 91.7(1.7) 93.2(1.8) 90.3(2.4) 96.4(0.6) 95.1(0.7) 95.7(1.0) 95.0(1.8)
8 97.0(1.3) 96.1(1.7) 92.5(1.9) 92.5(1.0) 94.6(2.6) 96.0(0.7) 95.2(0.8) 96.0(0.7) 95.2(1.5)

10 98.2(1.2) 96.5(1.2) 94.4(1.5) 93.0(0.7) 96.8(0.7) 96.2(0.6) 96.3(0.5) 96.0(0.8) 95.9(1.7)
12 99.0(0.3) 95.4(2.6) 96.8(1.0) 93.8(0.9) 98.2(0.7) 96.1(0.6) 96.3(0.6) 96.1(0.6) 96.5(1.5)
14 99.2(0.2) 98.8(0.1) 97.1(1.0) 93.8(0.5) 98.4(0.4) 96.1(0.6) 96.2(0.5) 96.1(0.5) 96.8(1.5)
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baseline, while also reducing its variance. This improvement was observed even when
working with small training sets. The baseline results are consistent with those of
the previous section, which used the same datasets but did not employ any specific
selection scheme.

We have noticed that, in general, when the size of the training set is smaller,
performance improvements tend to be more significant. This is mainly due to two
reasons. Firstly, it becomes more challenging to improve performance when the
results are already very good, which is usually the case with larger annotation bud-
gets. Secondly, with less data, each selected sample contributes proportionally more
to what the model sees during training, thus having a greater impact on beat esti-
mation, e.g., changing a single sample in a set of four is more critical than changing
it in a set of 20 samples.

Regarding feature representations, it is currently unclear which is preferable, as
both OPH and STM allowed for good training samples to be selected. Initially,
we had a suspicion that OPHs, which encode tempo information, would produce
better results than STM in general, given that the TCN model is sensitive to the
tempo distribution of the dataset [275]. However, it should be noted that, at the
post-processing DBN stage, tempo is dissociated from the rhythmic pattern and
separately encoded in the state variable. Additionally, the difference in dimension-
ality between the two features cannot be ignored. Further investigation is needed
to determine which representation is more effective.

This study has also examined the results of sample selection on different datasets.
Although our work primarily focuses on single-genre datasets from Afro-rooted tra-
ditions, we highlight the moderate performance gains observed in Ballroom, which
is highly diverse with various genres, meters, and patterns (see Section 11.3.4). We
then turn our attention to the two main datasets, Candombe and BRID. Candombe,
which displays the smallest tempo range and little pattern variability, benefited less
from tailored sets of training examples. However, we note that models trained on
random selections already accurately track Candombe excerpts, which means there
is less room for improvement. On the other hand, BRID, which is less homoge-
neous, seemed to profit the most from sample selection. It is yet to be determined
how exactly these two characteristics — tempo and rhythm — affect the impact of
selection in each dataset, and whether general rules could be established to inform
when selective sampling is most beneficial. We underscore that OPH+DIV (which
maximizes diversity) and STM+MFL (which maximizes representativeness) were
the best-performing setups for Candombe (most homogeneous) and Ballroom (most
heterogeneous), respectively. For BRID, on the other hand, MED and VTK — both
making a compromise between diversity and representativeness — were the better
sampling schemes.
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Finally, it is worth comparing our results with the state-of-the-art procedures
discussed in Section 11.3.5. First, we observe that our results consolidate the idea of
adapting to challenging music already expressed by [17, 290]. We saw in Experiment
1, under a restrictive scenario (2 min of training data), that a large majority of
the adapted models has greatly surpassed the “pre-trained” model (Table 11.2),
which was trained on hours of data from standard datasets. This improvement
was more evident when data selection was carefully planned (Table 11.3). Our
selective sampling strategy has proven to be much more effective when compared to
the random baseline, as we have managed to achieve results that are very close to
the “trained from scratch” model (which we consider a “full-dataset” performance).
For example, in BRID, with the same 2 min of data, there is only a 7.9 percent
difference, while RND is behind by 26.2 points. It is also worth mentioning that our
selective sampling approach is comparable to transfer-learning-based procedures.
With a budget of M = 6 samples (3 min of annotations), we have obtained results
that are on par with the “fine-tuned” models for Candombe and BRID, with only a
slight difference of −1.8 and −2.5 percent points, respectively, considering the best
feature–selection pairs, but with lower variability. We must note that our approach
is not only affordable but should be considered more general, as pre-trained networks
may have been trained on data that is not relevant to the object of study, which
could compromise the stability of the results.
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Chapter 12

Contributions to Microtiming
Analysis

We have discussed in Chapter 9 that many music styles related to African or Afro-
diasporic practices contain an element of rhythmic expression found in a very fine
timescale. In particular, for Afro-Brazilian dance music, this fine structure is com-
posed by deviations from the nominal grid at a subtactus level, i.e., the sixteenth-
note level. By definition, prior knowledge of the underlying isochronous subdivisions
is needed to capture the actual non-isochronous duration patterns. Some works that
were reviewed in Section 9.2 quantize the positions in-between successive beats or
downbeats with a fixed number of points to generate this reference [300]. Others
measure the distances (normalized by the IBI) between each individual pulse and
the preceding beat or downbeat [38, 201, 203, 301]. Others still investigate micro-
timing as patterns of duration, measuring the length of each individual note relative
to the IBI [297].

In this chapter, we provide a few contributions to the analysis of microtiming
patterns in samba. First, we conduct a reference investigation, using annotations,
to verify prior musicological studies [296, 297]. Next, we present a novel model,
inspired by the bar-pointer model, that allows simultaneously tracking beats and
microtiming. This is an appropriate approach given the natural relation between
their corresponding timescales (tactus and tatum). This latter study was originally
presented in [21], but it is expanded here: besides the exact inference approach,
we also present an approximate inference approach that exploit a sequential Monte
Carlo method (particle filter) to reduce the computational cost and the constraints
upon the inference. We take a non-traditional approach to alleviate certain limita-
tions from the original proposal.
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12.1 Characterization of Microtiming in Tam-
borim Carreteiro

In this section, we perform a preliminary investigation of microtiming patterns in
selected tracks from BRID. To simplify our analysis, we consider a set of tamborim
solos playing the typical carreteiro pattern (see Figure 2.19a) of samba-enredo. Our
subset is composed of the seven tracks found in region 2 of Figure 8.7, namely:
[0131], [0132], and [0136], by musician 1 (S1); [0216] and [0218], by musician
2 (S2); [0304] and [0306], by musician 3 (S3). With all these renditions, we have
a large number of examples of the same pattern, from the same instrument, where
all tatums are articulated (i.e., there are always four fast pulses to every beat), and
from which we can extract the microtiming information. In total, these tracks add
up to 396 beats and 1584 onsets.

As in [14, 38, 201, 203, 301], we measure the position of each tatum with respect
to the preceding beat. If we call ∆i the distance between tatum i and its previous
beat, we can define our normalized microtiming feature as the normalized tatum
position

mi =
∆i

IBI
, (12.1)

for i = {1, 2, 3, 4}, where IBI is the local inter-beat interval (the distance between
the preceding and succeeding beats). Since, in our case, the position preceding
beat is equivalent to that of the first tatum (see Section 3.1.3), it is evident that
∆1 = 0. Note however, that this is not a necessity, and could be different if the beat
was estimated by some other method (e.g., the mean position of the first onset for
multiple instruments, as in the case of [201, 301]). Figure 12.1 presents an example
of this definition in an excerpt of track [0306].
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Figure 12.1: Example of microtiming deviations at the sixteenth-note level. We
show beat annotations (solid, vertical) and the underlying isochronous grid (dashed).
Deviations (∆) for tatums 2, 3, and 4 are indicated, as well as the inter-beat interval.
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We also point out that the transformation into the system used by GERISHER
[297] (patterns of duration) is easily achievable by doing

δ1 = ∆2

δ2 = ∆3 −∆2

δ3 = ∆4 −∆3

δ4 = IBI−∆4

(12.2)

and normalizing all durations by the IBI to obtain δ̃i =
δi
IBI

. For transforming from
duration patterns back to relative durations, it suffices to compute

mi =
i−1∑
j=1

δ̃j (12.3)

for each mi, i ∈ [2, 4].
We can now explore the microtiming profiles of the carreteiro tracks. Figure 12.2

shows every beat-length pattern in the subset. We have stacked the patterns of the
different tracks, separately for each performer. The average microtiming feature m̄i

is informed as a percentage of the IBI. We can readily verify that, in all cases, while
there is not a major deviation in tatum 2 (it is played on average slightly behind
time), tatums 3 and 4 lie mostly ahead of time by a significant margin. We note
that tatum 4 appears almost precisely in a subdivision in three of the beat (triplet
feel). Expressed in vector form ([m̄1, m̄2, m̄3, m̄4]), the average microtiming profile
in the subset (across all musicians) is m̄ = [0.000, 0.265, 0.433, 0.671], with standard
deviations of [0.000, 0.011, 0.019, 0.012].

Our results confirm findings from [201, 297, 299–301] in different types of samba.
In particular, in [299], at a tempo of 133 bpm, the average duration pattern was
δ̃ = [0.27, 0.15, 0.25, 0.34], measured in proportion to the IBI, which is equivalent
to m̄ = [0.00, 0.27, 0.42, 0.67]. This is strikingly close to our results in Figure 12.2,
which were obtained at a tempo of (130.0± 2.4) bpm.

12.2 Beat and Microtiming Tracking

In this section, we introduce our proposal of a fully-automatic system for simultane-
ously tracking beats and microtiming. Our model is built upon a CRF that uses beat
and onset activations as observations, and combines them for investigating rhythmic
expression at the sixteenth-note level. Since all variables in the model are discrete,
we can perform exact inference using the Viterbi algorithm. This was originally
reported in [21]. This is only feasible, with regard to the computational cost, due
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Figure 12.2: Microtiming profiles by musician.
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to a coarse discretization of the microtiming variable. We also describe an approach
for inference using particle filters (PF), which does not require discretization, but
yields only approximate solutions to the tracking problem. Finally, we showcase our
system and the two inference schemes with an experiment over the aforementioned
subset of seven tamborim carreteiro tracks.

12.2.1 Model Structure

Our model consists of a linear-chain CRF [338, 339]. We write the conditional prob-
ability of a label sequence x1:K = [x1, ...,xK ] given an input sequence of observations
y1:K = [y1, ...,yK ] of length K frames as

P (x1:K |y1:K) =
1

Z(y1:K)

K∏
k=1

ψ(xk,xk−1)ϕ(xk,yk), (12.4)

where ψ(xk,xk−1) and ϕ(xk,yk) are the transition and observation potentials, re-
spectively. These potentials work similarly to transition and observation probabili-
ties in DBNs and HMMs, but they are not required to be proper probabilities, hence
the need for a normalization factor, Z(y1:K).

Output Variables

The output labels x1:K are composed of three variables,

xk := [fk, lk,mk], (12.5)

where fk ∈ {1, . . . , lk} is a frame counter that describes the position inside the beat;
lk ∈ lmin, . . . , lmax is the length of the beat interval in frames (which is related to
tempo); and mk ∈ {m1, ...,mM} is the microtiming variable. The observations y1:K

are based on estimated beat and onset likelihoods, as detailed later. The problem of
obtaining the beat positions and microtiming profiles can be formulated as finding
the sequence of labels

x∗
1:K = argmax

x1,...,xK

P (x1:K |y1:K). (12.6)

As mentioned in the beginning of this chapter, we want to investigate microtim-
ing in beat-length rhythmic patterns where all four sixteenth notes are articulated.
Therefore, we define the microtiming variable mk at frame k similarly to what is
shown in Figure 12.1 as

mk := [mk
2,m

k
3,m

k
4], (12.7)

where mk
i =

∆k
i

lk
∈ [ i−1

4
+ Li,

i−1
4

+ Ui], and ∆k
i is the distance in frames between

an articulated sixteenth note and the beginning of the beat interval. Each mk
i
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Figure 12.3: CRF graph of the model. Gray nodes are the observed variables, and
white nodes are the labels.

models the position of the i-th sixteenth note (disregarding the beat itself, tatum
i = 1) with respect to the beginning of the beat, and relative to the total beat
length. For instance, if all tatums are located exactly on their nominal positions, we
have m = [0.25, 0.50, 0.75]. To account for different microtiming profiles, the value
of mk

i is estimated within an interval determined by lower and upper deviations
bounds, Li and Ui, measured in fractions of the beat-length interval. We observe
that, with minor adjustments, our framework can be adapted to track other kinds
of microtiming deviations and rhythmic patterns with a different number of tatums.

Our model is represented in Figure 12.3.

A Priori Knowledge

We incorporate to the system some a priori knowledge in the form of the following
assumptions, which are further explained later:

1. The tempo is constant within a beat and rarely changes;

2. The microtiming profile changes smoothly and only on beat transitions;

3. The tempo is in the range 125 to 135 bpm, to ensure an appropriate temporal
resolution.

4. The microtiming is bounded by deviations L = [−0.005,−0.105,−0.110] and
U = [0.035,−0.025,−0.050].

Transition Potential

The transition potential is given in terms of fk, lk, and mk by

ψ(xk,xk−1) = ψf,l(fk, fk−1, lk, lk−1)ψm(fk−1, lk−1,mk,mk−1). (12.8)
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As in [260, 270], the frame counter fk increases by one at each step, up to the
maximum beat length considered, going back to one at the end of the beat. Our
assumption (1) states that changes in the beat interval duration are unlikely (i.e.,
tempo changes are rare) and only allowed at the end of the beat. We constrain
these changes to be smooth, giving inertia to tempo transitions. These rules can be
expressed by

ψf,l(fk, fk−1, lk, lk−1) =



1, if fk = (fk−1 mod lk−1)+1,
fk−1 ̸= lk−1;

1− pf , if lk = lk−1,
fk = 1,
fk−1 = lk−1;

pf
2
, if lk = lk−1 ± 1,

fk = 1;
0, otherwise.

(12.9)

The microtiming descriptor mk changes smoothly (with resolution r) and only
at the end of the beat, that is,

ψm(fk−1, lk−1,mk,mk−1) =



1, if mk = mk−1,
fk−1 ̸= lk−1;

1− pm, if mk = mk−1,
fk−1 = lk−1;

pm
2
, if mk

i = mk−1
i ± r,∀i,

fk−1 = lk−1;
0, otherwise.

(12.10)

In the transition potential, pf and pm represent the probability of changing the
length of the beat interval and the probability of changing the microtiming pro-
file, respectively. Following previous works, we have set pf = 10−3 to indicate the
unlikeliness of tempo transitions. We have experimented with a few values for pm.

Since mk
i is given as a fraction of the IBI, the resolution of our microtiming scale

is also related to that variable. In fact, it is given by the relation between the feature
rate fr and the tempo τ (in bpm):

r =
τ

60× fr
. (12.11)

Considering our literature review, we assume that a resolution of 2% of the IBI is
sufficient for representing microtiming deviations [201, 300]. To keep the compu-
tational complexity low but at the same time guarantee a resolution r = 0.02, we
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Figure 12.4: Microtiming distributions in the subset and search regions (blue) for
the model.

sample the observation features at a rate of 110 Hz and limit tempo to the range
of 125 to 135 bpm, which is approximately around two standard deviations of our
subset tempo distribution mean. The bounding regions of the microtiming variable
(assumption (4)) are such that we can encompass the subset within about two stan-
dard deviations of the mean (see Figure 12.4). These choices are valid for the music
under study, and could be adapted to cope with different music genres.

Observation Potential

We exploit as onset likelihood the spectral flux from librosa [305], which is based
on a filtered time-difference of the log-power mel spectrogram. For beat, we obtain
the activation using the previously discussed TCN architecture. For this purpose,
we train the model from scratch with the tamborim carreteiro subset: we use each
track as test file once, and extract a beat activation for it from a network trained on
the remaining six tracks (each divided in half for training and validation purposes).
Training parameters can be seen in Chapter 11. The main difference here is that we
compute these features at a higher rate of 110 bpm.

The observation potential depends on the beat and onset likelihoods (bk and ok,
respectively), the frame counter fk, the local beat length lk, and the microtiming
variable mk. We write this potential as

ϕ(fk, lk,mk,yk) =


bk, if fk = 1;

ok − bk, if fk
lk
∈mk;

1− ok, otherwise.

(12.12)
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12.2.2 Inference Methods

Exact Inference

We perform the inference in the model presented in Section 12.2.1 using a generalized
Viterbi decoding to obtain the MAP sequence of labels x∗

1:K . However, for the model
to be feasible in terms of its computational complexity, we had to coarsely discretize
the microtiming space and limit the tempo range. Even under these strict conditions,
the total size of the state space is S = 15 000 — there are 250 frame-counter–tempo
states, three states for m2, five for m3 and four for m4. We note that S could rapidly
increase if we were to add more tatums to track (more mi), improve the microtiming
resolution, or expand the tempo range.

Particle Filters

We exploit the Markov-like form of our CRF model and employ a simple approximate
inference scheme based on particle filters to avoid the computational overhead of
exact inference. Even though potentials are not proper conditional probabilities,
we still use them for sampling next candidates for labels, normalizing weights and
parameters accordingly.

In the particle filter, the posterior probability is approximated by a sum of N
weighted particles in the state space. Following [196], we rewrite Equation (12.4) as

P (x1:K |y1:K) ≈
N∑
j=1

w
(j)
K δ(x1:K − x

(j)
1:K), (12.13)

where each j-th particle x
(j)
1:K , for j = {1, . . . , N}, is associated with a weight w(j)

K

at frame K, and δ(x) is the Dirac delta defined in RD,

δ(x) = δ(x1) δ(x2) · · · δ(xD) (12.14)

Through a sequential importance sampling (SIS) [340] scheme, at each time
step, we update the labels of each particle according to the transition potential
ψ(xk,xk−1), which is here redesigned in continuous form. We sample a new tempo
for frame k from a Gaussian distribution centered at the previous tempo (at k − 1)
with standard deviation given by parameter σl. Note that we use tempo as a variable,
instead of the beat length, to simplify the sampling process and make updates of
±∆τ bpm equally likely. Either way, if this standard deviation σl is small, i.e., the
corresponding distribution is thin, we can sustain assumption (1) on the inertia of
tempo changes. Microtiming is sampled in a similar fashion, but with a distribution

233



N (m
(j)
i , σ2

mi
), for each dimension mi, where

σmi
= (Ui − Li)σm, (12.15)

and σm is another adjustable parameter. We define the standard deviation of each
microtiming dimension as proportional to the searchable region defined by the upper
and lower bounds (Li, Ui), so that we can have more detail in smaller regions, and
less detail in larger regions. We have empirically chosen the values σl = 0.02 and
σm = 0.05.

We iteratively update the weights w(j)
k using the observations, bk and ok, as

expressed by the observation potential ϕ:

w
(j)
k ∝ w

(j)
k ϕ(x

(j)
k ,yk), (12.16)

where weights are normalized such that

N∑
j=1

w
(j)
k = 1, ∀k. (12.17)

After all particle trajectories {x(j)
1:K} are determined, we select as MAP the tra-

jectory x
(j)
1:K with the highest weight w(j)

K [196].
PFs are subject to the degeneracy problem [340], where the variance in the par-

ticle importance increases with time and the weight of most particles approaches
zero. In the ideal case, we would have a perfect approximation to the posterior
probability and low-variance weights. We follow [196] and approach this problem
with two simple resampling schemes: systematic resampling (SISR) [341] and aux-
iliary particle filter (APF) [342]. To put it briefly, the main idea behind SISR is to
replace particles of low importance by particles with high importance. This is done
with a resampling procedure that selects particles in proportion to their weights.
We follow the approach in [196] and only perform this resampling when the effective
sample size

NESS =

(
N∑
i=1

(
w

(i)
k

)2)−1

(12.18)

is below a threshold of ρN . If the probability mass function defined by the normal-
ized weights is close to uniform, NESS is high; if instead, the PMF is concentrated
on few weights, the effective sample size is small [343]. We have set ρ = 0.1 for
APF and ρ = 0.02 for SISR, following [196]. However, this resampling procedure
creates another problem: the impoverishment of particle diversity, i.e., when the
resampled particles only represent a limited region of the state space. The APF
method attempts to remedy this by compressing the weights of each particle before
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resampling (and later decompressing them) to even out the chances of a particle
being selected. Here, we have used a compression of the form

g(w) = wβ, (12.19)

with β = 1
4

(fourth root).

12.2.3 Evaluation Metrics

We evaluate both inference methods (CRF and PF) with respect to accuracy and
computational cost.

For measuring beat tracking accuracy, we employ the F -measure with the default
tolerance of ±70 ms (see again Section 10.1).

Microtiming is also evaluated with the F -measure, as this metric is also used in
onset detection (cf. Chapter 7). To do so, we first decode an estimated microtiming
sequence m1:K with the knowledge of the estimated beats to obtain the estimated
onset positions. Then, for each tatum i ∈ {2, 3, 4} and its corresponding set of
decoded onsets, we compute the F -measures, {Fi}. The final microtiming tracking
score for a piece is given by the average

Fm =
1

3

4∑
i=2

Fi. (12.20)

We evaluate this F -measure with a set of tolerance values (from ±5 to ±25 ms)
around estimated onsets, instead of using a single one (e.g., ±50 ms), as it is com-
monly done in onset detection (cf. Chapter 7). This allows us to have a better
understanding of the model’s accuracy under different conditions.

Lastly, we evaluate the computational cost of the inference step by measuring
its runtime per track. We disregard the feature extraction step, which is the same
for all models.

We present the average results across the subset that was described in Sec-
tion 12.1. In the case of PFs, which are stochastic in nature, we run the inference
step ten times for each file reporting averages and standard deviations.

12.2.4 Performance of Models

We have tried different values for pm ∈ {0, 10−3, 10−2, 10−1}, the probability of
change in microtiming profile, in the CRF model. For PF approaches, we have
varied the number of particles N ∈ {2000, 4000, 6000, 8000, 10 000}. Table 12.1
gives an overview of the performance of each model, with regard to its accuracy in
tracking beats and microtiming, and its computational cost. In the same table, we
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Table 12.1: Performance figures of the exact and approximate inference models:
mean (standard deviation) in %. In gray, we highlight the best F -measures across all
configurations for each inference model; in boldface, we highlight the best F -measure
overall. Results for the analysis of the tamborim carreteiro subset. Microtiming
scores were obtained using a tolerance of ±25 ms.

Inference Model pm N Beat F (%) Fm (%) Runtime (min)

Exact CRF

0 - 94.3 90.2 103.7(6.0)
10−3 - 94.3 89.7 103.9(5.5)
10−2 - 94.3 89.0 104.1(5.3)
10−1 - 94.3 88.6 104.2(6.7)

Approx. SISR

- 2000 66.6(21.8) 58.2(24.9) 0.2(0.1)
- 4000 71.3(21.2) 62.1(24.8) 0.3(0.1)
- 6000 73.6(19.2) 66.3(23.0) 0.5(0.1)
- 8000 76.6(19.2) 69.3(22.4) 0.9(0.3)
- 10 000 75.6(17.4) 68.4(20.8) 0.9(0.2)

Approx. APF

- 2000 90.3(13.5) 88.0(15.0) 0.2(0.0)
- 4000 91.8(9.3) 89.7(10.7) 0.4(0.1)
- 6000 88.8(17.0) 86.6(18.2) 0.6(0.1)
- 8000 90.8(12.8) 88.6(13.8) 0.8(0.1)
- 10 000 89.1(18.1) 87.0(19.4) 1.0(0.2)

CRF solo beat estimation F -measure: 96.8%

also report a reference beat F -measure value, which was obtained with a simplified
CRF model. This model just tracks beats with target variables fk and lk, using the
same potential ψf,l and an observation potential given by

ϕ(fk, lk,yk) =

bk, if fk = 1;

1− bk, otherwise.
(12.21)

First, we evaluate the accuracy of each model in the task of beat tracking. Our
reference CRF sets the bar at an F -measure of 96.8%, and is closely followed by
the CRF models with microtiming targets (all tied at 94.3%). The APF system
provides a high score (with the best average result of 91.8% for N = 4000 particles),
but the SISR system is unable to properly capture beats at the same level (best
average result of 76.6%). These results clearly attest the effect of impoverishment
in the quality of the particles. There is also a lot of variability in SISR estimates,
when compared with APF in terms of the standard distributions.

We now turn our attention to microtiming estimation; its F -measure scores
(computed as expressed in Section 12.2.3) are reported in Table 12.1 for a tolerance
window of ±25 ms. We can see from the CRF results that a constant microtiming
profile (pm = 0) is sufficient for tracking rhythmic expression in our subset — these
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Figure 12.5: F -measures for microtiming tracking with various tolerance windows
(±tolerance value around the onset annotation). Diamonds indicate outliers.
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are the best results overall. In SISR, the worse beat estimation results in similarly
degraded microtiming F -measures. Since we have also restricted the tempo range for
particle filter systems, these values of about 73% do not correspond to octave errors;
they are phase problems. Most importantly, we observe that APF’s results are very
comparable with those from the CRF system. Figure 12.5 lets us dive deeper into
the matter of the estimates’ accuracy by exploring a range of tolerance values, from
±5 ms (1% of the IBI at 130 bpm) to ±25 ms (5% of the IBI at the same tempo).
First, we can identify that there is a difference among the CRF models with respect
to the probability pm: for narrower tolerance windows, the median performance of
the constant microtiming tracker is slightly lower than that of the others. Moreover,
we readily verify that, starting at ±22.5 ms, again as the tolerance window gets
narrower, median microtiming F -measures for APF surpass those of the CRF. This
means that the approximate inference performs better than the exact inference one.
This may seem strange at first, but it can be explained by the coarse quantization of
the state space for the microtiming target in the CRF implementation, which reduces
its ability to consistently and accurately track onset positions. The particle filter
approach does not require quantizing the state space in such manner. For APF, we
can still achieve reasonable results above 80% in F -measure for tolerance windows of
±12.5 ms and up. Of course, this becomes limited by the fact that our feature rate
is 110 Hz. Figure 12.6 presents the microtiming ground truth and estimation with
APF for track [0131]; we also display a smoothed version of the ground truth that
better aligns with our assumption of a slowly changing microtiming profile, achieved
by filtering out a portion of the “motor noise” [344] (i.e., variability in time-keeping
due to physical constraints).
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Figure 12.6: Microtiming ground truth and estimation with APF for track [0131]
(Beat F -measure = 99.2% with tolerance of ±70 ms, Fm = 99.4% with tolerance of
±25 ms). We present the ground truth (GTH) and the estimation (EST), as well as
a version of the ground truth smoothed with a median window of length 21 beats.
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We end this investigation with a discussion about the computational cost of the
different methods. As we can verify in Table 12.1, both particle filter systems are
inexpensive, with the best APF solution running the entire inference in under 30 s

(files in our subset have an average duration of 28.5 s). We can also perceive that
the time cost of particle filter-based approaches is nearly linear with the number of
particles. Finally, we notice the great difference between the PF approaches and
the CRF, whose computational costs are two orders of magnitude greater. This,
together with the competitive performance in both beat and microtiming tracking
tasks, makes the APF approach a very good alternative to exact inference methods.
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Chapter 13

Conclusions

This thesis has presented a series of investigations and contributions in the field of
automatic music transcription, specifically concentrating on the problems of drum
sound classification and rhythmic description. These techniques were showcased
with two datasets of samba music, which were also organized within the context of
this work. This concluding chapter reflects on our achievements in this work and
discusses prospects for future contributions.

13.1 Summary and Conclusions

We structure the summary of our work and our main conclusions in the light of the
main objectives of this thesis and the outputs of each model and experiment.

Data Curation and Annotation

One of the main contributions of this thesis was the curation and annotation of
two moderately sized datasets of samba music, BRID and SAMBASET. These two
datasets present complementary perspectives, from stripped-down solo performances
to commercial-quality recordings of live samba-enredo performances — the closest
one can get to the Avenida in a controlled environment. These two sides of the
dataset have allowed the investigation of nuances in the performances with low-level
features as well as larger-scale descriptions of the musical phenomena. The collected
metadata can provide insights when paired with computational analyses, and the
production of accurate annotations for onsets, beats, and downbeats is invaluable.
We have also displayed a few ideas to improve this annotation pipeline, with a
semi-automatic procedure for beat and downbeat annotation that leverages prior
musicological information about meter in samba, among other things.
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Classification of Note Articulations

In one of the parts of this research, we have collaborated with a more expressive
view of percussive performances concerning timbre. Usually, in automatic drum
transcription, the quality of the sound events produced by a single instrument is re-
garded as mostly immutable, or at least, the more complex rudiments are discarded
in the search for a simplified detection and recognition model. However, we can find
many examples in African and Asian cultures, for example, of the drummer mani-
festing great expression through different modes of excitation. These articulations
are also important in Afro-Brazilian music practices and are well-correlated with
the sensation of groove elicited by the performance.

We have investigated the problem of drum sound classification using a subset
of BRID containing tantã and repique solo recordings. More than a simple binary
instrument classification, we set out to determine the features that were useful for
distinguishing each instrumental playing technique, which is very nuanced. We have
presented the entire pipeline, from onset detection and note segmentation to the
feature extraction and the classification itself, providing some insights. For instance,
we have showed that, after a careful grid search of the peak picking parameters,
our modified RCD is among the top performing ODFs both in terms of the F -
measure and of the MAE, i.e., it produces the closest estimates to the annotated
beat positions. Due to the percussive nature of our signals, other ODFs have also
been deemed suitable (e.g., HFC, E, SF). However, we have shown that onsets
estimated with RCD were closer to our annotations and that RCD had better recall
overall. This has justified a slight increase in the necessary computation power.

We have extracted features from four domains — temporal, spectral, cepstral,
and modulation — and used them in two types of classification experiments. The
first type approached the classification of specific articulations of each instrument.
We have shown that our proposed CQT-cascade modulation spectrum yielded the
best performance, along with the regular temporal features. We have also performed
a classification of archetypal strokes, identifying the commonalities in function be-
tween the articulations of tantã and repique. Again, these two sets of features
displayed the best results, which improved when they were aggregated. A note of
caution is due in the interpretation of these results and the discriminative power
of each feature set since these temporal and modulation-based features have very
different dimensions. Either way, both were equally robust in face of the challenges
of our subset, in particular, the overlap between notes.
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Enabling Improved Tracking of Beats in Small Data Scenarios

Our efforts in the annotation of beats and downbeats, as well as our preliminary
investigation of the tracking ability of state-of-the-art models in the developed
datasets, have led to the proposal of an entire annotation methodology.

First, we adapted a TCN-based meter tracking model using small quantities of
data to work in datasets of samba and of another Latin American music tradition,
candombe, assuming a certain level of homogeneity in the music genres. We have
shown that, at least under this homogeneity condition, it is indeed possible to train
a model with a few minutes of annotated data and training cycles, and obtain almost
a “full-dataset” performance. We have also shown that, in this particular task, fine-
tuning a base model, trained on a larger dataset, and using data augmentation in
the process can largely improve the overall F -measure of the model.

Then, considering an end user’s perspective, we proposed an effective methodol-
ogy for selecting training samples in this small data scenario. Our framework com-
bined tempo-sensitive or tempo-robust rhythmic features with selective sampling
techniques that exploit the internal distribution of the data. The system output
was a selection of meaningful examples, which were subject to a user-informed an-
notation budget. In real-world applications, the user is then given this selection and
should produce corresponding annotations. Finally, beat positions for the remaining
tracks in the dataset were estimated with the TCN model.

Our experiments with this framework have highlighted the importance of care-
fully selecting the training data for the TCN model since our results demonstrated
a marked improvement when compared to outcomes obtained through random data
selection. The experiments have also indicated that there are complex non-linear
interactions between the sizes of training and testing sets, the rhythmic properties
of the dataset at hand, the features for rhythmic representation, and the different
strategies for sampling. Nonetheless, we have confirmed our intuition that a more
appropriate data selection has to leverage diversity and representativeness. Even
though the datasets used in this study are very percussive, we believe that the same
framework should also work for music with little to no percussive content.

Integrated Beat and Microtiming Tracking

Our final contribution in this work was in the characterization of microtiming pro-
files. The ostinato patterns played in the tamborim in samba-enredo were a good
motivation for the definition of a model capable of simultaneously tracking beats
and these genre-defining small-scale deviations. After having presented a statistical
analysis of our tamborim subset, we presented our graphical model for tackling the
extraction of beat-length microtiming patterns. To the best of our knowledge, this
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is the first method for simultaneously tracking beats and microtiming with this kind
of model.

We have used our model with two inference techniques. First, by discretizing the
microtiming feature, we performed exact inference with a CRF. Then, approximate
inference approaches were exploited — two particle filter techniques with a resam-
pling scheme to avoid degeneration. We have shown that, by searching for optimal
trajectories in a continuous state space, the APF method can more accurately track
microtiming than the exact inference approach.

It is important to note that our method for microtiming analysis is generalizable
and adaptable to other genres, with different pattern lengths and number of tatums.
In particular, it can be directly modified to deal with the estimation of swing ratio
in jazz recordings, a problem that has been extensively reported in the literature.

13.2 Future Work

While the primary focus was on samba music, one of our most important goals was to
ensure that the developed tools and methodologies were as general as possible. This
means that they should be adaptable and applicable to other underrepresented music
genres, thereby promoting diversity and inclusivity in the MIR field and expanding
our comprehension of the human perception of musical phenomena. We are aware,
however, that the viewpoint of our work is very limited and that there are several
possibilities for further research in the topics we have presented.

For instance, our approach to the classification of articulations is very cumber-
some, requiring multiple steps for the detection of notes, the segmentation of the
performance, etc. Moreover, we did not consider modeling the grammar-like aspects
of the sequence of articulations, which should probably provide the same level of im-
provement of the language modeling approach proposed by GILLET and RICHARD
[176]. Of course, the entire pipeline, from detection to the investigation of tempo-
ral context could be absorbed by the more powerful deep learning-based techniques
available to us in the last few years [281].

Our methodology for beat tracking with few data has promising consequences
in real-world applications, as it opens the possibility of adapting such models to
other music genres with modest labeling efforts. Furthermore, we believe that a
similar pipeline could be utilized for efficient data selection in other supervised
learning problems in MIR. This includes mood and genre classification as well as
other retrieval tasks. However, it would also be important to validate the current
methodology on other challenging music datasets for beat tracking (e.g., SMC [289],
Hainsworth [9]). One simpler extension could be to investigate the effect of the
selection pipeline on the related task of downbeat tracking. Another limitation of
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this work was that our analysis was conducted by looking just at two musical pa-
rameters: global tempo and rhythmic patterns. The complex interactions observed
in the results could start to be disambiguated if we were to investigate the dynamics
of these parameters (i.e., tempo and pattern changes within each track) as well as
other important musical aspects (e.g., timbre, pattern complexity/density, among
others). Finally, although we provided a solution for the selection of informative
data for training, we have not investigated how to predict the necessary annotation
budget for a certain expected tracking performance. It would be very interesting to
understand what the model considers “challenging” — this goes along with current
trends in AI explainability [345].

In our analysis of microtiming profiles, we envision many fronts for future contri-
butions. It would be greatly beneficial to further investigate particle filter techniques
and see if our results for tracking microtiming can be improved. We would also like
to loosen the restrictions for tempo. This would be very important in music genres
were there is great tempo variation during the performance (e.g., in candombe [346],
in maracatu [320]). Moreover, this would enable an investigation of the dependency
of microtiming pattern and tempo, as in [299]. This system could be coupled with
a source separation approach and used in the investigation of entrainment among
musicians in ensemble recordings [347].

Continued efforts are needed before we are able to capture expressiveness in
percussive performances with fully-automatically computational methods. We hope
that the pathways here envisioned can contribute to this field of music transcription,
specially in providing some momentum for the development and annotation of other
culturally diverse music datasets and for the pursuit of more humanistic and multi-
cultural approaches in MIR methodologies.
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Appendix A

BRID Tables

Tables A.1, A.2, A.3, and A.4 display the full content of the BRID dataset, i.e., the
contents of acoustic mixture and solo (musicians #1, #2, and #3) tracks, respec-
tively. We present here the [GID#], filename style and duration (in seconds) for
all tracks in the dataset. Instruments in each track are shown with their particu-
lar variation, i.e., “Pandeiro 2” is the 10” leather-head pandeiro.1 Please refer to
Table 3.1 for more detail on each variation.

1“Surdo 1”, “Surdo 2”, and “Surdo 3” are not to be confused with surdos de primeira, de
segunda, and de terceira respectively. For solo tracks in the samba-enredo style, “Surdo 2” and
“Surdo 3” were tuned differently and performed de primeira, de segunda, and de terceira patterns.
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Table A.1: Overview of the acoustic mixture tracks in BRID.

GID# Filename #inst. Musician #2 Musician #4 Musician #5 Musician #6 Style Duration

0001 M4-01-SA 4 Pandeiro 2 Tantã 3 Surdo 2 Tamborim 2 Samba 0:00:36
0002 M4-02-SA 4 Pandeiro 3 Tantã 3 Surdo 2 Tamborim 2 Samba 0:00:34
0003 M4-03-PA 4 Pandeiro 2 Tantã 3 Tantã 4 Tamborim 2 Partido-alto 0:00:41
0004 M4-04-PA 4 Pandeiro 3 Tantã 3 Tantã 4 Tamborim 2 Partido-alto 0:00:37
0005 M4-05-PA 4 Pandeiro 3 Chocalho 3 Tantã 4 Tamborim 2 Partido-alto 0:00:42
0006 M4-06-SA 4 Pandeiro 5 Tantã 3 Surdo 2 Chocalho 3 Samba 0:00:45
0007 M4-07-SA 4 Repique 1 Pandeiro 2 Surdo 2 Reco-reco 2 Samba 0:00:31
0008 M4-08-SA 4 Repique 3 Pandeiro 2 Surdo 2 Reco-reco 2 Samba 0:00:29
0009 M4-09-SA 4 Tantã 3 Pandeiro 2 Agogô 1 Surdo 2 Samba 0:00:28
0010 M4-10-SE 4 Caixa 2 Surdo 2 Pandeiro 3 Reco-reco 2 Samba-enredo 0:00:28
0011 M4-11-SE 4 Caixa 2 Tamborim 3 Agogô 1 Tantã 4 Samba-enredo 0:00:28
0012 M4-12-SE 4 Cuíca 3 Caixa 2 Repique 2 Surdo 2 Samba-enredo 0:00:28
0013 M4-13-SE 4 Cuíca 3 Caixa 2 Tamborim 3 Surdo 2 Samba-enredo 0:00:27
0014 M4-14-SE 4 Repique 2 Cuíca 3 Tamborim 3 Surdo 2 Samba-enredo 0:00:19
0015 M4-15-SA 4 Cuíca 3 Agogô 1 Tantã 4 Chocalho 2 Samba 0:00:34
0016 M4-16-PA 4 Pandeiro 2 Tantã 3 Pandeiro 3 Surdo 2 Partido-alto 0:00:32
0017 M4-17-PA 4 Repique 1 Pandeiro 2 Pandeiro 3 Tantã 4 Partido-alto 0:00:23
0018 M4-18-SA 4 Repique 1 Tantã 3 Pandeiro 3 Chocalho 3 Samba 0:00:33
0019 M4-19-SA 4 Cuíca 3 Agogô 1 Repique 3 Chocalho 3 Samba 0:00:30

(Continued on the following page.)
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Table A.1: (Continued from previous page.)

GID# Filename #inst. Musician #2 Musician #4 Musician #5 Musician #6 Style Duration

0020 M3-01-PA 3 Pandeiro 5 Pandeiro 2 Tantã 4 Partido-alto 0:00:19
0021 M3-02-SA 3 Tamborim 2 Pandeiro 2 Tantã 3 Samba 0:00:29
0022 M3-03-SA 3 Pandeiro 5 Tamborim 2 Surdo 2 Samba 0:00:33
0023 M3-04-SA 3 Pandeiro 2 Tamborim 2 Surdo 2 Samba 0:00:26
0024 M3-05-PA 3 Pandeiro 5 Chocalho 3 Tantã 3 Partido-alto 0:00:29
0025 M3-06-PA 3 Repique 2 Agogô 1 Caixa 2 Partido-alto 0:00:24
0026 M3-07-PA 3 Repique 2 Cuíca 3 Caixa 2 Partido-alto 0:00:27
0027 M3-08-SE 3 Repique 2 Tamborim 3 Caixa 2 Samba-enredo 0:00:18
0028 M3-09-MA 3 Caixa 2 Pandeiro 2 Surdo 2 Marcha 0:00:18
0029 M3-10-PA 3 Cuíca 3 Reco-reco 2 Tantã 4 Partido-alto 0:00:29
0030 M3-11-PA 3 Repique 1 Agogô 1 Surdo 2 Partido-alto 0:00:32
0031 M3-12-SA 3 Repique 1 Pandeiro 2 Tantã 4 Samba 0:00:26
0032 M3-13-SA 3 Repique 3 Tamborim 2 Reco-reco 2 Samba 0:00:27
0033 M3-14-SA 3 Repique 3 Chocalho 3 Agogô 1 Samba 0:00:29
0034 M3-15-SA 3 Surdo 2 Pandeiro 1 Reco-reco 2 Samba 0:00:24
0035 M3-16-PA 3 Caixa 2 Reco-reco 2 Tantã 4 Partido-alto 0:00:23
0036 M3-17-PA 3 Repique 1 Tamborim 2 Tantã 4 Partido-alto 0:00:18
0037 M3-18-SA 3 Agogô 1 Chocalho 3 Surdo 2 Samba 0:00:30
0038 M3-19-SA 3 Pandeiro 5 Chocalho 3 Tantã 4 Samba 0:00:25
0039 M3-20-SE 3 Caixa 2 Tamborim 3 Tantã 3 Samba-enredo 0:00:24

(Continued on the following page.)
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Table A.1: (Continued from previous page.)

GID# Filename #inst. Musician #2 Musician #4 Musician #5 Musician #6 Style Duration

0040 M3-21-PA 3 Pandeiro 3 Tamborim 2 Repique 3 Partido-alto 0:00:31
0041 M3-22-SE 3 Pandeiro 2 Surdo 1 Surdo 2 Samba-enredo 0:00:23
0042 M3-23-SE 3 Pandeiro 3 Surdo 1 Surdo 2 Samba-enredo 0:00:27
0043 M3-24-SE 3 Reco-reco 2 Surdo 1 Surdo 2 Samba-enredo 0:00:24
0044 M3-25-SE 3 Agogô 1 Surdo 1 Surdo 2 Samba-enredo 0:00:22
0045 M3-26-SE 3 Cuíca 3 Surdo 1 Surdo 2 Samba-enredo 0:00:22
0046 M3-27-SE 3 Tamborim 3 Surdo 1 Surdo 2 Samba-enredo 0:00:15
0047 M3-28-SE 3 Caixa 2 Surdo 1 Surdo 2 Samba-enredo 0:00:21
0048 M3-29-SE 3 Repique 2 Surdo 1 Surdo 2 Samba-enredo 0:00:27

0049 M2-01-PA 2 Pandeiro 2 Pandeiro 3 Partido-alto 0:00:25
0050 M2-02-SA 2 Tantã 3 Tantã 4 Samba 0:00:30
0051 M2-03-SA 2 Tantã 3 Surdo 2 Samba 0:00:27
0052 M2-04-SA 2 Pandeiro 2 Surdo 2 Samba 0:00:26
0053 M2-05-SA 2 Pandeiro 3 Surdo 2 Samba 0:00:34
0054 M2-06-PA 2 Pandeiro 3 Tantã 3 Partido-alto 0:00:29
0055 M2-07-SA 2 Pandeiro 3 Tantã 4 Samba 0:00:29
0056 M2-08-MA 2 Pandeiro 2 Tantã 4 Marcha 0:00:22
0057 M2-09-SA 2 Pandeiro 3 Reco-reco 2 Samba 0:00:31
0058 M2-10-SA 2 Pandeiro 2 Reco-reco 2 Samba 0:00:36
0059 M2-11-SA 2 Reco-reco 2 Tantã 3 Samba 0:00:21

(Continued on the following page.)
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Table A.1: (Continued from previous page.)

GID# Filename #inst. Musician #2 Musician #4 Musician #5 Musician #6 Style Duration

0060 M2-12-SA 2 Reco-reco 2 Surdo 2 Samba 0:00:29
0061 M2-13-SE 2 Caixa 2 Agogô 1 Samba-enredo 0:00:26
0062 M2-14-MA 2 Caixa 2 Surdo 2 Marcha 0:00:22
0063 M2-15-PA 2 Caixa 2 Pandeiro 3 Partido-alto 0:00:25
0064 M2-16-PA 2 Cuíca 3 Repique 1 Partido-alto 0:00:31
0065 M2-17-PA 2 Tamborim 2 Repique 1 Partido-alto 0:00:30
0066 M2-18-PA 2 Chocalho 2 Caixa 2 Partido-alto 0:00:23
0067 M2-19-SA 2 Cuíca 1 Agogô 1 Samba 0:00:25
0068 M2-20-SA 2 Tamborim 2 Agogô 1 Samba 0:00:25
0069 M2-21-SA 2 Tamborim 2 Pandeiro 2 Samba 0:00:26
0070 M2-22-SA 2 Tamborim 2 Tantã 4 Samba 0:00:28
0071 M2-23-PA 2 Tamborim 2 Pandeiro 3 Partido-alto 0:00:33
0072 M2-24-SA 2 Cuíca 1 Tantã 4 Samba 0:00:35
0073 M2-25-SA 2 Chocalho 2 Surdo 2 Samba 0:00:35
0074 M2-26-PA 2 Repique 3 Reco-reco 2 Partido-alto 0:00:29
0075 M2-27-PA 2 Repique 3 Tamborim 2 Partido-alto 0:00:31
0076 M2-28-SE 2 Tantã 3 Repique 2 Samba-enredo 0:00:29
0077 M2-29-SE 2 Surdo 2 Repique 2 Samba-enredo 0:00:32
0078 M2-30-PA 2 Agogô 1 Repique 2 Partido-alto 0:00:30
0079 M2-31-PA 2 Reco-reco 2 Repique 2 Partido-alto 0:00:30
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0080 M2-32-PA 2 Reco-reco 4 Repique 2 Partido-alto 0:00:27
0081 M2-33-SA 2 Repique 1 Repique 3 Samba 0:00:31
0082 M2-34-SA 2 Repique 1 Repique 2 Samba 0:00:27
0083 M2-35-SE 2 Repique 2 Repique 3 Samba-enredo 0:00:37
0084 M2-36-PA 2 Repique 1 Tantã 4 Partido-alto 0:00:34
0085 M2-37-SE 2 Repique 2 Tantã 4 Samba-enredo 0:00:32
0086 M2-38-SA 2 Repique 3 Tantã 4 Samba 0:00:35
0087 M2-39-SE 2 Caixa 2 Pandeiro 2 Samba-enredo 0:00:27
0088 M2-40-SA 2 Chocalho 2 Pandeiro 2 Samba 0:00:34
0089 M2-41-SA 2 Chocalho 2 Pandeiro 5 Samba 0:00:27
0090 M2-42-SA 2 Agogô 1 Tantã 3 Samba 0:00:31
0091 M2-43-SA 2 Tamborim 2 Surdo 2 Samba 0:00:40
0092 M2-44-SA 2 Reco-reco 4 Surdo 2 Samba 0:00:34
0093 M2-45-PA 2 Pandeiro 2 Tantã 3 Partido-alto 0:00:35
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GID# Filename Instrument Style Tempo (bpm) Duration

0094 S1-PD1-01-SA Pandeiro 1 Samba 80 0:00:26
0095 S1-PD1-02-PA Pandeiro 1 Partido-alto 100 0:00:31
0096 S1-PD1-03-SE Pandeiro 1 Samba-enredo 130 0:00:30
0097 S1-PD1-04-MA Pandeiro 1 Marcha 120 0:00:32
0098 S1-PD1-05-CA Pandeiro 1 Capoeira 65 0:00:33
0099 S1-PD1-06-VPA Pandeiro 1 Virada (Partido-alto) 100 0:00:30
0100 S1-PD1-07-VMA Pandeiro 1 Virada (Marcha) 120 0:00:32
0101 S1-PD2-01-SA Pandeiro 2 Samba 80 0:00:26
0102 S1-PD2-02-PA Pandeiro 2 Partido-alto 100 0:00:31
0103 S1-PD2-03-SE Pandeiro 2 Samba-enredo 130 0:00:30
0104 S1-PD2-04-MA Pandeiro 2 Marcha 120 0:00:32
0105 S1-PD2-05-CA Pandeiro 2 Capoeira 65 0:00:33
0106 S1-PD2-06-VPA Pandeiro 2 Virada (Partido-alto) 100 0:00:28
0107 S1-PD2-07-VMA Pandeiro 2 Virada (Marcha) 120 0:00:24
0108 S1-PD3-01-SA Pandeiro 3 Samba 80 0:00:26
0109 S1-PD3-02-PA Pandeiro 3 Partido-alto 100 0:00:31
0110 S1-PD3-03-SE Pandeiro 3 Samba-enredo 130 0:00:30
0111 S1-PD3-04-MA Pandeiro 3 Marcha 120 0:00:32
0112 S1-PD3-05-CA Pandeiro 3 Capoeira 65 0:00:33
0113 S1-PD3-06-VPA Pandeiro 3 Virada (Partido-alto) 100 0:00:33
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0114 S1-PD3-07-VSA Pandeiro 3 Virada (Samba) 75 0:00:29
0115 S1-PD4-01-SA Pandeiro 4 Samba 80 0:00:26
0116 S1-PD4-02-PA Pandeiro 4 Partido-alto 100 0:00:31
0117 S1-PD4-03-SE Pandeiro 4 Samba-enredo 130 0:00:30
0118 S1-PD4-04-MA Pandeiro 4 Marcha 120 0:00:32
0119 S1-PD4-05-CA Pandeiro 4 Capoeira 65 0:00:33
0120 S1-PD4-06-VPA Pandeiro 4 Virada (Partido-alto) 100 0:00:27
0121 S1-PD4-07-VSA Pandeiro 4 Virada (Samba) 75 0:00:26
0122 S1-PD5-01-SA Pandeiro 5 Samba 80 0:00:26
0123 S1-PD5-02-PA Pandeiro 5 Partido-alto 100 0:00:31
0124 S1-PD5-03-SE Pandeiro 5 Samba-enredo 130 0:00:30
0125 S1-PD5-04-MA Pandeiro 5 Marcha 120 0:00:32
0126 S1-PD5-05-CA Pandeiro 5 Capoeira 65 0:00:37
0127 S1-PD5-06-VPA Pandeiro 5 Virada (Partido-alto) 100 0:00:26
0128 S1-PD5-07-VPA Pandeiro 5 Virada (Partido-alto) 75 0:00:32
0129 S1-TB2-01-SA Tamborim 2 Samba 80 0:00:26
0130 S1-TB2-02-PA Tamborim 2 Partido-alto 100 0:00:31
0131 S1-TB2-03-SE Tamborim 2 Samba-enredo 130 0:00:30
0132 S1-TB3-01-SE Tamborim 3 Samba-enredo 130 0:00:30
0133 S1-TB3-02-VSE Tamborim 3 Virada (Samba-enredo) 130 0:00:24
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0134 S1-TB1-01-SA Tamborim 1 Samba 80 0:00:26
0135 S1-TB1-02-PA Tamborim 1 Partido-alto 100 0:00:31
0136 S1-TB1-03-SE Tamborim 1 Samba-enredo 130 0:00:30
0137 S1-RR2-01-SA Reco-reco 2 Samba 80 0:00:26
0138 S1-RR2-02-PA Reco-reco 2 Partido-alto 100 0:00:31
0139 S1-RR2-03-SE Reco-reco 2 Samba-enredo 130 0:00:30
0140 S1-RR2-04-VPA Reco-reco 2 Virada (Partido-alto) 100 0:00:31
0141 S1-RR4-01-SA Reco-reco 4 Samba 80 0:00:26
0142 S1-RR4-02-PA Reco-reco 4 Partido-alto 100 0:00:31
0143 S1-RR4-03-SE Reco-reco 4 Samba-enredo 130 0:00:30
0144 S1-RR4-04-VPA Reco-reco 4 Virada (Partido-alto) 100 0:00:31
0145 S1-CX1-01-SA Caixa 1 Samba 80 0:00:26
0146 S1-CX1-02-PA Caixa 1 Partido-alto 100 0:00:31
0147 S1-CX1-03-SE Caixa 1 Samba-enredo 130 0:00:30
0148 S1-CX1-04-MA Caixa 1 Marcha 120 0:00:36
0149 S1-CX1-05-VSE Caixa 1 Virada (Samba-enredo) 130 0:00:26
0150 S1-RP2-01-SA Repique 2 Samba 80 0:00:26
0151 S1-RP2-02-PA Repique 2 Partido-alto 100 0:00:31
0152 S1-RP2-03-SE Repique 2 Samba-enredo 130 0:00:30
0153 S1-RP2-04-VSE Repique 2 Virada (Samba-enredo) 130 0:00:26

(Continued on the following page.)

287



Table A.2: (Continued from previous page.)

GID# Filename Instrument Style Tempo (bpm) Duration

0154 S1-RP1-01-SA Repique 1 Samba 80 0:00:26
0155 S1-RP1-02-PA Repique 1 Partido-alto 100 0:00:30
0156 S1-RP1-03-SE Repique 1 Samba-enredo 130 0:00:30
0157 S1-RP1-04-VPA Repique 1 Virada (Partido-alto) 100 0:00:33
0158 S1-RP3-01-SA Repique 3 Samba 80 0:00:26
0159 S1-RP3-02-PA Repique 3 Partido-alto 100 0:00:30
0160 S1-RP3-03-SE Repique 3 Samba-enredo 130 0:00:30
0161 S1-RP3-04-VSA Repique 3 Virada (Samba) 80 0:00:36
0162 S1-CU2-01-SA Cuíca 2 Samba 80 0:00:27
0163 S1-CU2-02-PA Cuíca 2 Partido-alto 100 0:00:29
0164 S1-CU2-03-SE Cuíca 2 Samba-enredo 130 0:00:31
0165 S1-CU2-04-VSE Cuíca 2 Virada (Samba-enredo) 130 0:00:24
0166 S1-AG1-01-SA Agogô 1 Samba 80 0:00:27
0167 S1-AG1-02-PA Agogô 1 Partido-alto 100 0:00:36
0168 S1-AG1-03-SE Agogô 1 Samba-enredo 130 0:00:31
0169 S1-AG1-04-VPA Agogô 1 Virada (Partido-alto) 100 0:00:33
0170 S1-SK1-01-SA Chocalho 1 Samba 80 0:00:26
0171 S1-SK1-02-PA Chocalho 1 Partido-alto 100 0:00:37
0172 S1-SK1-03-SE Chocalho 1 Samba-enredo 130 0:00:31
0173 S1-SK2-01-SA Chocalho 2 Samba 80 0:00:26
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0174 S1-SK2-02-PA Chocalho 2 Partido-alto 100 0:00:37
0175 S1-SK2-03-SE Chocalho 2 Samba-enredo 130 0:00:31
0176 S1-TT2-01-SA Tantã 2 Samba 80 0:00:26
0177 S1-TT2-02-PA Tantã 2 Partido-alto 100 0:00:37
0178 S1-TT2-03-SE Tantã 2 Samba-enredo 130 0:00:29
0179 S1-TT2-04-VPA Tantã 2 Virada (Partido-alto) 100 0:00:22
0180 S1-SU2-01-SA Surdo 2 Samba 80 0:00:27
0181 S1-SU2-02-PA Surdo 2 Partido-alto 100 0:00:37
0182 S1-SU2-03-SE Surdo 2 Samba-enredo 130 0:00:32
0183 S1-SU2-04-VPA Surdo 2 Virada (Partido-alto) 100 0:00:34
0184 S1-SU2-05-SE Surdo 2 Samba-enredo 130 0:00:32
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GID# Filename Instrument Style Tempo (bpm) Duration

0185 S2-PD2-01-SA Pandeiro 2 Samba 80 0:00:25
0186 S2-PD2-02-PA Pandeiro 2 Partido-alto 100 0:00:28
0187 S2-PD2-03-SE Pandeiro 2 Samba-enredo 130 0:00:25
0188 S2-PD2-04-MA Pandeiro 2 Marcha 120 0:00:28
0189 S2-PD2-05-CA Pandeiro 2 Capoeira 65 0:00:32
0190 S2-PD2-06-VPA Pandeiro 2 Virada (Partido-alto) 100 0:00:27
0191 S2-PD2-07-VMA Pandeiro 2 Virada (Marcha) 120 0:00:37
0192 S2-PD3-01-SA Pandeiro 3 Samba 80 0:00:25
0193 S2-PD3-02-PA Pandeiro 3 Partido-alto 100 0:00:28
0194 S2-PD3-03-SE Pandeiro 3 Samba-enredo 130 0:00:25
0195 S2-PD3-04-MA Pandeiro 3 Marcha 120 0:00:28
0196 S2-PD3-05-CA Pandeiro 3 Capoeira 65 0:00:32
0197 S2-PD3-06-VPA Pandeiro 3 Virada (Partido-alto) 100 0:00:27
0198 S2-PD3-07-VMA Pandeiro 3 Virada (Marcha) 120 0:00:37
0199 S2-PD3-08-VSE Pandeiro 3 Virada (Samba-enredo) 130 0:00:46
0200 S2-PD5-01-SA Pandeiro 5 Samba 80 0:00:25
0201 S2-PD5-02-PA Pandeiro 5 Partido-alto 100 0:00:28
0202 S2-PD5-03-SE Pandeiro 5 Samba-enredo 130 0:00:25
0203 S2-PD5-04-MA Pandeiro 5 Marcha 120 0:00:28
0204 S2-PD5-05-CA Pandeiro 5 Capoeira 65 0:00:32
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0205 S2-PD5-06-PA Pandeiro 5 Partido-alto 100 0:00:27
0206 S2-PD5-07-VMA Pandeiro 5 Virada (Marcha) 120 0:00:37
0207 S2-PD6-01-SA Pandeiro 6 Samba 80 0:00:25
0208 S2-PD6-02-PA Pandeiro 6 Partido-alto 100 0:00:28
0209 S2-PD6-03-SE Pandeiro 6 Samba-enredo 130 0:00:25
0210 S2-PD6-04-MA Pandeiro 6 Marcha 120 0:00:28
0211 S2-PD6-05-CA Pandeiro 6 Capoeira 65 0:00:32
0212 S2-PD6-06-VPA Pandeiro 6 Virada (Partido-alto) 100 0:00:27
0213 S2-PD6-07-VMA Pandeiro 6 Virada (Marcha) 120 0:00:37
0214 S2-TB2-01-SA Tamborim 2 Samba 80 0:00:25
0215 S2-TB2-02-PA Tamborim 2 Partido-alto 100 0:00:29
0216 S2-TB2-03-SE Tamborim 2 Samba-enredo 130 0:00:28
0217 S2-TB2-04-VPA Tamborim 2 Virada (Partido-alto) 100 0:00:29
0218 S2-TB3-01-SE Tamborim 3 Samba-enredo 130 0:00:28
0219 S2-TB3-02-VSE Tamborim 3 Virada (Samba-enredo) 130 0:00:26
0220 S2-RR3-01-SA Reco-reco 3 Samba 80 0:00:25
0221 S2-RR3-02-PA Reco-reco 3 Partido-alto 100 0:00:29
0222 S2-RR3-03-SE Reco-reco 3 Samba-enredo 130 0:00:26
0223 S2-RR3-04-VPA Reco-reco 3 Virada (Partido-alto) 100 0:00:29
0224 S2-RR4-01-SA Reco-reco 4 Samba 80 0:00:25
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0225 S2-RR4-02-PA Reco-reco 4 Partido-alto 100 0:00:29
0226 S2-RR4-03-SE Reco-reco 4 Samba-enredo 130 0:00:26
0227 S2-RR4-04-VPA Reco-reco 4 Virada (Partido-alto) 100 0:00:29
0228 S2-CX2-01-SA Caixa 2 Samba 80 0:00:25
0229 S2-CX2-02-PA Caixa 2 Partido-alto 100 0:00:29
0230 S2-CX2-03-SE Caixa 2 Samba-enredo 130 0:00:26
0231 S2-CX2-04-MA Caixa 2 Marcha 120 0:00:28
0232 S2-CX2-05-VSE Caixa 2 Virada (Samba-enredo) 130 0:00:26
0233 S2-RP2-01-SA Repique 2 Samba 80 0:00:25
0234 S2-RP2-02-PA Repique 2 Partido-alto 100 0:00:28
0235 S2-RP2-03-SE Repique 2 Samba-enredo 130 0:00:25
0236 S2-RP2-04-VSE Repique 2 Virada (Samba-enredo) 130 0:00:33
0237 S2-RP1-01-SA Repique 1 Samba 80 0:00:25
0238 S2-RP1-02-PA Repique 1 Partido-alto 100 0:00:29
0239 S2-RP1-03-SE Repique 1 Samba-enredo 130 0:00:25
0240 S2-RP1-04-VPA Repique 1 Virada (Partido-alto) 100 0:00:30
0241 S2-RP3-01-SA Repique 3 Samba 80 0:00:25
0242 S2-RP3-02-PA Repique 3 Partido-alto 100 0:00:29
0243 S2-RP3-03-SE Repique 3 Samba-enredo 130 0:00:26
0244 S2-RP3-04-VPA Repique 3 Virada (Partido-alto) 100 0:00:32
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0245 S2-CU3-01-SA Cuíca 3 Samba 80 0:00:29
0246 S2-CU3-02-PA Cuíca 3 Partido-alto 100 0:00:29
0247 S2-CU3-03-SE Cuíca 3 Samba-enredo 130 0:00:28
0248 S2-CU3-04-VPA Cuíca 3 Virada (Partido-alto) 100 0:00:37
0249 S2-AG1-01-SA Agogô 1 Samba 80 0:00:26
0250 S2-AG1-02-PA Agogô 1 Partido-alto 100 0:00:29
0251 S2-AG1-03-SE Agogô 1 Samba-enredo 130 0:00:26
0252 S2-AG1-04-VPA Agogô 1 Virada (Partido-alto) 100 0:00:32
0253 S2-SK3-01-SA Chocalho 3 Samba 80 0:00:26
0254 S2-SK3-02-PA Chocalho 3 Partido-alto 100 0:00:29
0255 S2-SK3-03-SE Chocalho 3 Samba-enredo 130 0:00:25
0256 S2-SK3-04-MA Chocalho 3 Marcha 120 0:00:28
0257 S2-SK2-01-SA Chocalho 2 Samba 80 0:00:25
0258 S2-SK2-02-PA Chocalho 2 Partido-alto 100 0:00:29
0259 S2-SK2-03-SE Chocalho 2 Samba-enredo 130 0:00:26
0260 S2-SK2-04-MA Chocalho 2 Marcha 120 0:00:28
0261 S2-TT3-01-SA Tantã 3 Samba 80 0:00:27
0262 S2-TT3-02-PA Tantã 3 Partido-alto 100 0:00:29
0263 S2-TT3-03-SE Tantã 3 Samba-enredo 130 0:00:25
0264 S2-TT3-04-VMA Tantã 3 Virada (Marcha) 120 0:00:37
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0265 S2-TT4-01-SA Tantã 4 Samba 80 0:00:25
0266 S2-TT4-02-PA Tantã 4 Partido-alto 100 0:00:29
0267 S2-TT4-03-SE Tantã 4 Samba-enredo 130 0:00:25
0268 S2-TT4-04-MA Tantã 4 Marcha 120 0:00:28
0269 S2-TT4-05-VMA Tantã 4 Virada (Marcha) 120 0:00:37
0270 S2-SU2-01-SA Surdo 2 Samba 80 0:00:26
0271 S2-SU2-02-PA Surdo 2 Partido-alto 100 0:00:29
0272 S2-SU2-03-MA Surdo 2 Marcha 120 0:00:28
0273 S2-SU2-04-VPA Surdo 2 Virada (Partido-alto) 100 0:00:28
0274 S2-SU3-01-SA Surdo 3 Samba 80 0:00:25
0275 S2-SU3-02-PA Surdo 3 Partido-alto 100 0:00:29
0276 S2-SU3-03-SE Surdo 3 Samba-enredo 130 0:00:26
0277 S2-SU3-04-MA Surdo 3 Marcha 120 0:00:28
0278 S2-SU3-05-VPA Surdo 3 Virada (Partido-alto) 100 0:00:30
0279 S2-SU3-06-SE Surdo 3 Samba-enredo 130 0:00:30
0280 S2-SU2-05-SE Surdo 2 Samba-enredo 130 0:00:28

294



Table A.4: Overview of the solo-instrument tracks in BRID. Musician #3.

GID# Filename Instrument Style Tempo (bpm) Duration

0281 S3-PD2-01-SA Pandeiro 2 Samba 80 0:00:26
0282 S3-PD2-02-PA Pandeiro 2 Partido-alto 100 0:00:25
0283 S3-PD2-03-SE Pandeiro 2 Samba-enredo 130 0:00:27
0284 S3-PD2-04-MA Pandeiro 2 Marcha 120 0:00:32
0285 S3-PD2-05-CA Pandeiro 2 Capoeira 65 0:00:30
0286 S3-PD2-06-VPA Pandeiro 2 Virada (Partido-alto) 100 0:00:37
0287 S3-PD2-07-VSE Pandeiro 2 Virada (Samba-enredo) 130 0:00:28
0288 S3-PD3-01-SA Pandeiro 3 Samba 80 0:00:26
0289 S3-PD3-02-PA Pandeiro 3 Partido-alto 100 0:00:25
0290 S3-PD3-03-SE Pandeiro 3 Samba-enredo 130 0:00:27
0291 S3-PD3-04-MA Pandeiro 3 Marcha 120 0:00:32
0292 S3-PD3-05-CA Pandeiro 3 Capoeira 65 0:00:30
0293 S3-PD3-06-VPA Pandeiro 3 Virada (Partido-alto) 100 0:00:37
0294 S3-PD3-07-VSE Pandeiro 3 Virada (Samba-enredo) 130 0:00:27
0295 S3-PD5-01-SA Pandeiro 5 Samba 80 0:00:26
0296 S3-PD5-02-PA Pandeiro 5 Partido-alto 100 0:00:25
0297 S3-PD5-03-SE Pandeiro 5 Samba-enredo 130 0:00:27
0298 S3-PD5-04-MA Pandeiro 5 Marcha 120 0:00:32
0299 S3-PD5-05-CA Pandeiro 5 Capoeira 65 0:00:30
0300 S3-PD5-06-VPA Pandeiro 5 Virada (Partido-alto) 100 0:00:39
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0301 S3-PD5-07-VSE Pandeiro 5 Virada (Samba-enredo) 130 0:00:28
0302 S3-TB2-01-SA Tamborim 2 Samba 80 0:00:26
0303 S3-TB2-02-PA Tamborim 2 Partido-alto 100 0:00:25
0304 S3-TB2-03-SE Tamborim 2 Samba-enredo 130 0:00:27
0305 S3-TB2-04-VPA Tamborim 2 Virada (Partido-alto) 100 0:00:38
0306 S3-TB3-01-SE Tamborim 3 Samba-enredo 130 0:00:27
0307 S3-TB3-02-VSE Tamborim 3 Virada (Samba-enredo) 130 0:00:33
0308 S3-RR1-01-SA Reco-reco 1 Samba 80 0:00:26
0309 S3-RR1-02-PA Reco-reco 1 Partido-alto 100 0:00:25
0310 S3-RR1-03-SE Reco-reco 1 Samba-enredo 130 0:00:27
0311 S3-RR1-04-MA Reco-reco 1 Marcha 120 0:00:32
0312 S3-RR1-05-VPA Reco-reco 1 Virada (Partido-alto) 100 0:00:39
0313 S3-RR1-06-OT Reco-reco 1 Other 96 0:00:43
0314 S3-RR1-07-OT Reco-reco 1 Other 106 0:00:39
0315 S3-RR1-08-VSE Reco-reco 1 Virada (Samba-enredo) 130 0:00:26
0316 S3-CX1-01-SA Caixa 1 Samba 80 0:00:26
0317 S3-CX1-02-PA Caixa 1 Partido-alto 100 0:00:25
0318 S3-CX1-03-SE Caixa 1 Samba-enredo 130 0:00:27
0319 S3-CX1-04-MA Caixa 1 Marcha 120 0:00:32
0320 S3-CX1-05-MA Caixa 1 Marcha 120 0:00:32
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0321 S3-CX1-06-MA Caixa 1 Marcha 120 0:00:32
0322 S3-CX1-07-VSE Caixa 1 Virada (Samba-enredo) 130 0:00:30
0323 S3-RP2-01-SA Repique 2 Samba 80 0:00:26
0324 S3-RP2-02-PA Repique 2 Partido-alto 100 0:00:25
0325 S3-RP2-03-SE Repique 2 Samba-enredo 130 0:00:27
0326 S3-RP2-04-VPA Repique 2 Virada (Partido-alto) 100 0:00:38
0327 S3-RP2-05-VSE Repique 2 Virada (Samba-enredo) 130 0:00:30
0328 S3-RP1-01-SA Repique 1 Samba 80 0:00:26
0329 S3-RP1-02-PA Repique 1 Partido-alto 100 0:00:25
0330 S3-RP1-03-SE Repique 1 Samba-enredo 130 0:00:27
0331 S3-RP1-04-VPA Repique 1 Virada (Partido-alto) 100 0:00:35
0332 S3-RP3-01-SA Repique 3 Samba 80 0:00:26
0333 S3-RP3-02-PA Repique 3 Partido-alto 100 0:00:25
0334 S3-RP3-03-SE Repique 3 Samba-enredo 130 0:00:27
0335 S3-RP3-04-VPA Repique 3 Virada (Partido-alto) 100 0:00:35
0336 S3-AG1-01-SA Agogô 1 Samba 80 0:00:26
0337 S3-AG1-02-PA Agogô 1 Partido-alto 100 0:00:25
0338 S3-AG1-03-SE Agogô 1 Samba-enredo 130 0:00:27
0339 S3-AG1-04-VPA Agogô 1 Virada (Partido-alto) 100 0:00:37
0340 S3-SK1-01-SA Chocalho 1 Samba 80 0:00:26

(Continued on the following page.)
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Table A.4: (Continued from previous page.)

GID# Filename Instrument Style Tempo (bpm) Duration

0341 S3-SK1-02-PA Chocalho 1 Partido-alto 100 0:00:25
0342 S3-SK1-03-SE Chocalho 1 Samba-enredo 130 0:00:27
0343 S3-SK1-04-MA Chocalho 1 Marcha 120 0:00:32
0344 S3-SK2-01-SA Chocalho 2 Samba 80 0:00:26
0345 S3-SK2-02-PA Chocalho 2 Partido-alto 100 0:00:25
0346 S3-SK2-03-SE Chocalho 2 Samba-enredo 130 0:00:27
0347 S3-SK2-04-MA Chocalho 2 Marcha 120 0:00:32
0348 S3-TT1-01-SA Tantã 1 Samba 80 0:00:26
0349 S3-TT1-02-PA Tantã 1 Partido-alto 100 0:00:25
0350 S3-TT1-03-SE Tantã 1 Samba-enredo 130 0:00:27
0351 S3-TT1-04-VPA Tantã 1 Virada (Partido-alto) 100 0:00:37
0352 S3-TT1-05-VSE Tantã 1 Virada (Samba-enredo) 130 0:00:31
0353 S3-TT4-01-SA Tantã 4 Samba 80 0:00:26
0354 S3-TT4-02-PA Tantã 4 Partido-alto 100 0:00:25
0355 S3-TT4-03-SE Tantã 4 Samba-enredo 130 0:00:27
0356 S3-TT4-04-MA Tantã 4 Marcha 120 0:00:32
0357 S3-TT4-05-VSE Tantã 4 Virada (Samba-enredo) 130 0:00:28
0358 S3-SU3-01-SA Surdo 3 Samba 80 0:00:26
0359 S3-SU3-02-PA Surdo 3 Partido-alto 100 0:00:26
0360 S3-SU3-03-SE Surdo 3 Samba-enredo 130 0:00:27

(Continued on the following page.)
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Table A.4: (Continued from previous page.)

GID# Filename Instrument Style Tempo (bpm) Duration

0361 S3-SU3-04-MA Surdo 3 Marcha 120 0:00:32
0362 S3-SU3-05-VPA Surdo 3 Virada (Partido-alto) 100 0:00:39
0363 S3-SU3-06-SA Surdo 3 Samba 80 0:00:28
0364 S3-SU3-07-PA Surdo 3 Partido-alto 100 0:00:25
0365 S3-SU3-08-SE Surdo 3 Samba-enredo 130 0:00:27
0366 S3-SU3-09-VPA Surdo 3 Virada (Partido-alto) 100 0:00:39
0367 S3-SU3-10-SE Surdo 3 Samba-enredo 130 0:00:27
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Appendix B

Taxonomy of Musical Instruments

In order to clarify the terminology regarding instruments and sound production that
appear in this thesis, we here give a succinct account of the developments in the field
of organology, the science of the description and classification of musical instruments,
with particular interest in late-eighteenth- and early-nineteenth-century European
taxonomical systems. For a more in-depth look on these ideas and their evolutions,
we refer the reader to [348].

Instruments around the world can be classified in several distinct ways, which
are conditioned by sociocultural, religious, philosophical, and technological aspects
among others. These classification systems usually distinguish instruments based
on one or more characteristics, e.g., physical features (material, structure, sound
quality and range), playing method, location and usage/function [3]. Examples of
traditional division systems include: the Chinese material-based bāȳın (lit. “eight
sounds”) [3], which was developed during the Western Zhou dynasty (1046-771 BC)
and groups instruments into eight classes1 according to their main material compo-
nent (clay, gourd, silk, leather, metal, stone, wood, and bamboo); and the ancient
Indian system that is described in the Nāt.yaśāstra (a performing arts treatise dated
between the first century BC and the third century AD), in which instruments are
classified with regard to four acoustic principles [349]: “stretched” (strings), “hol-
low” (blown instruments), “covered” (skin-covered drums), and “solid” (bells, gongs,
cymbals, rattles and other instruments).

In European and other East Asian traditions, instruments are classically divided
into three sections — winds, strings, and percussion —, with many different pro-
posals for the segmentation of each section (e.g., plucked/bowed strings, woodwind-
s/brass, pitched/unpitched percussion). This three-class structure, while sufficient

1Scholars believe that the number eight was deliberately chosen for the set of instrument classes
in order to match a certain cosmological worldview [3], since this number is considered particularly
auspicious in traditional Chinese numerology. It appears, for example, in Buddhism (e.g., the eight
winds, one for each cardinal and ordinal points in a compass), and in the Taoist philosophy, where
the eight trigrams (bāguà) represent different fundamental principles of reality.
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in several settings (in particular, the musical practice of those cultures), contains an
intrinsic inconsistency: the main division process deals with two different acoustic
principles. For winds and strings, instruments are grouped according to the common
vibrating substance (an air column2 or the strings themselves), where the excitation
method is the main criterium for the percussion class [3]. Also, some instruments
cannot be satisfactorily classified through this system. For example, the celesta3

is grouped together with drums in the set of percussion instruments [350], and the
pianoforte could be similarly classified. However, the harpsichord, closely related
to the piano, might fall into the strings category alongside the guitar, due to the
plucking action of its playing.

At the end of the nineteenth century, a different classification scheme was devised
by MAHILLON [351]; during the period he was entrusted with indexing the instru-
ments in the museum of the Conservatoire Royal de Musique, in Brussels. Mahillon
took special care in establishing a system capable of describing instruments both
autochthonous and exotic to Europe and arrived at a structure much akin to that
of the ancient Indian system, of which the curator was probably aware. Thus, by
observing the nature of the vibrating bodies used as sound sources, he separated
instruments into four classes [351]:

(I) instruments autophones, where sound is maintained by the vibrations of the
instruments’ bodies themselves, given that their rigidity and elasticity allow
for periodic vibrations;

(II) instruments à membranes, where sound is created through the vibrations of
stretched membranes;

(III) instruments à vent, where sound is produced by the vibration of an air column,
which is excited by the interaction of the air flow with certain parts of the
instrument;

(IV) and instruments à cordes, where sound originates from the vibration of tight
strings.

In this system, each class was subdivided into families according to the playing action
(e.g., friction, percussion) or, in the case of class (III), to the presence of special
structural parts (e.g., reeds, mouthpieces, air reservoirs). Families were then further
refined into species and sometimes into variations within a same species. In later

2We can also consider that the term “wind” (blowing) refers to the excitation method of wind
instruments [350]. Be that as it may, this classic Western classification scheme is still governed
by two different principles, since “strings” and “percussion” describe distinct aspects of sound
production: the sound source and the excitation, respectively.

3The celesta is an instrument with the form of an upright piano. The playing action of a celesta
causes small felt hammers to strike metal plates, which are suspended over wooden resonators [3].
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editions of his catalog, Mahillon replaced these biology-inspired terms — “family”,
“species”, and “variations” — for rather generic ones (“branches”, “sections”, and
“subsections”, respectively) to save “family” for those groups of instruments sharing
a similar build, as recommended by François-Auguste Gevaert, then director of the
Conservatoire.

About three decades later, HORNBOSTEL and SACHS [350], two musicologists
from Austria and Germany, respectively, constructed a different four-class system.
They presented in this seminal article a few of the inconsistencies in the classifica-
tion scheme proposed in Mahillon’s Catalogue, in particular regarding some choices
for the subdivisions within each class. They observed that, as the museum’s collec-
tion expanded, Mahillon was faced with new acquisitions that were hard to classify
(especially non-European instruments) and had to accordingly make alterations in
his scheme. One of the inconsistencies pointed out in [350] was the separation of
autophones into instruments of untuned or tuned pitch, which ignores the fact that
no pure untuned or tuned pitch instrument exists and leads to a subjective clas-
sification of the entire range of instruments that produce sound combinations in
between these two extremes. Another set of discordances came from the persistent
application (by Mahillon) of the division process according to playing action, which,
despite being praised as highly logical by Hornbostel and Sachs, gave rise to “dubious
solutions” for class (IV) of strings instruments. For example, in a similar manner to
the ambiguities of the three-class system that we presented earlier, Mahillon ended
up putting the pianoforte (and the clavichord, another of its relatives) in the same
section, while the harpsichord remained in an entire different branch.

Striving for uniformity in intraclass divisions and aiming at the universality of the
classification as a whole, Hornbostel and Sachs started fresh, with new developments
and detailing of Mahillon’s four original classes, which they renamed as: idiophones,4

membranophones, aerophones, and cordophones. Unlike Mahillon, however, they
refrained from naming the subsequent levels (“branches”, “sections”, etc.) of their
ranking, for which two reasons were given. First, their system defined a larger
number of levels, and the division criteria at each level followed group-specific (either
morphological or playing-related) principles: uniform in a given group, but not
directly comparable between different groups on the same level. More importantly,
they were aware that the system might need improvements and amendments, in
such way that a fixed nomenclature was inadvisable. Instead, the Hornbostel–Sachs
system was devised with a decimal notation: the main classes are indicated by a
single digit (from one to four) and each subsequent level is expressed by appending

4In a previously published glossary [352], Sachs expressed the preference for the term “idio-
phone” in place of “autophone”, which, as the author stated, can confuse the reader, particularly
the laymen, into thinking that it signifies an automatic (self-playing) instrument. The prefix “idio-”
comes from the Greek ídios meaning “own”, “distinct”, “specific”.
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another digit to the right, adding a decimal dot at every three digits. For example,
the Brazilian tamborim (see Figure 2.16f) can be described, down to the lowest level,
as 211.311, for it is a membranophone (2) in which the membrane is struck (21)
directly (211) and, furthermore, it has the form of a frame drum (211.3), without a
handle (211.31), and with a single skin (211.311). This codification was influenced
by the Dewey Decimal Classification, which is commonly used in libraries.

With this decimal system, the Hornbostel–Sachs classification provides great ver-
satility in the description of instruments. First, any given code number in the system
does not represent a single instrument, but an entire group of instruments that share
the same characteristics.5 Second, it is not required to exhaust all the levels in the
classification, i.e., we can represent a given instrument with any desired amount of
detail. As the authors showed, one can even omit certain figures (replacing them by
wildcards) to indicate generic “supergroups” that bring together instrument groups
separated by a few characteristics. It is also possible or combine different codes (with
a “+” sign) to represent signals composed of parts coming from different groups. For
example, the pandeiro (see Figure 2.16d) is entered as 211.311+112.122, because its
shape follows that of a tamborim combined with jingles, which are indirectly struck.
Finally, common characteristics among all divisions of a class (e.g., the playing
method of chordophones) can be appended to the original code as suffixes after a
dash. This solves the separation of piano (314.122–4–8) and harpsichord (314.122–
6–8) we mentioned before, for example, since both cordophones have the form of a
board zither with resonator box (314.122), but are further specified by the suffixes
(8, for keyboard; 4, for hammers; and 6, for plectra).

The Hornbostel–Sachs system was met with a mixed reception, and many schol-
ars (including the authors) have latter suggested modifications and revisions. One
example is the introduction of a class of instruments known as electrophones, i.e.,
instruments that generate sound by electric/electronic means [164]. Other classifi-
cation systems were also proposed, but the Hornbostel–Sachs system remains today
the organological paradigm most referenced by researchers and people that work
with musical instruments [353].

5This also holds for the elements in the Catalogue [351].

303


	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Research Context
	Motivation
	Scope, Objectives, and Main Contributions
	Publications
	Papers accepted in peer-reviewed conferences
	Articles published in peer-reviewed journals

	Organization and Outline

	I Preliminary Aspects
	Samba Carioca
	Meaning of ``Samba''
	History and Evolution
	Carnaval
	Rhythm
	Instruments

	Datasets
	Brazilian Rhythmic Instruments Dataset
	Instruments and Rhythms
	Dataset Recording
	Track Labeling and Annotations

	Samba-Enredo Dataset
	Dataset Overview
	Metadata and Annotations

	Other Datasets

	Signal Transforms
	Fourier Transform
	Constant-Q Transform
	Discrete Wavelet Transform
	Modulation Spectral Transform
	Incoherent Demodulation
	Coherent Demodulation

	Scale Transform


	II Drum Sound Classification
	Features for Drum Sound Classification
	Signal Envelope
	Descriptors from the Literature
	Temporal Descriptors
	Spectral Descriptors
	Cepstral Descriptors

	Proposed Descriptors
	CQT-based Modulation Spectrum Coefficients
	Scattering Coefficients


	Physics of Sound Production and Literature Review
	Sound Production in Percussion Instruments
	Approaches to Drum Sound Classification

	Investigation of Drum Sound Classification
	Subset Definition
	Onset Detection on the Subset
	Segmentation of Articulations
	Feature Extraction
	Classification of Segments
	Articulations of Tantã and Repique
	Archetypal Strokes



	III Rhythmic Description
	Introduction to Rhythmic Description
	Musical Concepts for Rhythmic Description
	Literature Review
	Rhythmic Descriptors
	Distance Metric
	Qualitative Analysis of Rhythmic Descriptors

	Metrical Structure and Microtiming
	Approaches to Beat and Downbeat Tracking
	Dynamic Bar-Pointer Model
	TCN-Based Multi-Task Approach
	Adaptive Beat Tracking

	Approaches to Microtiming Analysis

	Investigation on Beat and Downbeat Tracking
	Evaluation Metrics
	Typical Beat and Downbeat Tracking Errors
	Beat Tracking on BRID Mixtures
	Annotation of Beats in SAMBASET
	Selective Sampling for Beat Tracking Evaluation
	Selection of SAMBASET Excerpts
	Discussion of the Results
	Musicological Insights

	Annotation of Downbeats in SAMBASET

	Contributions to Beat and Downbeat Tracking with Few Data
	Active and Few-Shot Learning
	Training with Few Data
	Datasets
	Handling Small-Sized Datasets
	TCN Model
	Training Strategies
	Baselines
	Evaluation Metrics
	Performance of Models
	How Much Time do the Models Take to Train?
	When Can We Train With Small Data?

	Selective Annotation of Few Data
	Data Selection Methodology
	Selection Schemes
	Training Strategy
	Dataset Homogeneity
	State-of-the-Art Results Without Selection
	Experiment 1: Does Sampling Matter?
	Experiment 2: Feature Structure
	Experiment 3: Sampling Strategies
	Discussion


	Contributions to Microtiming Analysis
	Characterization of Microtiming in Tamborim Carreteiro
	Beat and Microtiming Tracking
	Model Structure
	Inference Methods
	Evaluation Metrics
	Performance of Models



	Conclusions
	Summary and Conclusions
	Future Work

	Bibliography
	BRID Tables
	Taxonomy of Musical Instruments

